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Abstract 
 

The efficient synthesis of a new class of allylic cis/trans-dicarbamates are described. Allylic diols as key 
intermediates of the targeted compounds were prepared in a facile way, starting from p-benzoquinone. 
Reaction of allylic diol compounds with p-TsNCO resulted in the formation of cis/trans-dicarbamate groups. The 
structure of cis/trans-dicarbamates were determined by 1H-NMR, 13C-NMR, FT-IR and elemental analysis 
techniques. 
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cis/trans-dikarbamatların Stereospesifik Sentezi 
 

Öz 
 

Yeni bir allilik cis/trans-dikarbamat sınıfının verimli sentezi açıklanmaktadır. Hedeflenen bileşiklerin anahtar ara 
maddeleri olarak allilik dioller, p-benzokinon'dan başlayarak kolay bir şekilde hazırlandı. Allilik diol bileşiklerinin 
p-TsNCO ile reaksiyonu cis/trans-dikarbamat gruplarının oluşumuyla sonuçlandı. cis/trans-Dikarbamatların 
yapısı 1H-NMR, 13C-NMR, FT-IR ve elemental analiz teknikleriyle aydınlatıldı. 
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Introduction 

Carbamate-bearing molecules play a vital role in modern drug discovery and medicinal chemistry 
(Ghosh & Brindisi, 2015). Most carbamates in medicinal chemistry are drugs or drug candidates 
marketed in preclinical or clinical trials (Vacondio et al., 2010). Structurally, carbamate functional 
groups are directly related to amide ester hybrid functions and show good chemical and proteolytic 
stabilities as standard. Organic carbamates and isothiocyanates have an outstanding property in 
organic synthesis and peptide chemistry as optimum protecting groups for amines and amino acids in 
general (Ghosh & Brindisi, 2015; Gupte et al., 2001; Matošević & Bosak, 2020; Yakan, 2020). 
Additionally, many of the oxazolidinone-containing cyclic carbamate compounds constitute a new 
class of synthetic antibiotics with potent activity against a wide range of drug-resistant Gram-positive 
bacteria (Prasher et al., 2023).  

In particular, allylic carbamates have attracted great attention due to their important roles in various 
fields (Ghrairi et al., 2022; Kelebekli et al. 2012). In fact, it is claimed to belong to the structural or 
functional part of many approved drugs (Matošević et al., 2020; Dal Corso et al., 2020) and prodrugs 
(Mattarei et al., 2015) used in the treatment of various diseases such as Alzheimer's disease (Košak et 
al., 2020), cancer (Huxley et al., 2020), hepatitis C, etc. (Krzywik et al., 2021), HIV infection (Chander 
et al., 2016), anxiety and epilepsy (Löscher et al., 2021). 
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Figure 1. Selected Compounds Containing Carbamates   

The carbamate-yielding reaction of alcohols with isocyanates has been studied by many researchers. 
On the other hand, isocyanates such as 4-methyl-benzenesulfonyl isocyanate (p-TsNCO) and phenyl 
isocyanate (PhNCO) are frequently used in the preparation of aminocyclitols and are also widely used 
in the preservation of alcohols (Huang & Yan, 2017; Kelebekli, 2020; Seo & Chung, 2017; Trost & 
Kalnmals, 2020). In addition, some drugs containing halogen atoms as well as carbamate function are 
widely reported in the literature (Scattolin et al., 2019), such as capravirine 1 (Li et al., 2012), 1-
benzoxazin-4-yl]methyl-(4-fluorophenyl)carbamate 2 (Mizutani et al., 2009) that is antibacterial drug, 
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Rivastigmine 3 for Alzheimer's disease (Franz et al., 2018),  monocarbamate 4 (Kelebekli, 2022) 
(Figure 1).  

Regio- and/or stereoselective reactions are very important in synthetic organic chemistry and 
therefore vary depending on the type of reagent. For this reason, carbamates attract the attention of 
pharmacologists as well as chemists. 

On the other hand, the development of new methods based on carbamate synthesis will lead to 
different research in the field of organic synthesis. We considered allylic diol groups for the 
formation of cis/trans-carbamates. As a result, we planned to investigate the importance of 
dicarbamate functional groups due to the effectiveness of pharmaceutical drugs. 

Material and Method 

Experimental  

A capillary melting apparatus (Electrothermal) was used for determination of melting points and are 
the results are presented without correction. IR spectra were obtained from KBr (solution in 0.1 mm 
cells) or film with a Shimadzu spectrophotometer. The 1H-NMR, 13C-NMR spectra were recorded on 
400 (100) MHz Bruker spectrometer (Avance III) and are reported in δ units with SiMe4 as internal 
standard. TLC was performed on E. Merck Silica Gel 60 F254 plate (0.2 mm). Flash-column 
chromatography was performed on Merck silica gel (60 mesh). All organic extracts were dried with 
MgSO4, filtered, and concentrated on a rotary evaporator. The distilled solvents in all synthesis were 
used.  Elemental analyses were carried out on a Carlo Erba 1108 model CHNS-O analyzer. 

(1RS,4SR,4aRS,5SR,8RS,8aSR)-/(1RS,4SR,4aRS,5SR,8SR,8aSR)-1,4,4a,5,8,8a-Hexahydro-1,4-
ethanonaphthalene-5,8-diol (9) 

The title compound was prepared in 90% yield as described in the literature (Ishii et al, 2015; 
Kelebekli, 2013).               

(1RS,4SR,4aRS,5SR,8RS,8aSR)-1,4,4a,5,8,8a-Hexahydro-1,4-ethanonaphthalene-5,8-diyl 
bis(tosylcarbamate) (10) and (1RS,4SR,4aRS,5SR,8SR,8aSR)-1,4,4a,5,8,8a-Hexahydro-1,4-
ethanonaphthalene-5,8-diyl bis(tosylcarbamate) (11) 

To a stirred solution of tricyclic cis/trans-diol 9 (1.00 g, 5.21 mmol) in anhydrous THF (15 mL) under 
nitrogen at room temperature was added p-toluenesulfonyl isocyanate (p-TsNCO) (2.13 g, 10.80 
mmol, 1.64 mL) dropwise via a syringe. The reaction mixture was stirred at room temperature to give 
crude bis-dicarbamates for 12 h. After removal of the solvent under reduced pressure (50 oC, 20 
mmHg), the reaction mixture was chromatographed on silica gel (60 g) by eluting with 25% ethyl 
acetate/hexane to afford (1RS,4SR,4aRS,5SR,8RS,8aSR)-1,4,4a,5,8,8a-hexahydro-1,4-
ethanonaphthalene-5,8-diyl bis(tosylcarbamate) 10 (2.32 g, 76%) and (1RS,4SR,4aRS,5SR,8SR,8aSR)-
1,4,4a,5,8,8a-hexahydro-1,4-ethanonaphthalene-5,8-diyl bis(tosylcarbamate) 11 (0.46 g, 15%). 

cis-dicarbamate 10: White crystals, mp 130-131 oC (from EtOAc/hexane). 1H-NMR (400 MHz, CDCl3) δ 
8.59 (br s, 2H, -NH), 7.88 (d, A part of AA’BB’ system, J = 8.4 Hz, 4H, aromatic), 7.30 (d, B part of 
AA’BB’ system,  J = 8.4 Hz, 4H, aromatic), 5.90 (t, J = 4.0 Hz, 2H, -CH=CH, H6 and H7), 5.75  (d, J = 1.2 
Hz, 2H, -CH=CH, H2 and H3), 5.17 (br s, 2H, CH-O), 2.45 (br s, 2H, bridgehead-CH, H4a and H8a), 2.41 
(s, 6H, arom-CH3), 2.31 (br s, 2H, bridgehead-CH, H1 and H4), 1.39 (d, 2H, A part of AB system, J = 7.2 
Hz, geminal effect-CH2CH2), 1.11 (d, 2H, B part of AB system, J = 7.2 Hz, geminal effect-CH2CH2);  
13C-NMR (100 MHz, CDCl3) δ 150.7 (×2, C=O, -CO-NHTs), 145.2 (×2, arom-ipso), 135.8 (×2, arom-ipso), 
132.5 (×2, C=C), 130.5 (×2, C=C), 129.9 (×4, aromatic), 128.4 (×4, aromatic), 70.6 (×2, C-O), 41.0 (×2, 
bridgehead-CH, C4a and C8a), 31.3 (×2, bridgehead-CH, C1 and C4), 26.0 (-CH2CH2), 21.9 (×2, tosyl-
CH3); IR (CHCI3, cm-1): 3246, 3052, 2947, 2908, 1744, 1598, 1448, 1348, 1227, 1162, 1090, 892, 871, 
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758, 738, 664, 548; Anal. Calcd for C28H30N2O8S2: C, 57.32; H, 5.15; N, 4.78; S, 10.93; Found: C, 56.75; 
H, 5.77; N, 4.48; S, 11.67 %. 

trans-dicarbamate 11: White crystals, mp 176-177 oC (from EtOAc/hexane). 1H-NMR (400 MHz, 
CDCl3) δ 10.02 (Br S, 2H, -NH), 7.92 (d, A part of AA’BB’ system, J = 8.4 Hz, 4H, aromatic), 7.36 (d, B 
part of AA’BB’ system,  J = 8.4 Hz, 4H, aromatic), 6.53 (dd, J = 9.6, 6.4 Hz, 1H, H6), 6.22 (t, J = 7.2 Hz, 
1H, H3), 6.10  (dd, J = 9.6, 6.4 Hz, 1H, H7), 5.84 (t, J = 7.2 Hz, 1H, H2), 5.43 (t, J = 6.0 Hz, 1H, H8, -CH-
O), 4.42 ( ddd, J =11.2, 6.0, 5.6 Hz, 1H, H5, -CH-O), 2.75 (d, J = 5.2 Hz, 1H, bridgehead-CH, H4), 2.50 
(brd, J = 4.4 Hz, 1H, bridgehead-CH, H1), 2.45 (s, 6H, arom-CH3), 2.23 (dd, J = 11.2, 5.2 Hz, 1H, 
bridgehead-CH, H8a), 2.10 (dd, J = 11.2, 4.8 Hz, 1H, bridgehead-CH, H4a), 1.51 (m, 2H, -CH2), 1.26 (m, 
2H, -CH2); 13C-NMR (100 MHz, CDCl3) δ 150.5 (×2, C=O, -CO-NHTs), 144.9 (×2, arom-ipso), 139.4 (×2, 
arom-ipso), 136.3 (×2, C=C), 133.6 (C=C), 131.7 (C=C), 129.7 (×4, aromatic), 128.5 (×4, aromatic), 69.6 
(C-O), 65.2 (C-O), 44.3 (bridgehead-C, C4a or C8a), 43.8 (bridgehead-C, C4a or C8a), 33.0 (bridgehead-
C, C1 or C4), 32.7 (bridgehead-C, C1 or C4), 26.4 (-CH2), 26.0 (-CH2), 21.8 (×2, tosyl-CH3); IR (CHCI3, cm-

1): 3046, 2939, 2868, 1745, 1597, 1464, 1350, 1223, 1210, 1160, 1088, 977, 879, 815, 728, 661, 560; 
Anal. Calcd for C28H30N2O8S2: C, 57.32; H, 5.15; N, 4.78; S, 10.93; Found: C, 56.81; H, 5.81; N, 4.42; S, 
11.12 %. 

Result and Discussion 

This study started with the endoselective Diels–Alder cycloaddition of p-benzoquinone 5 and 1,3-
cyclohexadiene 6, and the required cycloaddition product 7 was obtained as a single product in 83% 
yield (Ishii et al., 2015; Kelebekli, 2013) (Figure 2). The structure of the synthesized diketone 
compound 7 was clearly deduced from their 1H and 13C-NMR spectra the structure of the obtained 
compound. Reduction reaction is a frequently used method in organic synthesis, and various 
reducing reagents are defined for the successful conduct of such reactions. LiAlH4 and NaBH4 are 
widely used among the strongest and mildest reducing agents developed for the reduction of 
functional groups in synthetic organic chemistry. 
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Figure 2. Synthesis of Compound 8 

 



Ordu Üniversitesi Bilim ve Teknoloji Dergisi | Ordu University Journal of Science and Technology               2024, 14(1), 94-105 

98 
 

There are many studies in the literature on the reduction of α,β-unsaturated ketone compounds. The 
carbonyl groups in these compounds and their derivatives are generally reduced with NaBH4 and/or 
NaBH4-CeCl3·7H2O (Kelebekli & Atlı, 2019; Luce, 1978; Marchand et al., 1986). Allylic cis-diols are a 
useful intermediate in organic syntheses.  

Therefore, in our previous study, the Luche reduction on 7 (NaBH4-CeCl3·7H2O/MeOH) resulted in the 
addition of a hydride from the stereoselectively preferred convex face. As expected, cis reduction led 
to compound 8 (Kelebekli & Şahin, 2023) (Figure 2).  

Therefore, reduction of α,β-unsaturated ketones functional groups with NaBH4 in a polar solution in 
the presence of CeCl3·7H2O yields almost exclusively the allylic alcohol functional groups, sometimes 
stereoselectively. 

In our subsequent study, the same procedure was used and it was observed that two products were 
formed as a result of the reduction of compound 7 and the protection of the diols formed with 
TsNCO. It is understood from this that the reduction product represents cis/trans diols products. 
Treatment of allylic cis/trans-diol 9 with 2 equivalents of 4-methyl-benzenesulfonyl isocyanate (p-
TsNCO) in THF yielded cis-dicarbamate 10 and trans-dicarbamate 11 in high yield. It was observed 
that the reaction was completed in 12 hours. The resulting carbamates were purified by 
chromatography method and gave allylic cis-dicarbamate 10 and allylic trans-dicarbamate 11 
products. The total yield after purification was determined to be 91% from cis/trans-1,4-diol 9 (Figure 
3). Thus, in this study, the protection of cis/trans-diol with p-TsNCO was successfully achieved. The 
structures of cis-dicarbamate 10 and trans-dicarbamate 11 were established on the basis of 1H-NMR, 
13C-NMR data and for further structural evidence IR and HRMS data were also used. To our 
knowledge so far, we have not encountered trans diol formation from the reduction of diketone 7. 
Therefore, the formation of trans diol was an interesting approach in this system. 
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Figure 3. Synthesis of Allylic cis-/trans-dicarbamates 10 and 11 
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The relative configuration of cis-dicarbamate 10 is clearly deduced from the evaluation of 1H and 13C-
NMR spectra (Figure 4). On the other hand, the configuration of symmetric cis-dicarbamate 10 was 
elucidated spectroscopically. The protons that are most helpful in the configuration analysis of the 
symmetric structure are bridgehead H4a and H8a. The bridgehead H4a and H8a resonated at 2.45 
ppm as a broad singlet. On the other hand, H6 and H7 resonated with H5 or H8 at 5.90 ppm (J6,5 or 
J7,8=4.0 Hz) as a triplet. Due to the allylic interaction, it is possible to see the same coupling constant 
for H6 (H7) bonded to the double bond carbon C6 (C7) at 5.90 ppm (J = 4.0 Hz). Likewise, the double 
bond protons H2 or H3 resonated at 5.75 ppm (J=1.2 Hz) as a doublet. Moreover, the bridgehead H1 
and H4 resonated at 2.31 ppm as a broad singlet. As a result of these findings, it is obvious that there 
is a cis relationship between the configurations of the two carbamate groups (-OCONHTs) and that 
the molecule also has symmetry.  

On the other hand, the 12-line 13C-NMR spectrum clearly revealed the existence of a symmetric 
structure. In the 13C-NMR spectrum of cis-dicarbamate 10, the typical signals of the carbonyl carbon 
and carbon to which the tosyl group (-C-O) is attached of the cis-dicarbamates appeared at 150.2 
ppm, at 70.6 ppm, respectively (Figure 4). In light of this information, these results fully support the 
proposed structure. 
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Figure 4. 400 Mhz 1H-NMR and 100 Mhz 13C-NMR Spectra of cis-Dicarbamate 10 
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Figure 5. 400 MHz 1H-NMR and 100 MHz 13C-NMR Spectra of trans-dicarbamate 11  

The relative configuration of trans-dicarbamate 11 was unambiguously deduced from their 1H and 
13C-NMR spectra (Figure 5). The 1H-NMR spectrum of compound 11 provided important information 
about the structure of the molecule. The most important thing that distinguishes the configuration of 
compound 11 from the configuration of the symmetric compound 10 is based on the binding of 
protons in the trans-position attached to C5 and C8 in compound 11. All protons in the compound 
resonated separately, which is clear evidence that this compound is not symmetrical. In particular, 
according to these data, it can be explained that there is a trans relationship between the two -
OCONHTs and as a result, the molecule does not have symmetry. In particular, the 13C-NMR spectrum 
provided more detailed information in elucidating this molecule. Thus, the 16-line 13C-NMR spectrum 
clearly shows that the molecule has an asymmetric structure. In the 13C-NMR spectrum of trans-
dicarbamate 11, the typical peak of the carbonyl carbon of the dicarbamates appeared at 150.2 ppm 
(in CDCl3). In the 13C-NMR spectrum of 11, in particular, two aliphatic carbons (-CH-O) were observed 
at 69.6 and 65.2 ppm, respectively. On the other hand, two bridgehead carbons C4a and C8a were 
observed at 44.3 and 43.8 ppm, respectively. In light of this information, these results fully support 
the proposed trans structure. 
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Figure 6. The 1H-NMR Irradiation Spectrum of trans-dicarbamate 11 (CDCl3, 400 MHz, ppm) 
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Figure 7. 1H-NMR Spectrum of trans-carbamate 11 

In the 1H-NMR spectrum of trans-carbamate 11 (Figure 6), when H-3 at 6.22 ppm was irradiated, the 
H-2 signal at 5.84 ppm caused the change from triplet to a doublet. At the same time, it is clearly 
seen that the bridgehead H-4 signal at 2.75 ppm changes from doublet to broad singlet. The 
irradiation of bridgehead H-4 at 2.75 ppm caused the signal of H-3 at 6.22 ppm changing from a 
triplet to a doublet and at the same time, the signal of H-4a at 2.75 ppm changing. Thus, it can be 
stated that it is clearly seen that H-3 with H-2 and H-4a with H-4 are protons adjacent to each other. 
Irradiation of H-5 at d 4.42 ppm (-CHO) caused the H-6 signal at 6.53 ppm to change from a doublet 
of doublets into clearly doublet. At the same time, the resonance signal of the bridgehead proton H-
4a at 2.75 ppm clearly changes from a doublet of doublets into a broad doublet. Thus, it has vicinal 
bond with H-5, H-6 and bridgehead H-4a. Upon irradiation at the resonance signal of H-8 at 5.43 
ppm, as the signal of H-7 at 6.53 ppm changing from a doublet of doublets into a doublet, at the 
same time the resonance signal of bridgehead H-8a at 3.35 ppm also changing from a doublet of 
doublets into clearly doublet. Thus, H-7 and H-8a with H-8 are the neighboring protons with each 
other. In irradiation of H-8a at 3.35 ppm resulted in the signal of H-8 at 5.43 ppm changing from a 
triplet to a doublet, in addition, it led to signal enhancement of the resonances at H-4a. These results 
show us that they also provide evidence that H-8 and H-4a are protons adjacent to H-8a. We thus 
easily described the relative stereochemistry of all protons in trans-carbamate 11 by taking into 
account the coupling constants. 

Conclusion 

In conclusion, a novel of cis/trans-dicarbamates has been synthesized reasonably in good yields. 
Since carbamates are intermediate products of oxazolidones, the synthesis of dicarbamates, 
especially those with a trans structure, will become more important in the future. It may also enable 
expansion of oxazolidinone synthesis for various purposes and provide an alternative possibility in 
this regard. 
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