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ABSTRACT

This present paper is concerned with the study of the generalized Ricci-recurrent Weyl manifolds.
First, we obtain a sufficient condition for the generalized Ricci-recurrent Weyl manifold admitting
harmonic conformal curvature tensor to be a quasi-Einstein Weyl manifold. Also, we give an
example of a generalized Ricci-recurrent Weyl manifold. Then, we prove that a generalized Ricci-
recurrent Weyl manifold satisfying the Codazzi type of Ricci tensor is an Einstein Weyl manifold
if and only if its scalar curvature is a prolonged covariant constant. Moreover, we prove that a
generalized Ricci-recurrent Weyl manifold with a generalized concircularly symmetric tensor is an
Einstein-Weyl manifold if and only if its scalar curvature is prolonged covariant constant.
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1. Introduction

Weyl geometry was introduced by Hermann Weyl [24]. He generalized Riemannian geometry by introducing
scale freedom of the underlying metric and formulated unified field theory in 1918. Weyl geometry was taken
up explicitly in different research fields of theoretical physics during the second half of the 20th century. A Weyl
manifold is a conformal manifold equipped with a torsion free connection preserving the conformal structure,
called a Weyl connection.

Scalar curvature for an Einstein manifold of dimension n > 2 is constant. But, the scalar curvature need not
to be constant for the Einstein-Weyl manifold. Pedersen and Tod [23] have shown that scalar curvature is an
analytic function for a suitable choice of metric and local coordinates.

There are a number of remarkable studies of Einstein-Weyl structure under various conditions [7, 11, 12].
The Einstein–Weyl condition plays a key role in physics, the pure Einstein theory being too strong as a system
model for various physical questions. Moreover, quasi-Einstein manifolds have been studied by valuable
authors recently.

The idea of Ricci-recurrent manifold was introduced by Patterson [21]. Then, Ricci-recurrent manifolds have
been studied by many authors [4, 15, 22]. In [6], De, Guha and Kamilya introduced and studied the generalized
Ricci-recurrent Riemannian manifolds. In [14], authors have obtained some results for a generalized Ricci-
recurrent Riemannian manifold to be a quasi-Einstein manifold. In [8], authors have studied quasi-Einstein
Weyl manifolds. In [26], conformally symmetric generalized Ricci-recurrent manifolds have been studied, and
proved that such a manifold is a quasi-Einstein manifold. In [13], authors have shown that a conformally flat
generalized Ricci-recurrent pseudo-Riemannian manifold is an Einstein manifold.

In this work, we consider the generalized Ricci-recurrent Weyl manifolds. We first obtain a sufficient
condition for a generalized Ricci-recurrent Weyl manifold with ∇̇hC

h
ijk = 0, to be a quasi-Einstein Weyl

manifold. We also construct a non-trivial example of generalized Ricci-recurrent Weyl manifold. Then, we
prove that a generalized Ricci-recurrent Weyl manifold satisfying Codazzi type of Ricci tensor is an Einstein-
Weyl manifold if and only if its scalar curvature is prolonged covariant constant. Finally, we prove that a
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generalized Ricci-recurrent Weyl manifold with a generalized concircularly symmetric tensor is an Einstein-
Weyl manifold if and only if its scalar curvature is prolonged covariant constant.

2. Preliminaries

A differentiable manifold of dimension n having a conformal class C[g] of metrics and a torsion-free
connection ∇ preserving C[g] is called a Weyl manifold [17, 27] which will be denoted by Wn(g, T ) where
g ∈ C[g] and T is a 1-form satisfying the compatibility condition

∇g = 2(g ⊗ T ). (2.1)

Under the conformal re-scaling (renormalization)

ḡ = λ2 g (λ > 0) (2.2)

of the metric tensor g, T is transformed by the rule

T̄ = T + d(lnλ). (2.3)

It is well-known that the pair (ḡ, T̄ ) generates the same Weyl manifold. The process of passing from (g, T ) to
(ḡ, T̄ ) is called a gauge transformation.

The curvature tensor, the covariant curvature tensor, the Ricci tensor, and the scalar curvature of Wn(g, T )
are, respectively, defined by [3, 23]

(∇k∇l −∇l∇k) v
p = vj Rp

jkl , (2.4)

Rhjkl = gph R
p
jkl , (2.5)

Rij = Rh
ijh = gkh Rkijh , (2.6)

R = gij Rij . (2.7)

From (2.4) it follows that

Rp
jkl = ∂kΓ

p
jl − ∂lΓ

p
jk + Γp

hkΓ
h
jl − Γp

hlΓ
h
jk , ∂k =

∂

∂xk

where Γh
ik are the coefficients of the Weyl connection ∇ given by

Γh
ik =

{
h

ik

}
− ( δhi Tk + δhk Ti − ghm gik Tm ), (2.8)

in which
{

h
ik

}
are the coefficients of the Levi-Civita connection.

By straightforward calculations it is easy to see that the antisymmetric part of Rij , R[ij], has the property

R[ij] = n∇[iTj]. (2.9)

Definition 2.1. An object A defined on Wn(g, T ) is called a satellite of weight {p} of the tensor gij , if it admits
a transformation of the form

Ā = λpA (2.10)

under the renormalization (2.2) of the metric g [9, 27].

Definition 2.2. The prolonged covariant derivative of a satellite A of weight {p} is defined by [9]

∇̇k A = ∇k A− p Tk A . (2.11)

We note that the prolonged covariant derivative preserves the weight.
Writing (2.1) in local coordinates and expanding it, we find that

∇̇kgij = ∂kgij − ghj Γ
h
ik − gih Γ

h
jk − 2Tk gij = 0. (2.12)
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Definition 2.3. A Weyl manifold is said to be an Einstein-Weyl manifold [10, 23] if the symmetric part of the
Ricci tensor is proportional to the metric tensor g ∈ C[g], and hence we have

R(ij) =
R

n
gij . (2.13)

Definition 2.4. A Weyl manifold Wn(g, T ) is a quasi Einstein-Weyl manifold, if the symmetric part R(ij) of the
Ricci tensor Rij satisfies the condition [8]

R(ij) = αg(ij) + βAiAj (2.14)

where α and β are scalars of weight −2, Ai is a nonzero 1-form of weight 1, which is normalized by the condition

gijAiAj = 1.

Ai is called the associated 1-form, and α and β are called associated scalars.

Definition 2.5. A non-flat Weyl manifold Wn(g, T ) is called Ricci-recurrent if its Ricci tensor Rij satisfies the
condition

∇̇kRij = AkRij (2.15)

where A is non-zero 1-form.

Definition 2.6. Wn(g, T ) is called the generalized Ricci-recurrent Weyl manifold, if its Ricci tensor Rij satisfies
the condition

∇̇kRij = AkRij +Bkgij , (2.16)

where A and B are two non-zero 1-forms of weight 0 and −2, respectively [2]. If the associated 1-form B
becomes zero, the manifold reduces to a Ricci-recurrent manifold.

It is easy to see that the antisymmetric part and symmetric part of Rij of the generalized Ricci-recurrent Weyl
manifold Wn(g, T ) are in the following forms, respectively,

∇̇kR[ij] = AkR[ij], (2.17)

∇̇kR(ij) = AkR(ij) +Bkgij . (2.18)

The conformal curvature tensor Ch
ijk of Wn(g, T ) is given by [16]

Ch
ijk = Rh

ijk +
2

n(n− 2)

(
δhkR[ij] − δhj R[ik]−gikg

hm R[mj]+gijg
hmR[mk]

−(n−2)δhi R[kj]

)
− 1

n− 2

(
δhk Rij−δhj Rik−gikg

hm Rmj+gijg
hm Rmk

)
+

R

(n− 1)(n− 2)

(
gijδ

h
k − gikδ

h
j

)
, (2.19)

and the tensor Lij as

Lij = − Rij

n− 2
+

2

n(n− 2)
R[ij] +

Rgij
2(n− 1)(n− 2)

. (2.20)
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3. Generalized Ricci-Recurrent Weyl Manifolds Admitting Harmonic Conformal
Curvature Tensor

In [14], authors proved that a conformally flat generalized Ricci-recurrent Riemannian manifold is a quasi-
Einstein manifold, provided the basic vector fields are co-directional.

In this section, we consider a generalized Ricci-recurrent Weyl manifold admitting harmonic conformal
curvature tensor, i.e., ∇̇hC

h
ijk = 0. We examine the condition for a generalized Ricci-recurrent Weyl manifold

with harmonic conformal curvature tensor to be a quasi-Einstein Weyl manifold.
In [5], Çivi and Arsan obtained the following relations for a Weyl manifold:
By substituting the tensor Lij with weight {0} into (2.19) for a Weyl manifold Wn(g, T ) (n > 3), the conformal

curvature tensor is given by

Ch
ijk = Rh

ijk + δhk Lij − δhj Lik + Lh
k gij − Lh

j gik − 2δhi L[jk] , (3.1)

where

Lh
k = glhLlk,

and

L[jk] =
1

n
R[kj] = ∇[kTj]. (3.2)

Also, in [5], authors obtained the following expression for the conformal curvature tensor of Wn(g, T ) (n > 3).

∇̇hC
h
ijk = (n− 3)(∇̇jLik − ∇̇kLij), (3.3)

∇̇kL[ji] + ∇̇jL[ik] + ∇̇iL[kj] = 0, (3.4)

and

∇̇jLik − ∇̇kLij = ∇̇j

(−Rik

n− 2
+

2

n(n− 2)
R[ik] +

Rgik
2(n− 1)(n− 2)

)
(3.5)

−∇̇k

(−Rij

n− 2
+

2

n(n− 2)
R[ij] +

Rgij
2(n− 1)(n− 2)

)
.

So, by using the above relations, we can state the following theorem.

Theorem 3.1. A generalized Ricci-recurrent Weyl manifold of dimension > 3 admitting harmonic conformal curvature
tensor is a quasi-Einstein Weyl manifold if the condition

gjpAp∇̇i(∇[kTj]) + gjpAk∇̇p(∇[iTj]) = 0

holds true.

Proof. Assume that the generalized Ricci-recurrent Weyl manifold Wn(g, T ) (n > 3) has the harmonic conformal
curvature tensor. Then, in view of (3.3), it can be easily obtained that

∇̇jLik − ∇̇kLij = 0,

and from (3.5), it follows that

∇̇kRij − ∇̇jRik − 2

n
(∇̇kR[ij] − ∇̇jR[ik]) +

1

2(n− 1)

[
gik(∇̇jR)− gij(∇̇kR)

]
= 0.

Hence considering the antisymmetric part and symmetric part of Rij , and using (2.9), it is obtained

∇̇kR(ij) − ∇̇jR(ik) = −(n− 2)∇̇k(∇[iTj]) + (n− 2)∇̇j(∇[iTk])

(3.6)

− 1

2(n− 1)

[
gik(∇̇jR)− gij(∇̇kR)

]
.
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Suppose now that Wn(g, T ) (n > 3) is a generalized Ricci recurrent Weyl manifold. Then, (2.16) must hold.
Multiplying (2.16) by gij and summing up, and using the fact that gijRij = R, we obtain

∇̇kR = AkR+ nBk. (3.7)

Replacing (2.16) and (3.7) in (3.6), we obtain

AkR(ij) +Bkgij −AjR(ik) −Bjgik = −(n− 2)∇̇k(∇[iTj]) + (n− 2)∇̇j(∇[iTk])

− 1

2(n− 1)

[
gik(AjR+ nBj)− gij(AkR+ nBk)

]
. (3.8)

Multiplying (3.8) by gij and using the fact that gij(∇[iTj]) = 0, we get

gjiAjR(ik) =
1

2
(AkR− nBk) + (n− 1)Bk − (n− 2)gij∇̇j(∇[iTk]). (3.9)

Multiplying (3.8) by gjpAp and using ApA
p = |Ap|2 = µ, we obtain

Akg
jpApR(ij) + AiBk − µR(ik) − gjpApBjgik

= (2− n)
[
gjpAp∇̇k(∇[iTj])− gjpAp∇̇j(∇[iTk])

]
(3.10)

− 1

2(n− 1)

[
µgikR+ ngjpApBjgik −AiAkR− nAiBk

]
.

Inserting (3.9) into (3.10) and making the necessary arrangements, we obtain

R(ik) =
[ 1

2µ
AiR+

(n− 2

2µ

)
Bi +

(n− 2)

µ
gjp∇̇p(∇[iTj])

]
Ak +

1

µ
AiBk

− 1

µ
gjpApBjgik +

(n− 2)

µ

[
gjpAp∇̇k(∇[iTj])− gjpAp∇̇j(∇[iTk])

]
(3.11)

+
1

2µ(n− 1)

[
µgikR+ ngjpApBjgik −AiAkR− nAiBk

]
.

By interchanging i and k in equation (3.11) and subtracting these two equations, we get a relation between
two basic vector fields Ak and Bk as Bk = λAk, where λ is a non-zero scalar. Then from (3.11), we get

R(ik) =
[3nλ− 2λ+R

2(n− 1)

]
gik +

[ (n2 − 2n)λ+ (n− 2)R

2(n− 1)µ

]
AiAk

(3.12)

+
(n− 2)

µ

[
gjpAp∇̇k(∇[iTj]) + gjpAk∇̇p(∇[iTj])− gjpAp∇̇j(∇[iTk])

]
.

Using (3.2) and (3.4) in (3.12), we obtain

R(ik) =
[3nλ− 2λ+R

2(n− 1)

]
gik +

[ (n2 − 2n)λ+ (n− 2)R

2(n− 1)µ

]
AiAk +

(n− 2)

µ
φik, (3.13)

where
φik = gjpAp∇̇i(∇[kTj]) + gjpAk∇̇p(∇[iTj]). (3.14)

If φik = 0 for a generalized Ricci-recurrent Weyl manifold Wn(g, T ) (n > 3), from (3.13), we get

R(ik) =
[3nλ− 2λ+R

2(n− 1)

]
gik +

[ (n2 − 2n)λ+ (n− 2)R

2(n− 1)µ

]
AiAk.

So, it shows us that Wn(g, T ) (n > 3) is a quasi-Einstein Weyl manifold under the following condition

gjpAp∇̇i(∇[kTj]) + gjpAk∇̇p(∇[iTj]) = 0.
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4. An Example of a Generalized Ricci-Recurrent Weyl Manifold

We consider a four-dimensional manifold W4(g, T ) with a metric by

ds2 = gijdx
idxj = e2x

1

[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2]

and a 1-form T = ex
1

dx1. Then, the only non-vanishing Weyl connection coefficients are

Γ1
11 = Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 = Γ4

14 = Γ4
41 = 1− ex

1

, Γ1
22 = Γ1

33 = Γ1
44 = −1 + ex

1

.

It is easy to see that W4(g, T ) is a Weyl manifold with the Weyl connection satisfying the condition ∇̇kgij =
2Tk gij . Hence, a straightforward calculation leads to the following expression for the nonzero components of
the Ricci tensor:

R11 = −3ex
1

, R22 = R33 = R44 = 2− 5ex
1

+ 2e2x
1

.

The scalar curvature R and the components of the symmetric parts of the Ricci tensor and their prolonged
covariant derivatives are:

R = 6(1 + e−2x1

− 3e−x1

),

R(11) = −3ex
1

, R(22) = R(33) = R(44) = 2− 5ex
1

+ 2e2x
1

,

∇̇1R(11) = 3ex
1

− 6e2x
1

, ∇̇1R(22) = ∇̇1R(33) = ∇̇1R(44) = −4 + 9ex
1

− 10e2x
1

+ 4e3x
1

,

∇̇2R(12) = ∇̇3R(13) = ∇̇4R(14) = 2(−1 + 2ex
1

− 2e2x
1

+ e3x
1

).

We shall verify that our W4(g, T ) is a generalized Ricci-recurrent Weyl manifold. To verify that the manifold
W4(g, T ) is a generalized Ricci-recurrent Weyl manifold, let us choose the 1-forms as follows:

Ai =

−2 + 3ex
1 − 2e2x

1

+ 2e3x
1

1− ex1 + e2x1 , i = 1

0 , otherwise

Bi =

3ex
1

(−1 + e2x
1

)

1− ex1 + e2x1 , i = 1

0 , otherwise

at any point in W4(g, T ). In our W4(g, T ), it is seen that the following equations are satisfied:

∇̇1R(11) = A1R(11) +B1g11,

∇̇1R(22) = A1R(22) +B1g22,

∇̇1R(33) = A1R(33) +B1g33,

∇̇1R(44) = A1R(44) +B1g44.

Thus, W4(g, T ) is a generalized Ricci-recurrent Weyl manifold which is neither Ricci symmetric nor Ricci
recurrent.

5. Generalized Ricci-Recurrent Weyl Manifolds with Codazzi Type Ricci Tensor

In this section, we consider generalized Ricci-recurrent Weyl manifolds satisfying the Codazzi type of Ricci
tensor and prove the following theorem.

383 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Generalized Ricci-Recurrent Weyl Manifolds

Theorem 5.1. A necessary and sufficient condition for a generalized Ricci-recurrent Weyl manifold having Codazzi type
of Ricci tensor to be an Einstein-Weyl manifold is that its scalar curvature be a prolonged covariant constant.

Proof. Let us suppose that a Weyl manifold is under consideration, having the Codazzi type of Ricci tensor.
Then, we have

∇̇kR(ij) = ∇̇jR(ik). (5.1)

Multiplying (5.1) by gij , we get

∇̇kR = ∇̇jR
j
k. (5.2)

In [19], it is proved that a Weyl manifold satisfies the identity

∇̇jR
j
k =

1

2
∇̇kR+ 2gij∇̇j(∇[iTk]). (5.3)

Hence, from (5.2) and (5.3), for a Weyl manifold having the Codazzi type of Ricci tensor, we obtain

∇̇kR = 4gij∇̇j(∇[iTk]). (5.4)

Consider now that generalized Ricci-recurrent Weyl manifold Wn(g, T ) with Codazzi type of Ricci tensor.
Then, from (2.18) and (5.1), we have

AkR(ij) +Bkgij −AjR(ik) −Bjgik = 0. (5.5)

Transvecting (5.5) by gik, we find

Akg
ikR(ij) = AjR+ (n− 1)Bj . (5.6)

On the other hand, multiplying (5.5) by gpjAp, we get

Akg
pjApR(ij) + gpjApBkgij − gpjApAjR(ik) − gpjApBjgik = 0. (5.7)

From (5.6) and (5.7), we obtain

µR(ik) = Ak

[
AiR+ (n− 1)Bi

]
+AiBk − gpjApBjgik (5.8)

where

gpjApAj = µ.

Putting (5.4) into (3.7), we obtain

Bk =
4

n
gij∇̇j(∇[iTk])−

1

n
AkR. (5.9)

From (5.8) and (5.9), we get

µR(ik) = AiAkR+ (n− 1)Ak

( 4

n
gmj∇̇j(∇[mTi])−

1

n
AiR

)
(5.10)

+ Ai

( 4

n
gmj∇̇j(∇[mTk])−

1

n
AkR

)
− gpjAp

( 4

n
glm∇̇m(∇[lTj])−

1

n
AjR

)
gik.

In view of (5.4) and (5.10), we obtain

R(ik) =
(R
n

− gjpAp

nµ
∇̇jR

)
gik +

n− 1

nµ
Ak∇̇iR+

1

nµ
Ai∇̇kR. (5.11)

If R is a prolonged covariant constant, i.e., if

∇̇kR = ∇kR+ 2RTk = 0 (5.12)
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then, from (5.11), we obtain

R(ik) =
(R
n

− gjpAp

nµ
∇̇jR

)
gik (5.13)

which shows us that the generalized Ricci-recurrent Weyl manifold Wn(g, T ) with Codazzi type of Ricci tensor
is the Einstein-Weyl manifold.

Conversely, assume that the generalized Ricci-recurrent Weyl manifold Wn(g, T ) with Codazzi type of Ricci
tensor is the Einstein-Weyl manifold. From (2.13) and (5.1), we obtain(

∇̇kR
)
gij −

(
∇̇jR

)
gik = 0. (5.14)

Multiplying (5.14) by gij and using gijgik = δjk, we find

(n− 1)∇̇kR = 0.

For n > 1, we have

∇̇kR = 0

which shows that the scalar curvature R of Wn(g, T ) is a prolonged covariant constant.

6. Generalized Ricci-Recurrent Weyl Manifolds with Generalized Concircularly
Symmetric Tensor

In general, a geodesic circle does not transform into a geodesic circle by the conformal transformation of
the fundamental tensor gij . The transformation which preserves geodesic circles was first introduced by Yano
[25]. In [18], as a generalization of a geodesic circle in a Riemannian manifold, by using prolonged covariant
differentiation authors proved the following statements.

A conformal mapping of a Weyl manifold upon another Weyl manifold is called generalized concircular
mapping if it preserves the generalized circles [18].

A (1, 3) type tensor Z which remains invariant under generalized concircular mapping of Wn(g, T ) is given
by [18]

Zp
ijl = Rp

ijl −
R

n(n− 1)
(δpl gij − δpj gil). (6.1)

where Rp
ijl is the Weyl curvature tensor and R, the scalar curvature.

In [1], authors obtained some results about generalized concircularly flat Weyl manifolds.
So, by using the above expressions, we can state the following theorem.

Theorem 6.1. A generalized Ricci-recurrent Weyl manifold Wn(g, T ) with a generalized concircularly symmetric tensor
is an Einstein-Weyl manifold if and only if its scalar curvature is prolonged covariant constant.

Proof. Let the generalized Ricci-recurrent Weyl manifold Wn(g, T ) be generalized concircularly symmetric
manifold. Then, according to (6.1), we have

∇̇kZ
p
ijl = ∇̇kR

p
ijl −

∇̇kR

n(n− 1)
(δpl gij − δpj gil) = 0. (6.2)

Contraction on the indices p and l gives

∇̇kZij = ∇̇kRij −
∇̇kR

n
gij = 0 (6.3)

or, equivalently,

∇̇kR(ij) + ∇̇kR[ij] −
∇̇kR

n
gij = 0 (6.4)
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Since Wn(g, T ) is generalized Ricci-recurrent, using (2.17) and (2.18), we get

AkR(ij) +Bkgij +AkR[ij] −
AkR+ nBk

n
gij = 0. (6.5)

In view of (2.9) and (6.5), we obtain

R(ij) −
R

n
gij = −R[ij] = −n∇[iTj]. (6.6)

Then, (6.6) reduces to R(ij) −
R

n
gij = 0 and ∇[iTj] = 0. In this case, Wn(g, T ) is an Einstein-Weyl manifold and T

is locally a gradient i.e., Tj,i − Ti,j = 0. Therefore, Wn(g, T ) is generalized concircular to an Einstein manifold.
On the other hand, in [20], Özdeger proved that an Einstein-Weyl manifold for (n > 2) satisfies the equation

1

n
(∇̇jR)− 2gki∇̇k(∇[iTj]) = 0. (6.7)

Since T is locally a gradient, from (6.7), we obtain ∇̇jR = ∇jR+ 2RTj = 0 which means that R is prolonged
covariant constant.
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