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are developed to elimi adverse effects caused by multicollinearity. In this study, a test

Keywords statistic is obtaine ignificance of the model coefficients for the Liu-Type Estimator
Biased estimators, using the test sta ggested in the study of Halawa and El-Bassiouni (2000). With a
Hypothesis testing, simulation study, the significa f the model coefficients of the Ridge, Liu, and Liu type biased
Multicollinearity, estimatorsn different situations i ed; the type | errors and power values of the estimators are
Powers of tests, calcula}ﬁresults are compared. In addition, a real data application is performed to better
Type I error understan test procedire.

1. INTRODUCTIO

r regréssion model, a multicollinearity problem arises when a complete or nearly
ip exists between one or more independent variables. This increases the variance

Hoerl and Keninard (1970) proposed the Ridge estimator in their study on biased estimation methods and
analyzed it according to the Mean Square Error (MSE) values [1]. Liski (1982) included the preference
criteria between LS estimators and biased estimators according to their MSE values [2]. Liu (1993)
proposed the Liu-Kejian estimator with a single bias parameter as an alternative to the Ridge estimator [3].
Akdeniz and Kagiranlar (1995) defined this estimator as the Liu estimator [4]. Halawa and El-Bassiouni
(2000) used the t-test statistic to test the significance of the regression model coefficient based on the ridge
estimator. The simulation study compared the test statistic results obtained for LS and Ridge estimators [5].
Kibria (2003) compared some Ridge regression and LS estimators through a simulation study [6]. It has
been observed that biased estimation methods with a single bias parameter do not give good results when
multicollinearity is severe. For this reason, studies on biased estimation methods with two parameters have
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been conducted in the literature. Liu (2003) proposed the Liu-type estimator as a two-parameter biased
estimator using k and d parameters. He also showed that in the case of severe multicollinearity, it gives
better results than the Ridge regression estimator according to the MSE criterion [7]. Ebegil, Gokpinar, and
Ekni (2006) compared the Ridge and Liu estimators with simulation techniques by using the test statistic
obtained in the work of Liski (1982, 1983) [2, 8, 9]. Ozkale and Kagiranlar (2007) proposed a new estimator
by studying estimators with two bias parameters [10]. Subsequently, Sakallioglu and Kagiranlar (2008)
proposed a different two-bias parameter estimator, which they defined as a k-d class estimator [11]. Ebegil
and Gokpinar (2012) used a test statistic established under a necessary and sufficient condition to compare
LS and Liu-type estimators [12].

idge estimator
ared the test
simulation

Gokpinar and Ebegil (2016) improved the work of Halawa and El-Bassiouni (2000) for the
and examined the k estimators that give the best results for the Ridge estimator. They ¢o
statistics according to experimental type I error rates and power values of the test by
studies under different conditions. As a result, they tried to determine the bes
estimator [13]. Wilcox (2019) proposed a test statistic to test the significance of
regression estimator in the case of varying variance [14]. In the study by K
statistic was obtained using the test statistic proposed in Halawa and iouni for the Liu
estimator. They simulated this test statistic under different situations a
| errors and the power of the test [5,15].

Although there are many studies in the literature on estimatin
on testing the significance of the model coefficients obtained wi

In this study, a test statistic for testing the significahc ressioh coefficients of the Liu-type
estimator was obtained using the test statistic proppsed for the timator in Halawa and EI-Bassiouni
(2000). With the simulation study, the signifi e tests of the regression coefficients of the Ridge, Liu,
and Liu-type estimators under different conditions\were performed, and the experimental type 1 error rates
of the estimators were compared with the rmance of the power of the test. A real data application was
made on Hald's Portland Cement data [16].

2. MATERIAL METHOD

2.1. Regression Model

When p is the independ®
regression model can be

ble, and n)is the number of observations, the general form of the multiple

Oation (1)
1)

le vector centered around the (nx1) dimensional mean, whereq =p + 1, X
observation matrix of non-stochastic independent variables, averaged and scaled
tion form; B, is (gx1) dimensional vector of unknown parameters; € is (nx1)
an o21 random error vector with variance.

Since the € = X’X matrix is a gxq dimensional positive definite matrix, there is an orthonormal matrix P

that diagonalizes the € = X’X matrix in the form P’CP = A. Here A is a (qxq) dimensional diagonal matrix
whose elements are the positive eigenvalues (4,, ..., 44) of the (X’X) matrix [2,9].

Where Z = XP and a = P'B, the canonical form of the model in Equation (1) is obtained as in Equation

)

Y=XPP'B+e=Za+e. (2)
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In regression analysis, the LS estimator is commonly used to estimate the parameters of the model given in
Equation (1). The LS estimator for the model in Equation (1) is given in Equation (3)

Pus = X'X)X'Y. €)
The hypothesis established to test the significance of the regression coefficients is as in Equation (4)

HO:ﬁi =0
Hy:B; # 0. )

The test statistic based on the LS estimator is given in Equation (5)

[;’i(Ls)
tiLs) = =2 5)
DS Biws))

Bicws) is the i-th element of Bys, and S?(B;(.s)) is the i-th diagonal ent ghthe variance estimate of
fBLs. The related equation is given in Equation (6)

Var(BLs) = o2(X'X)™% (©)
Here, when a2 is unknown, the estimation of a2 based on timator isused and given in Equation
()

2 _ (V=X Bus) (Y-XPys) -

n-q-1 ’
The test statistic given in Equa — 1) degrees of freedom under H,,

the independent variables in<h vthe problem of multicollinearity arises. In this case, the inverse of
ad: therefore, parameter estimation cannot be performed. In cases where

Ridge and Liu estimators having a smgle bias parameter are used. When the severity
ncreases, a biased estimation method having two bias parameters, such as the Liu-type

2.2. Test Statistics for Regression Coefficients based on Ridge and Liu Estimation Methods

The Ridge regression estimator is given in Equation (8)
fr=X'X+kDTX'Y, k =0. (8)

According to Hoerl and Kennard (1970), the k value that minimizes the MSE of the Ridge estimator is
obtained from Equation (9) [1]



Hilal KAPLAN TABAK, Meral EBEGIL, Esra GOKPINAR/ GU J Sci, 37(4): X-x (2024)

- 62

kyg = B%ax- 9)

P2.qx IS expressed as the largest element of the [, estimator.

The k value developed by Hoerl, Kennard, and Baldwin (1975) with a different method is given in Equation
(10) [17]

~2
~ qo
HKB =3 5 * (10)
ﬁLS ,BLS
To test the null hypothesis in Equation (4), the test statistic based on the Ridg toryw is a non-
exact t-type test, is given in Equation (11) [5]
Bi(R)
t: R = — . (11)
O SBuwy)

Biry is the i-th element of By and S2(B;(r)) is the i-th diagonal 8lement offiariance estimation of Sy, as
given in Equation (12)

Var(fr) = 62(X'X + k)" (X'X)(X'X + k1)~ (12)

When a2 is unknown, the estimation of a2 can be
(13)

d,based on the Ridge estimator given in Equation

(13)

(14)

Here d is defined as the bias parameter of the Liu estimator. Which of the Ridge and Liu estimators is more
effective in estimating the regression coefficients depends on the unknown parameters k and d. It is more
practical in application to use their estimations instead of the unknown parameters. In this respect, many
formulas have been developed for estimating the biasing parameter d, as in the estimation of the k bias
parameter of the Ridge estimator. Liu (1993) proposed the estimator in Equation (15) for the bias parameter
d, which minimizes the MSE value [3]
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d, =1- 62 |[-=A%] (15)

Here A; represents the positive eigenvalues of the (X'X) matrix,a; (i = 1,.., q) represents the i-th element
of a, which expresses the (qx1) dimensional regression coefficient in the canonical form in Equation (2).

To test the null hypothesis in Equation (4), the test statistic based on the Liu estimator, which is a non-exact
t-type test, is given in Equation (16) [15]

Biwy
t: L = — . (16)
W SGBuwy)
Biwy is the i-th element of B,;S%(B;1y) is the i-th diagonal element of the vagiance of B, Nas given
in Equation (17)
Var(f,) =" (X'X + D72 X'X + dD(X' X)L (X'X + dI) (X4 17)
Here, when a2 is unknown, the estimation of o2 can e ed'on the Liu estimator given in Equation
(18)
s2 _ (W =XB)'(Y —XB) 18)

t (mn—q—1)

When multicollinearity is sg dge and Liu estimators may be inadequate to address this problem.
The bias param e estimator is chosen as small in the implementation method. However, to
eliminate severe

Br —dp k>0, —ow<d<oo, (19)

Liu (2003) ed the cases where f3* is both an LS and a Ridge estimator in his study [7]. In this study,
Br is used inétead of f*.

Liu (2003) has proposed the parameter k of the estimator in Equation (19) as in Equation (20)

Amax — 100 * Amin
99 '

(20)

kir=

Here A,.x denotes the largest eigenvalue of the matrix X'X , A, denotes the smallest eigenvalue of the
matrix X'X . Accordingly, the calculated d values are as in Equation (21) and Equation (22) [7]
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[va  (Ai(6F — ELT%IZQ))
i=1 =
dALTl = (li - kLT) (21)
¢ Li(Lag +60)
i=1 =~ 4
T (k)
[ q (61% - IA‘LTC’EIZQ)
i=1 PR
. (A + kyr)
dymy = 22
N it 6D )
i=1 =32
i l (Ai + kLT)

Here, o2 represents the error variance in the multiple regression model,
eigenvalues of the (X'X) matrix, and a; (i = 1,..,q) represents the i-th ele

in their study, the test statistic based on the Liu-type estimat
null hypothesis in Equation (4) is given in Equation (23)

Bicwr
SBiwry)

tiar) = (23)

Biwr is the i-th element of B, and S%(;.r
B.r as given in Equation (24). Accerding to this,

he i-th diagonal element of the variance estimate of

YX' XY —dX'X + kD™D (X'X + kD)L

(24)

Here when o2 is unknown, on of a2 can be used based on the Liu-type estimator in Equation
(25)

6%ir (25)

The test st en in Equation (23) has a t-distribution with (n — g — 1) degrees of freedom under H,
hypothesis. test statistic based on d,;, in Equation (23) is called the LT1 test statistic, and the test
statistic based on d, 1, is called the LT2 test statistic.

3. SIMULATION STUDY

In this section, the parameter estimation values of LS, Ridge, Liu, and Liu-type estimators will be analyzed
through simulation studies. Considering the studies of Mcdonald and Galerneau (1975) and Kibria (2003),
the independent variables were formed as in Equation (26) withi = 1,2,...,nandj = 1,2,...,q [18,6]
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xij = (1= pHY225 + pziges - (26)

Here, z;; is the standard normal random variable, and p? is the correlation between any two independent
variables. In this study, simulation studies were performed for p=0.85, 0.95, 0.99, n=20, 30, 50, 100, and
q=4, 6, 10. Each vector in Equation (27) is centered and scaled

Vi = Bo + Bixin ... +Bgxiq + & (27)
The dependent variable y; is formed as in Equation (27), where i = 1,2,...,n; g; is an independent normal

distribution with mean 0 and variance o2 and is centered around its mean. The standard iation of error
values are taken as 6=0.5,1,2. In the simulation study, 1000 repetitions were performed for

In the simulation study, firstly, the experimental type | errors of the tests are cal ese values
are given in Tables 1 and 9.

XY
5
>
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Table 1. Experimental Type | Error Rates of Tests with p=0.85 and 0=0.5
Test q=4 q =6

n=15 n=30 n=50 n=100 | n=15 n=30 n=50 n=100

LS 0.0492 0.0500 0.0504 0.0502 | 0.0491 0.0499 0.0501 0.0494
HK | 0.0528 0.0555 0.0573 0.0590 | 0.0502 0.0540 0.0542 0.0552
HKB | 0.0608 0.0763 0.0834 0.0861 | 0.0479 0.0619 0.0667 0.0710
L 0.0830 0.1152 0.1289 0.1385 | 0.0614 0.1042 0.1346 0.1486
LT1 | 0.2125 0.2314 0.2488 0.2650 | 0.0876 0.1082 0.0986 0.0979
LT2 | 0.0221 0.0214 0.0206 0.0177 | 0.0376 0.0416 0.0425 0.0422

Table 2. Experimental Type | Error Rates of Tests with p=0.95 and a=0.5"
Test q=4 q=6

q=10

n=15 n=30 n=50 n=100| n=15 n=30 n=50 =15 n=30 n=50 n=100

LS 0.0493 0.0502 0.0491 0.0499 | 0.0495 O. 0.0511 0.0494 0.0498 0.0514 0.0510

HK | 0.0525 0.0563 0.0549 0.0562 | 0.05 8 .0553 | 0.0482 0.0518 0.0550 0.0539
HKB | 0.0590 0.0771 0.0818 0.0863 | 0.045 12 0.0633 | 0.0322 0.0452 0.0515 0.0537
L 0.0692 0.0895 0.1042 0.1164 | 0.0479 0.0650 0.0886 0.1152

LT1 | 0.0963 0.1137 0.1185 0.1262 | 0.0934 0.0768 0.1007 0.1241

LT2 | 0.0400 0.0467 0.0482 0.0493 | 0.0012 0.0331 0.0447 0.0499
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Table 3. Experimental Type | Error Rates of Tests with p=0.99 and 6=0.5
Test q=4 q=6 q=10

n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=10

LS |0.0500 0.0496 0.0514 0.0493|0.0507 0.0510 0.0493 0.0507 |0.0508 0.0498 0.0506 1
HK [0.0523 0.0549 0.0573 0.0553|0.0523 0.0532 0.0529 0.0546 |0.0494

HKB | 0.0541 0.0620 0.0665 0.0650|0.0436 0.0494 0.0511 0.0534|0.0328
L 0.0549 0.0593 0.0646 0.0623|0.0529 0.0611 0.0628 0.0676|0.0503
LT1 {0.2871 0.3049 0.2998 0.3167|0.2998 0.2879 0.2871 0.2940|0.337
LT2 |{0.0304 0.0465 0.0528 0.0542|0.0144 0.0421 0.0505 0.0577 X)OOO

Table 4. Experimental Type | Error Rates of Tests with p=0.85 and
Test q=4 q=6

n=15 n=30 n=50 n=100

LS |0.0497 0.0488 0.0505 0.0506

q=10
n=30 n=50 n=100
0.0497 0.0492 0.0508 0.0501

HK ]0.0521 0.0521 0.0536 0.0555|0.0505 O. 0.0478 0.0505 0.0531 0.0527

HKB [0.0513 0.0564 0.0594 0.0627 0.0321 0.0435 0.0492 0.0518
L 0.0557 0.0662 0.0716 0.0760 |O. . 5 0.0760|0.0467 0.0489 0.0594 0.0712

LT1 |0.1917 0.2484 0.2585 0.2665 0.0227 0.0692 0.0907 0.0942

LT2 [{0.0224 0.0201 0.0185 0.0075 0.0412 0.0466 0.0475
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Table 5. Experimental Type | Error Rates of Tests with p=0.95 and =1
Test q=4 q=6 q=10

n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=10

LS [0.0490 0.0501 0.0505 0.0495|0.0508 0.0497 0.0506 0.0492|0.0493 0.0488 0.0491 7
HK |0.0512 0.0535 0.0547 0.05370.0516 0.0535 0.0545 0.0540(0.0474 0.0503 0.05 05

HKB [0.0495 0.0556 0.0589 0.0594|0.0435 0.0499 0.0526 0.0534|0.0319
L 0.0521 0.0594 0.0655 0.0650 | 0.0497 0.0558 0.0627 0.0677|0.0480
LT1 {0.1103 0.1122 0.1211 0.11810.0592 0.0892 0.1033 0.1179 (0.097

LT2 [0.0410 0.0461 0.0473 0.0468|0.0266 0.0424 0.0470 0.0478 007

Table 6. Experimental Type | Error Rates of Tests with p=0.99 and
Test q=4 q=6

q=10

n=15 n=30 n=50 n=100|n=15 n=30 n=30 n=50 n=100

LS [0.0493 0.0497 0.0506 0.0498|0.0490 0.04 . .0494 0.0511 0.0507 0.0512
HK [0.0515 0.0538 0.0554 0.0550 |0.0501 @0 ( . 0.0480 0.0525 0.0531 0.0537
HKB | 0.0488 0.0529 0.0557 0.0561 0.0315 0.0437 0.0478 0.0495
L 0.0498 0.0517 0.0542 0.0543 0.0545|0.0488 0.0498 0.0524 0.0565

LT1 {0.2304 0.2150 0.2106 O 0.2012|0.3142 0.3606 0.3356 0.3155

LT2 |{0.0235 0.0401 0.04 49 0.0477|0.0000 0.0192 0.0354 0.0448
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Table 7. Experimental Type | Error Rates of Tests with p=0.85 and =2
Test q=4 q=6 q=10

n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=10

LS |0.0508 0.0483 0.0505 0.0490|0.0497 0.0509 0.0500 0.0505|0.0496 0.0510 0.0498
HK |0.0514 0.0513 0.0539 0.05310.0503 0.0533 0.0537 0.0539|0.0481 0.0525 0.05 053

HKB [0.0483 0.0511 0.0548 0.0551|0.0428 0.0495 0.0519 0.0531|0.0317
L 0.0503 0.0543 0.0595 0.0602|0.0454 0.0521 0.0551 0.0568|0.0457
LT1 |{0.1863 0.2398 0.2586 0.2725|0.0867 0.1071 0.1081 0.1096 [ 0.023
LT2 [0.0250 0.0191 0.0190 0.0189|0.0389 0.0428 0.0427 0.0425|0,0077

Table 8. Experimental Type | Error Rates of Tests with p=0.95 and g,
Test q=4 q=6 q=10

n=15 n=30 n=50 n=100|n=15 n=30 n=80 n=100|n=15)"n=30 n=50 n=100

LS [0.0502 0.0508 0.0500 0.0498|0.0496 0.0485 0.05 0506 0.0489 0.0505 0.0508

HK [0.0515 0.0536 0.0541 0.0543 0.0491 0.0506 0.0526 0.0532
HKB | 0.0482 0.0526 0.0534 0.0549 0.0326 0.0426 0.0460 0.0490
L 0.0497 0.0535 0.0547 0.0563 0.0487 0.0453 0.0495 0.0526

LT1 [0.0860 0.1164 0.1185 O. 0.0860 0.0483 0.0653 0.0798

LT2 |0.0403 0.0465 0.046 0.0009 0.0296 0.0398 0.0459
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Table 9. Experimental Type | Error Rates of Tests with p=0.99 and ¢=2
Test q=4 q=6 q=10

n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=10

LS |0.0505 0.0512 0.0497 0.0516|0.0507 0.0501 0.0498 0.0508 |0.0500 0.0499 0.0496

HK |0.0523 0.0545 0.0538 0.05600.0508 0.0536 0.0536 0.0551|0.0493 0.0514 0.05 05
HKB [0.0486 0.0523 0.0525 0.0556|0.0426 0.0486 0.0499 0.0521
L 0.0503 0.0514 0.0505 0.0527|0.0494 0.0495 0.0500 0.0519
LT1 {0.1839 0.1894 0.1900 0.2054|0.2316 0.1953 0.1894 0.1832
LT2 [0.0232 0.0388 0.0439 0.0489|0.0075 0.0316 0.0400 0.0454

A%
&
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According to the simulation results, for different p values when o is 0.5, the experimental type I error values
of the LS, HK, and HKB tests are close to 0.05 according to Table 1, Table 2, and Table 3. It can be said
that the experimental type | error values of the LT2 test generally approach 0.05 as the sample size
increases. When Table 7 is examined, it is observed that while the experimental type | error rate of the LT2
test is considerably lower than 0.05 when g=4, it is affected by the increase in p and approaches 0.05. The
LT1 test statistic shows the worst-performing test compared to the other tests. As can be seen from the
tables, the experimental type | error rate of the test is considerably larger than 0.05.

When Tables 4, 5, and 6 are examined for different p values where ¢ is 1, it is observed that the experimental
type | error values of the LS, HK, and HKB tests give values close to 0.05. In addition, it is observed that
the experimental type | error values of the L test gave values close to 0.05, especiallygqas the p value
increased. The LT1 test performed worse than the other tests with values greater than 0703, The LT2 test
shows that the experimental type I error value approaches 0.05 as the number of ydriableSyand p value
increase.

When Tables 7, 8, and 9 are examined for different p values when ¢ is 2, it is imental
type | error values of the LS, HK, HKB, and L tests are close to 0.05. T vely affected
by the increase in ¢ and the number of variables in small sample sizes. s, the experimental type
| error values for the tests are significantly lower than 0.05. The L otheh cases, gives values

When the simulation results are evaluated in general, it is observ imental type | error values
of the LS, HK, and HKB tests gave the results close to that the L test gave values
closer to 0.05, significantly as the value of p increased.: ntal type | error values of the LT1 test
are above 0.05. It is observed that the LT2 test gave better r han the LT1 test. Regardless of the
standard deviation, in cases where the p value isdow, the experimental type | error values approach 0.05 as
the number of variables increases. In cases where'the p value is high, the experimental type I error value is
not affected by the number of variables and\gives Walues close to 0.05.

The power values of the tests related to the simulat esults are given in Tables 10 and 18. Cases where
the experimental type | error valugs of the tests were significantly far from the nominal a value were not
taken into account in the calcu f the power values of the tests. Experimental type | error values in
the range of 0.025 and 0.075 were consigdered inthe calculation [19]. Values outside this range are indicated
ot calculated.
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Table 10. Powers of tests when p=0.85 ve ¢=0.5
Test q=4 q=6 q=10
n=15 n=30 n=50 n=100| n=15 n=30 n=50 n=100| n=15 n=30 n=50 n=100

LS [0.0895 0.1028 0.1055 0.1025|0.0696 0.0844 0.0838 0.0856 | 0.0559 0.0651 0.0678 0.07
HK |0.1186 0.1462 0.1488 0.1506|0.0803 0.1030 0.1052 0.1077|0.0567 0.0724 0.0771

HKB|[0.1821 * * * 10.0877 0.1383 0.1459 0.1552|0.0410
L 0.1585  * * * 10.1004 * * *10.0548

LT | * * * * |o1464  * * * *
LT2 [0.1035 0.1159 0.1168 0.1197|0.0699 0.1061 0.1085 0.1120| *

Table 11. Powers of tests when p=0.95 ve ¢=0.5
Test q=4 q=6
n=15 n=30 n=50 n=100|n=15 n=30 n=50

q=10
n=30 n=50 n=100

LS |0.0923 0.0935 0.1004 0.1041|0.0707 0.0780
HK [0.1204 0.1332 0.1505 0.15500.0822 0.09

0.0640 0.0673 0.0683
.0551 0.0724 0.0772 0.0800

HKB|0.1679  * * *10.0972 0.0398 0.0812 0.0954 0.1069

* 10.0524 0.1192 * *

LT1 * * * * * 10.0331 0.1221 * *
LT2 * * * 0.06 07187 0.0692 0.0713| *  0.0649 0.0715 0.0732
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Table 12. Powers of tests when p=0.99 ve ¢=0.5
Test q=4 q=6 q=10
n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100

LS [0.0905 0.1007 0.1048 0.1083|0.0716 0.0841 0.0844 0.0875|0.0561 0.0655 0.0697 0.07
HK |0.1136 0.1334 0.1438 0.14990.0808 0.1008 0.1015 0.1050|0.0564 0.0714 0.0767

HKB [0.1673 0.2231 0.2487 0.2631|0.0813 0.1166 0.1234 0.1302|0.0394
L 0.1137 0.1437 0.1558 0.1662|0.0810 0.1135 0.1231 0.1335]0.0561

LTl * * * * * * * * *

LT2 [0.2114 0.2617 0.2758 0.2869| *  0.1938 0.2127 0.2303| *

Table 13. Powers of tests when p=0.85 ve o=1
Test q=4 q=6
n=15 n=30 n=50 n=100|n=15 n=30 n

q=10
30 n=50 n=100

LS [0.0923 0.0935 0.1003 0.1040|0.0687 0.0794
HK |0.1128 0.1193 0.1291 0.1380|0.0751

.0561 0.0639 0.0665 0.0694
.0551 0.0697 0.0733 0.0771

HKB [0.1360 0.1654 0.1822 0.19430.0760
L 0.1405 0.1800 0.2006  * |0.0787

0.0393 0.0685 0.0793 0.0868
0.0528 0.0782 0.1046 0.1293

LTl * * * *
LT2 | * * *

* 01123 * *
* 0.0609 0.0670 0.0709
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Table 14. Powers of tests when p=0.95 ve =1

Test

n=15

q=4
n=30 n=50 n=100

n=15

q=6
n=30 n=50 n=100

q=10

n=15 n=30 n=50 n=100

LS
HK

HKB

LT1
LT2

0.0949
0.1184

0.1488
0.1372

*

0.1019

0.1011 0.1041 0.1044
0.1300 0.1408 0.1406

0.1944 0.2182 0.2228
0.1758 0.1955 0.2044

* * *

0.1077 0.1140 0.1149

0.0691
0.0772

0.0759
0.0796

0.1273
0.0585

0.0824 0.0834 0.0848
0.0969 0.0990 0.1009

0.1116 0.1179 0.1233
0.1300 0.1471 0.1624

* * *

0.0935 0.0983 0.1010

0.
0.

0.
0.

*

*

0547 0.0661 0.0693 0.06
0541 0.0725 0.0750

0375 0.0681
0529 0.0776

Table 15. Powers of tests when p=0.99 ve o=1

Test q=4 q=6

n=15 n=30 n=50 n=100|n=15 n=30 n
LS |0.0895 0.1008 0.1077 0.1052|0.0755 0.0649 0.0681 0.0698
HK ]0.1117 0.1310 0.1384 0.1390 |0.0830 .0565 0.0718 0.0751 0.0771
HKB | 0.1457 0.1946 0.2106 0.2183|0.0789 0.0382 0.0655 0.0736 0.0786
L 0.1057 0.1339 0.1479 0.1502|0.0820 0.0555 0.0699 0.0804 0.0911
LTl * * * * * * * * *
LT2 |* 0.2187 0.2333 0. * .14307°0.1679 0.1804 |* * 0.1079 0.1309
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Table 16. Powers of tests when p=0.85 ve =2
Test q=4 q=6 q=10
n=15 n=30 n=50 n=100 |n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100

LS [0.0900 0.0945 0.1012 0.1035|0.0707 0.0795 0.0832 0.0863|0.0551 0.0643 0.0664
HK |0.1042 0.1140 0.1269 0.1287|0.0777 0.0918 0.0960 0.0997 | 0.0546

HKB | 0.1154 0.1390 0.1571 0.1621|0.0743 0.1000 0.1075 0.1137{0.0387
L 0.1145 0.1476 0.1651 0.1743|0.0732 0.1058 0.1191 0.1321|0.0517

LTl * * * * * * * * *

LT2 |0.0390 * * * 10.0611 0.0654 0.0720 0.0745| *

Table 17. Powers of tests when p=0.95 ve g=2
Test q:4
n=15 n=30 n=50 n=100 |n=15

n=100

LS |0.0958 0.0986 0.1039 0.1075|0.0725
HK [0.1136 0.1234 0.1331 0.1361|0.0804

0.0697
0.0544 0.0689 0.0748 0.0751

HKB | 0.1325 0.1625 0.1796 0.1870|0.0766 O. . . 0.0378 0.0635 0.0742 0.0772
L 0.1232 0.1519 0.1694 0.1815|0. 0.0535 0.0662 0.0828 0.0954

LT1 * * * . | 0.10 * 0.0817 0.1099 *
LT2 |{0.0972 0.1061 0.1136 0.0585 0.0869 0.0929 0.0980| *  0.0521 0.0699 0.0760
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Table 18. Powers of tests when p=0.99 ve =2

Test q=4 q=6 q=10
n=15 mn=30 n=50 n=100|n=15 n=30 n=50 n=100|n=15 n=30 n=50 n=100
LS |0.0919 0.1030 0.1039 0.1065|0.0725 0.0835 0.0869 0.0877|0.0566 0.0666 0.0702 O
HK [0.1107 0.1321 0.1329 0.1383|0.0807 0.0947 0.1003 0.1012|0.0569 0.0717 0.07 .077
HKB [ 0.1340 0.1792 0.1882 0.2016|0.0763 0.0985 0.1078 0.1103
L 0.1071 0.1322 0.1382 0.1451|0.0760 0.0992 0.1103 0.1168
LTl * * * * * * * *
LT2 * 0.2004 0.2123 0.2224 * 0.1270 0.1486 0.1604

Sy
g
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According to the simulation results, when Tables 10, 11, and 12 are analyzed for different values of p when
o i5 0.5, in most cases, the LS test shows lower power values than the other tests. According to the retrieved
results, while the number of variables is generally the same for each test, the power values of the tests
increase as the sample size increases. When examined in terms of the number of variables, it is seen that
the power values of the tests decrease as the number of variables increases. For example, when Table 12 is
examined, while the power value of the LT2 test is 0.2758 for g=4, n=50, it decreased to 0.2127 at g=6,
n=50 and to 0.1596 at g=10, n=50. In cases where the p value is small, and the number of variables is low,
the power value of the HK test is high among the tests, while the power value of the HKB test increased
within itself as the number of variables increased. When the p value increases to 0.95, the HK test gives
better results when the number of variables is low, while the power value of the HKB test increases as the
number of variables increases. When the p value is 0.99, the power value of the LT2 test igghigher than the
other tests.

When Tables 13, 14, and 15 are examined for different values of p when g is 1, in ilethe number
of variables is the same, the power values of the tests increased as the sample si
in terms of the number of variables, the power values of the tests decre

ber of variables increases. When the
e as the sample size increases in all
e power value of the L test is higher than the other tests.
B test is higher in cases where the number of variables
when the number of variables increases. When p value
igher than the other tests.

cases. For p value of 0.85 and large values of
When p increases to 0.95, the power value
is low, while the power value of the L te
increases to 0.99, the power value of the LT2 te

In summary, it can be generalize
are low, the power value of the L t
higher at high p values.

t the power value0f the HKB test is high in cases where p and o values
is high atimoderate p values, and the power value of the LT2 test is

4. NUMERICAL EXA

's Portland Cement data is studied. This dataset has been used in the
ining multicollinearity in the literature. The dataset consists of 4

In this section,
application of

independ observations in this example. The independent variables are tricalcium
alumipé aCalcium silicate (X,), tetracalcium alumino ferrite (X53), and dicalcium silicate (X,).
Thg iable,Y represents the amount of heat released for 1 gram of cement in calories. The
datase en in [able 19. The purpose of applying the numerical example is to calculate the parameter

obtained [16
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Table 19. Portland Cement Data

X, X, X, X, Y
7 26 6 60
1 29 15 52
11 56 8 20
11 31 8 47
7 52 6 33
11 55 9 22
3 71 17 6
1 31 22 44
2 54 18 22
21 47 4 26
1 40 23 34
11 66 9 12
10 68 8 12

e standardized around the
correlation matrix

In this study, the data were used in their standardized form. Whil
mean, X values are standardized according to the unit length sc

\%
etho
showing the linear relationship between two variables is obtaip€d as WS

X' X= 0.2286 1.000 -0.1392 -0.9730
—-0.8241 -0.1392 1.000 0.0295
—0.2454 -0.9730 0.0295 1.0

(26)

1.000 0.2286 —0.8241 —0.2454‘

Accordingly, while there is an inverse relationship with a magnitude of 0.973 between the variables X,
and X,, an inverse relationship with a 0.824 can be seen between X; and X; variables. The
relationship between the variables is high, accordi he X'X matrix; however, this is not a sufficient
criterion for determining multicollinearity. For this regson, the eigenvalues of the X'X matrix are studied.
The eigenvalues of X'X matri Iculated &8s 4,=2.2357, 1,=1.5761, 1;=0.1866, and 1,=0.0016. As

A, and A, are the maximum.a nvalues of the X'X matrix, respectively, the number of
,3125 according to the formula CNz% . It is a fact that this

4
igh degree of multicollinearity problem. For this data, the results
iu-type estimators of the linear regression model in case of severe
88 20, 21, 22, 23, and 24, respectively.

obtained from the LS, Ridg
multicollinearit iven in

ssion coefficients based on the LS estimator

Bics)(S(Bics))) ti(Ls) Piws)

31.6060(15.1785) 2.0823 0.0709
27.4972(39.0215) 0.7047 0.5010
2.2600(16.7480) 0.1349 0.8960
-8.3563(41.1192) -0.2032 0.8440

Table 21. Test results of regression coefficients based on Ridge estimator

HK
i Bir)(S(Bir)) tir Pir)
1 27.3977(5.0299) 5.4470 0.0006
2 17.3914(8.6149) 2.0188 0.0782
3 -2.2881(5.1351) -0.4456 0.6677
4 -18.9737(8.9584) 121180 0.0670
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Table 22. Test results of regression coefficients based on Ridge estimator

HKB
i Bir)(SBir))) iR Pir)
1 26.4798(4.1524) 6.3770 0.0002
2 16.1666(4.8107) 3.3606 0.0099
3 -3.1510(4.0843) -0.7715 0.4626
4 -20.2144(4.8578) -4.1613 0.0032

Table 23. Test results of regression coefficients based on Liu estimator

i Biiy(S(Biw))) ti)

1 29.6813(14.0676) 2.1099
2 25.9809(36.1097) 0.7195
3 1.2534(15.5168) 0.0808
4 -8.8875(38.0498) -0.2336

LT1

Biar(SBiwr)) tiwn Pin i(LT) Piar)

29.6645(5.5994) 5.2978 0.0679
18.1758(9.2225)  1.9708 0.4923
-0.4829(5.6808)  -0.0850 0.9376
-18.4107(9.5697) -1.9239 08212

6.7059 0.0002
45172 0.0020
-0.9796 0.3560
-6.0488 0.0003

A WN -

5. CONCLUSION

estimator. It is aimed to reveal
statistical inference. For this pu
Liu-type biased estimators in

icance tests of the model coefficients of the Ridge, Liu, and

were performed with a simulation study, and the type |

ted. According to the results of the simulation study, it has
: than the other tests at moderate multicollinearity and small

values of ¢. In addition,

multicollinearity, and high
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