

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2024; 13(3), 806-814

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: dogan.yildiz@omu.edu.tr (D. Yıldız)

Geliş / Recieved: 16.09.2023 Kabul / Accepted: 26.04.2024 Yayımlanma / Published: 15.07.2024
doi: 10.28948/ngumuh.1361413

806

Enhancing wave function collapse algorithm for procedural map generation

problem

Prosedürel harita oluşturma problemi için dalga fonksiyonu yığılma

algoritmasının geliştirilmesi

Osman Büyükşar1 , Doğan Yıldız2,* , Sercan Demirci3

1,3 Ondokuz Mayıs Üniversitesi, Bilgisayar Mühendisliği Bölümü, 55139, Samsun, Türkiye
2 Ondokuz Mayıs Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, 55139, Samsun, Türkiye

Abstract Öz

In this study, the Improved Map Generation Algorithm

(IMGA) method is presented to improve traditional

methods in procedural map creation. Traditional procedural

map generation techniques using noise generation exhibit

shortcomings in the consistent composition of a real map

with its uniformly distributed features. On the other hand,

procedural map creation techniques that use wave function

collapse require that some map pieces already exist to

create a map. The observed disadvantages were eliminated

by using a hybrid technique with the designed IMGA

method. The developed algorithm is similar to real maps in

terms of the distribution of map regions, does not need 3D

model parts, and performs map creation operations without

increasing the algorithm's time complexity. The evaluation

of IMGA was carried out by coding the method into the

Unity game engine.

 Bu çalışmada, prosedürel harita oluşturma alanındaki

geleneksel metotları geliştirmek amacıyla Geliştirilmiş

Harita Oluşturma Algoritması (Improved Map Generation

Algorithm, IMGA) metodunu sunulmuştur. Gürültü üretme

yöntemini kullanan geleneksel prosedürel harita oluşturma

teknikleri, düzgün dağılmış özellikleriyle gerçek bir

haritanın tutarlı bileşiminde eksiklikler sergiler. Öte yandan

dalga fonksiyon çöküşü kullanan prosedürel harita

oluşturma teknikleri ise harita oluşturabilmek için harita

parçalarının bir kısmının hâlihazırda bulunmasını

gerektirmektedir. Tasarlanan IMGA metoduyla hibrit bir

teknik kullanılarak gözlemlenen dezavantajlar

giderilmiştir. Tasarlanan algoritma, harita bölgelerinin

dağılımı açısından gerçek haritalara benzeyen, 3D model

parçalarına ihtiyaç duymayan ve harita oluşturma

işlemlerini algoritma zaman karmaşıklığını arttırmadan

gerçekleştirmektedir. IMGA’nın değerlendirilmesi ise,

metodun Unity oyun motoruna kodlanması ile

gerçekleştirilmiştir.

Keywords: Procedural terrain generation, Wave function

collapse, Noise, Algorithm.

 Anahtar kelimeler: Prosedürel harita oluşturma, Dalga

fonksiyonu yığılma, Gürültü, Algoritma.

1 Introduction

Recently, there has been a substantial escalation in the

dimensions and details of maps within the gaming industry.

Therefore, the process of designing and modeling extended

maps requires a more extensive investment [1, 2]. While the

option to counter this by opting for smaller or less intricate

maps exists, such a choice is deemed unfavorable due to its

potential to curtail gameplay duration.

Creating maps and terrains can be achieved by applying

procedural content generation techniques. This approach

involves using algorithmic generation mechanisms instead

of manual content creation. Procedural content generation

(PCG) finds utility in producing diverse forms of content,

spanning from three-dimensional models and textures to

animated sequences and auditory elements. This

methodology has gained substantial traction across different

domains, notably in the domains of gaming and cinematic

production, facilitating the efficient generation of substantial

volumes of content. Illustrative instances of its

implementation can be observed in gaming titles like "No

Man's Sky," "Terraria," and "Minecraft," as well as in

cinematic productions such as "The Lord of the Rings" and

"Avatar."

PCG has gained significant attention in academic studies

as well. These studies have been directed toward enhancing

established PCG methodologies, aiming to yield superior

content outcomes with reduced computational overhead.

Conventional techniques for procedural content generation

include noise generation [3], cellular automata [4],

replacement grammars [5], optimization algorithms [6, 7],

and neural networks [8]. Unlike AI-driven models like

WASPAS and GANs, which have gained attraction for their

ability to produce terrain resembling real-world geography,

particle swarm optimization (PSO) [6] offers a distinct

advantage in its capacity to provide finer-grained control

over the generation process. While AI models often yield

impressive results, their reliance on complex algorithms

sometimes leads to less malleable terrain, limiting flexibility

https://orcid.org/0009-0006-6974-7761
https://orcid.org/0000-0001-9670-4173
https://orcid.org/0000-0001-6739-7653

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

807

for modifications such as generating neighboring tiles. While

PSO excels at providing control and adaptability, it may

require extensive parameter tuning for better results.

PCG can be categorized into subtopics based on the

specific type of content being generated. One such

subcategory is procedural terrain generation (PTG), which

involves the creation of terrains through various

methodologies. A prominent and pervasive technique uses a

digital elevation map (DEM) to utilize terrain objects. A

DEM comprises a two-dimensional grid containing elevation

values within designated grid cells. The generation of a DEM

employs diverse algorithms, among which neural networks

and noise generation algorithms hold significance. Noise

generation, recognized for its prevalence, comprises a range

of algorithms differing in quality, memory demands, and

processing speed. These algorithms are the diamond-square

algorithm, Worley noise, value noise, simplex noise, and

Perlin noise [9].

The studies use noise generation with a combination of

other techniques because noise alone results in uniform

terrain without special features when used as a DEM. In a

recent investigation by [10], noise generation is enriched

through the implementation of octaves applied to Perlin

noise. While the introduction of octaves introduces intricacy

to the resultant maps, it is noted that features remain evenly

dispersed across larger scales. An alternative strategy

involves the integration of biomes to shape maps that align

with specific biome boundaries [11]. It is worth noting that

while this approach demands higher computational

resources, it effectively mitigates the uniformity observed in

maps generated solely through noise techniques.

In the modern era, driven by the rapid progress of

Artificial Intelligence (AI), there have emerged instances of

terrain and game level generation employing machine

learning models like WASPAS and General Adversarial

Networks (GANs) [8, 12]. Notably, the utilization of satellite

imagery for training GAN models and subsequently

generating DEMs has gained popularity, primarily due to its

capacity to yield maps resembling real-world geographical

layouts [8, 13, 14]. However, while the outcomes derived

from AI models indeed offer enhanced terrain, a notable

limitation is their need for more direct control over the terrain

generation process. Consequently, the generated terrains

become less malleable and pose challenges when attempting

modifications such as generating neighbor tiles.

Erosion-based simulation has also emerged as a

noteworthy approach to generating terrain that resembles

actual landscapes [15, 16]. For instance, Jacob Olsen's

research leveraged noise generation algorithms alongside

erosion simulation techniques to enhance the authenticity of

the generated terrain. Furthermore, hydrology-based

methodologies have been explored, yielding comparable

outcomes [17, 18]. The result has been the creation of maps

that closely mimic real-world topographies. However, due to

their foundation in noise-based techniques, these generated

terrains face challenges in terms of malleability to suit

designer preferences. Additionally, their applicability to

infinitely scalable real-time maps is constrained as they

struggle to produce coherent neighboring maps.

Conversely, [19] presents an approach for terrain

generation that adheres to constraints defined by designers.

Their methodology employs terrain reasoning agents, which

operate under the influence of designer-specified constraints

to produce terrains. Consequently, this method yields

algorithms subject to designer control; however, the

outcomes deviate significantly from real-world terrains

regarding resemblance.

The core problem lies in the fact that procedural maps

generated using noise algorithms yield outcomes

characterized by uniformity and even distribution, a

departure from the intricate variations found in real-world

terrains. In contrast, GANs yield more favorable results;

however, their effectiveness is confined to maps boasting

extensive training data. Furthermore, even after training,

these models remain incapable of generating infinitely

expansive terrains automatically because they can’t generate

neighbor maps.

Recently, a novel procedural generation technique called

"wave function collapse" has emerged, circumventing the

limitations observed in preceding methodologies, which are

practical design constraints. This algorithm operates by

taking an input map and generating content following the

provided input. Research studied in [20] underscores the

feasibility of customizability within this method, enabling

user-driven modifications. Furthermore, a study in [21]

demonstrates the algorithm's capability to execute while

imposing specific states on predetermined cells. This

evidence substantiates the method's potential to generate

maps on a chunk-by-chunk basis, leveraging pre-defined

forms of adjacent chunks [21]. Additionally, the algorithm

displays an aptitude for producing more structured maps, as

highlighted in the investigation by [22]. Nonetheless, it is

noteworthy that this algorithm needs pre-modelled tiles

provided by the user to facilitate content generation.

Cellular automata, the prominent method in procedural

content generation, shares similarities with the wave

function collapse technique and has been extensively

explored over the years. A notable study introduces the

utilization of layered cellular automata to generate structured

and intricate maps [23]. However, a drawback of this

approach is its susceptibility to falling into repetitive patterns

since the underlying rule is predefined.

This study presents an algorithm for procedural terrain

generation that exhibits captivating terrain formations and

possesses scalability without reliance on pre-established tiles

while maintaining real-time computational efficiency. The

main contributions of this study can be summarized as

follows:

 We introduce a hybrid approach that can be used with

different noise generation algorithms and wave

function collapse algorithms for further work in the

field of terrain generation

 Unlike conventional methods such as wave function

collapse and GAN-based algorithms, our approach is

free from predefined 3D models, datasets, or any prior

data.

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

808

 The terrains generated allow for customizations

according to user preferences, distinguishing them

from maps generated using conventional noise and

GAN methods.

2 Material and method

2.1 Perlin noise

Perlin noise is a noise generation algorithm recognized

for producing gradient noise, characterized by its smoothly

varying values [3, 24]. This technique establishes a lattice of

randomly oriented unit-length vectors across distinct

directions. Subsequently, an interpolation procedure is

applied among these unit vectors. At any given coordinate

within a grid cell, the noise value is approximated by

evaluating the dot product involving the displacement

vectors of the respective grid cell corners and their

corresponding unit-length gradient vectors. The resultant dot

products are further subject to interpolation, yielding the

final Perlin noise value.

2.1.1 Octaves

Perlin noise, in its standalone form, represents a uniform

texture and lacks natural variability. To introduce a more

intricate and authentic character, supplementary layers of

noise are incorporated through octave summation along with

the fundamental noise layer. These additional layers, termed

octaves, are generated by multiplying the frequency of the

Perlin noise with a factor greater than one while

simultaneously adjusting the amplitude by a factor less than

one. The cumulative outcome produces an octave endowed

with distinct noise characteristics. In the context of

generating DEMs, this aggregated noise contributes to the

refinement of DEM quality, imbuing it with heightened

intricacy and detail.

2.2 Wave function collapse

Wave function collapse (WFC) is a texture generation

algorithm engineered to produce a texture akin to a provided

input texture. Maxim Gumin developed it, and the algorithm

was first made publicly accessible as a GitHub repository in

2016 through an initial implementation [25]. The pseudo-

code of the base WFC algorithm is shown in Algorithm 1.

Algorithm 1: Base WFC Algorithm

1 Initialize cell grid

2 while there are cells to collapse

3 Select a cell to be collapsed

4 Collapse the selected cell

5 Update neighbour cells

The WFC algorithm starts by constructing a grid with

cells set to superposition. Subsequently three steps are

iterated for each cell, until there is no cells remain in

superposition state. The primary step involves the

identification of a cell hosting the minimal count of potential

states, often referred to as the cell exhibiting the lowest

entropy. Following this, a state is arbitrarily chosen from the

possible states affiliated with the designated cell. After

establishing the cell's state, neighboring cells undergo

updates according to the selected state. This cascade of

updates extends to the neighbors' own neighbors, persisting

until no further alterations to the potential states of

neighboring cells are feasible.

2.3 Proposed method

The core problem is that the use of noise in DEM results

in uniform terrain with evenly distributed features; the WFC

algorithm is much more promising than the noise generation

algorithm, but it necessitates the use of pre-designed tiles and

adopts a tile-by-tile approach in generating the DEM. As a

consequence of this approach, the resulting terrain exhibits

visible tile boundaries, detracting from its resemblance to

real-life landscapes. Hence, our goal with this proposed

method is to generate expansive terrains that closely

resemble real-life landscapes. We aim to achieve this without

the uniform characteristics commonly associated with

terrains generated using noise algorithms and without relying

on pre-designed tiles, a requirement in the case of WFC.

By incorporating Perlin noise, we prevent the need for

pre-modeled tiles and leverage its capacity to generate

terrain. To rectify the issue of terrain uniformity and likeness

to existing maps, we introduce a region map generated using

a tailored wave function collapse algorithm. This map serves

as a blueprint for adapting the terrain based on distinct region

values, thereby reducing uniformity. Notably, this approach

heightens the fidelity of the generated map by emulating

real-world terrain characteristics, as regions are delineated in

alignment with neighboring features. Ultimately, our

approach sets itself apart from noise-based generated maps

due to its distinct topographical regions and non-uniform

nature. It also distinguishes itself from WFC-generated maps

by eliminating discernible tile boundaries and negating the

necessity for predefined tile models. Our proposed method,

the Improved Map Generation Algorithm (IMGA), executes

the steps in Figure 1. The pseudo-code of this algorithm is

illustrated in Algorithm 2.

Figure 1. The proposed IMGA algorithm steps

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

809

Algorithm 2: Improved Map Generation Algorithm (IMGA)

Input: Mesh colors, region heights and exclusion rules

Output: Terrain mesh

1 Generate base map with noise generation

2 Generate region map with modified WFC based on cluster factor criteria.

3 Procedure CombineMaps()

4 Construct a mesh with the combined map

5 Paint the map according to the point heights

Procedure: CombineMaps()

Input: baseMap, regionMap, regionMapRatio

Output: combinedMap

1 Interpolate(start, end, t){

2 return (end - start) * t + start

3 }

4 scale ← baseMap.length / regionMap.length

5 for (every point (x, y) in baseMap):

6 point ← baseMap[x,y]

7 point *= 1 - regionMapRatio

8 region ← point.regionCell()

9 if (x MOD scale < scale / 2):

10 if (region.leftNeighbor is none):

11 point += regionMapRatio * region.value

12 else:

13 i ← 2 / (scale - 1) * (x MOD scale)

14 point += regionMapRatio * Interpolate(region.leftNeighbor.value, region.value, i) / 2

15 else:

16 if (region.rightNeighbor is none):

17 point += regionMapRatio * region.value

18 else:

19 i ← -2 / (scale - 1) * (x MOD scale) + 2

20 point += regionMapRatio * Interpolate(region.rightNeighbor.value, region.value, i) / 2

21 if (y MOD scale < scale / 2):

22 if (region.bottomNeighbor is none):

23 point += regionMapRatio * region.value

24 else:

25 i ← 2 / (scale - 1) * (y MOD scale)

26 point += regionMapRatio * Interpolate(region.bottomNeighbor.value, region.value, i) / 2

27 else:

28 if (region.topRegion is none):

29 point += regionMapRatio * region.value

30 else:

31 i ← -2 / (scale - 1) * (y MOD scale) + 2

32 point += regionMapRatio * Interpolate(region.topNeighbor.value, region.value, i) / 2

33 baseMap[x,y] ← point

33 return baseMap

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

810

In the initial phase, a pseudo-random generator (C#

UnityEngine CoreModule) is used as a seed for the Perlin

noise generation algorithm to generate a base noise with

dimensions of 240 units in width and length. Subsequently,

another three Perlin noise maps are generated, featuring

higher frequency and lower amplitude than the maps before

them. Following this, these maps are summed together. This

way, we generated a fractal noise, which forms the

foundational basis for our subsequent procedures.

The second phase consists of generating the region map.

Unlike the base map, which has 240 cells with one-unit

length each, the region map has 24 cells with ten units in

width and height. This alteration allows individual cells

within the region map to exert influence over more extensive

areas than the base noise map we generated using the Perlin

noise approach. In the context of crafting a coastal or island-

themed map, three key regions are introduced: mountainous,

terrestrial, and aquatic. Corresponding height values of 0.9,

0.5, and 0.1 are assigned to these regions, respectively. A

stipulation is imposed to foster the creation of a region map

resembling shorelines or islands where no cell of a

mountainous region should share a border with a cell of an

aquatic region, and vice versa. In addition to the base WFC

algorithm, a cluster factor is introduced, significantly

influencing the cells' selection. Specifically, when a given

cell finds itself encompassed by neighboring cells belonging

to the same region, it is inclined to adopt the identity of those

neighboring cells' regions. A predefined cluster factor value

determines the extent of this influence. By applying this

mechanism during the process of region assignment, the

resultant map exhibits a tendency towards forming localized

clusters of regions. This aspect contributes to the emergence

of coherent and concentrated region areas within the

generated map.

To combine the noise and region maps, the procedure

CombineMaps() is executed. The lines from 5 to 34 will be

executed for every point on the map.

First, the point value is squashed to reduce the influence

of the detailed map on the final combinedMap values (line

7). Then, the corresponding region for the given point is

stored (line 8). This region is used to access the neighboring

region values for the interpolation process. In the next step,

a section of the region where the given point is located must

be determined to determine the region value (lines 9-32).

Suppose the index x corresponds to the left part of the region

area the interpolation is made with the left region cell value

(lines 10-14). In that case, the interpolated value is added on

top of the base map value. If the index x corresponds to the

right part of the region, the interpolation is made with the

right region cell, then the interpolated value is added on top

of the base map value (lines 16-20). The current region value

is used alone if there is no neighboring cell to interpolate

(lines 10-11 and 16-17). At the end of line 20, the

interpolation for the x-axis is complete, and the interpolation

for the y-axis is calculated in a similar way, but checking for

bottom and top instead of left and right (lines 22-32). Finally,

the calculated point is updated (line 33).

Figure 2 illustrates these sections for a single region cell.

The reason for this separation is that the interpolation

formula and the neighboring region cell to be interpolated

change depending on which section of the region the point is

located in. Initially, the interpolation for the x-axis is

calculated (lines 9-20), and following that, the interpolation

for the y-axis is calculated (lines 21-32). These procedures

are evaluated on top of the base map value when calculated

to produce the final value for that given point.

Figure 2. Illustration of four sections for a single region

cell

To aid in visual understanding, Figure 3 shows the

process of combining the maps for a single axis where the

base map is 1000 units in total length and 250 units in length

for a single region.

Figure 3. 1D representation of combining base map and

region map

Once the computation for each point is completed, a

terrain mesh object is generated, mirroring the array's

dimensions. A mesh object in this context serves as a three-

dimensional depiction of the terrain, encompassing its

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

811

constituent vertices. The values previously computed and

combined in the map are employed as a Digital Elevation

Model (DEM) for constructing the terrain. Essentially, these

combined map values are utilized as vertex heights and are

subsequently imparted to the mesh object. Provided in Figure

4 is an overhead illustration that mirrors the fundamental

indexing process for terrain meshes, which commences from

the upper left corner and progresses downward and to the

right. This diagram utilizes black numerical annotations to

represent vertex indices, while red numbers are employed to

denote triangle indices.

Figure 4. Vertex and triangle indexes for a 3 by 3 terrain

mesh

When heights are applied to the vertexes of the mesh by

using a DEM, a terrain with the elevation values of the DEM

is constructed. A terrain hill constructed by applying a

mountain DEM is illustrated in Figure 5.

Figure 5. Small mountain constructed by using a DEM

Subsequently, the vertices of the map undergo a process

of coloration based on their respective heights. The elevation

range of the terrain, extending from its minimum to

maximum height, is partitioned into distinct regions, each

associated with a unique color. The color assigned to a

particular vertex is determined by the region it belongs to.

In alignment with the objective of capturing island and

shoreline aesthetics, the chosen color palette comprises blue

to signify the sea, yellow to denote shores, green for forests,

dark brown representing mountains, and white symbolizing

snow. The colored representation of the mountain introduced

in Figure 5 is showcased in Figure 6, providing a visual

portrayal of the mountain using the designated color scheme.

Figure 6. Small mountain painted according to vertex

heights

2.3.1 Layout and structure of the map

The map generated by the IMGA process introduces

enhanced structure through the implementation of neighbor

exclusion rules, a heightened ratio of region map to detail

map influence during their combination, and a cluster factor

influencing neighboring region selection.

An increased combined ratio signifies that the region map

exerts a more pronounced influence on the final map

compared to the detailed map. As a result of this heightened

influence, the configuration of the map is predominantly

shaped by the values from the region map, effectively

outlining the map's overall layout.

Conversely, the incorporation of neighbor exclusion

rules serves to instill a sense of organization within the

constructed regions, imparting a semblance to real-world

geographical patterns.

The cluster factor plays a pivotal role in determining

region selection based on the prevalence of dominant regions

among neighboring vertices. By manipulating this factor, the

clustering of similar or identical regions is intensified during

the process of region map generation.

3 Simulation results

We integrated the IMGA procedure into the Unity game

engine for execution. The map generation process is

performed on a laptop with an Intel i7 9750h CPU and 16GB

of RAM. The dimensions of the generated maps are set at

240 units in width and 240 units in length. The duration

required to generate each map falls within the range of 0.5 to

0.7 seconds.

During the region map generation phase, only one

constraint is upheld: the prevention of adjacency between

water regions and mountain regions. The selection of the

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

812

region map to noise map ratio is fixed at 1.4, signifying that

region map values wield 1.4 times greater influence

compared to the base map values within the final map

outcomes. In conjunction with this, a clustering factor of 0.7

is designated, indicating that neighboring regions are 70%

more inclined to match.

To enable meaningful comparisons, the map generated

using the wave function collapse algorithm employs region

height values for the construction of a mesh. This way, the

algorithm is executed without the need for pre-designed tiles.

Figure 7. Procedural map generated with IMGA

Figure 8. Procedural map generated with Perlin Noise

Algorithm

Figure 9. Procedural map generated with region map which

is generated by Wave Function Collapse Algorithm

Figures 7, 8, and 9 illustrate insights into maps generated

through distinct algorithms. Notably, the map depicted in

Figure 7 emerges from the IMGA approach, while the one in

Figure 8 is a product of the Perlin Noise method. In contrast,

the map showcased in Figure 9 stems from a region map

generated by the wave function collapse algorithm.

Comparing Figures 7 and 8, it is evident that the proposed

IMGA technique yields a map of uneven characteristics in

contrast to the Perlin noise-generated map, which presents a

more uniform appearance. Furthermore, the map portrayed

in Figure 7 exhibits a discernible organizational structure due

to the application of rule-based generation, setting it apart

from the Perlin noise counterpart. Conversely, the map

resulting from the wave function collapse algorithm, as

depicted in Figure 9, requires a substantial 2-second interval

for generation. This lag in real-time generation efficiency is

noteworthy, especially given that the map's size is smaller

than a quarter of the maps generated using IMGA and Perlin

noise methods.

Figure 10 Region maps generated with cluster factors of 0.4, 0.62 and 0.84 from left to right

Figure 11. Maps generated with region map / base map ratio of 0.3 , 0.6 and 0.9 from left to right

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

813

Displayed in Figure 10 are region maps generated using

varying cluster factor values of 0.4, 0.62, and 0.84,

progressing from left to right. The cluster factor parameter

contributes to map clustering, its impact growing as the value

increases. The leftmost image in Figure 10 portrays a map

predominantly featuring land and mountain regions. This

observation aligns with the constraint that prevents water

regions from neighboring mountainous regions, resulting in

the generation of maps predominantly characterized by

mostly land regions when the cluster factor is set to an

extremely low value. Although the low values impact

negatively, values starting from 0.6 generate maps that

contribute to the overall structure.

Figure 11 illustrates maps generated under different

conditions of the region map to base map ratio. This ratio

determines the extent to which region map values influence

the final map; higher values amplify the impact of region

map values. The depicted ratio values in the images are 0.3,

0.6, and 0.9, progressing from left to right. Notably, lower

ratio values lead to final maps that exhibit a more remarkable

resemblance to maps generated purely by noise algorithms.

Conversely, when the ratio becomes excessively high, the

resulting map tends to resemble tile-based maps, indicating

a reduction in the influence of natural variations present in

noise-based maps. It is noted that extremely low or

extremely high values yield maps that closely resemble

either solely the base map or solely the. In contrast,

intermediate values lead to enhanced map quality.

4 Discussions and conclusions

This study introduces an innovative hybrid approach for

procedural terrain generation, effectively addressing the

limitations inherent in using Perlin noise and wave function

collapse algorithms. The proposed method overcomes the

shortcomings associated with each of these approaches.

Noise generation lacks the structure and characteristics of an

interesting map, but its computational cost is low. On the

other hand, WFC provides structure in its map through

neighbor constraints, but it is computationally high and

needs predefined models to work with. Our proposed

approach eliminates uniformity by combining the generated

map with a modified WFC. It is computationally lower than

pure WFC since the algorithm uses the WFC as a region map

generator, which has a much smaller cell count than the

actual map.

The strengths and weaknesses of this study can be

discussed as follows:

 Unlike GANs and erosion simulations, our algorithm

operates without the need for training or simulation,

and it can be parallelized to achieve near real-time

terrain generation.

 In comparison to maps generated solely through Perlin

noise, our method produces more diverse maps with

structured layouts. Additionally, it eliminates the

necessity for manually crafted tiles, offering a

significant advantage over the wave function collapse

algorithm.

 The techniques and methodologies utilized in this study

facilitate the generation of neighboring terrains, a

capability lacking in current state-of-the-art map

generation using GANs.

 The abstract parameters render the algorithm

challenging to configure.

Conflict of interest

The authors declare that there is no conflict of interest.

Similarity rate (iThenticate): 17%

References

[1] R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra,

and S. A. Groenewegen, A survey of procedural

methods for terrain modelling. In Proceedings of the

CASA Workshop on 3D Advanced Media In Gaming

And Simulation (3AMIGAS), pp. 25-34, Amsterdam,

The Netherlands, 2009.

[2] M. Hendrikx, S. Meijer, J. Van Der Velden, and A.

Iosup, Procedural content generation for games: A

survey. ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), 9 (1), 1-

22, 2013. https://doi.org/10.1145/2422956.2422957.

[3] K. Perlin, Improving noise. In Proceedings of the 29th

annual conference on Computer graphics and

interactive techniques, pp. 681-682, San Antonio

Texas, USA, 2002.

[4] C. Adams, H. Parekh, and S. J. Louis, Procedural level

design using an interactive cellular automata genetic

algorithm. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion,

pp. 85-86, Berlin, Germany, 2017.

[5] R. Zmugg, W. Thaller, U. Krispel, J. Edelsbrunner, S.

Havemann, and D. W. Fellner, Procedural architecture

using deformation-aware split grammars. The Visual

Computer, 30, 1009-1019, 2014.

https://doi.org/10.1007/s00371-013-0912-3

[6] De Pontes, R. G., Gomes, H. M., and Seabra, I. S. R.,

Particle swarm optimization for procedural content

generation in an endless platform game. Entertainment

Computing, 43, 100496., 2022.

https://doi.org/10.1016/j.entcom.2022.100496

[7] Volz, V., Naujoks, B., Kerschke, P., and Tušar, T.,

Tools for landscape analysis of optimisation problems

in procedural content generation for games. Applied

Soft Computing, 136, 110121., 2023.

https://doi.org/10.1016/j.asoc.2023.110121

[8] C. Beckham, and C. Pal, A step towards procedural

terrain generation with gans. arXiv preprint,

arXiv:1707.03383, 2017.

https://doi.org/10.48550/arXiv.1707.03383

[9] T. J. Rose, and A. G. Bakaoukas, Algorithms and

approaches for procedural terrain generation-a brief

review of current techniques. In 2016 8th International

Conference on Games and Virtual Worlds for Serious

Applications (VS-GAMES). pp. 1-2, Barcelona, Spain,

2016.

https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1007/s00371-013-0912-3
https://doi.org/10.1016/j.entcom.2022.100496
https://doi.org/10.1016/j.asoc.2023.110121
https://doi.org/10.48550/arXiv.1707.03383

“

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(3), 806-814

O. Büyükşar, D. Yıldız, S. Demirci

814

[10] F. Gürler and E. Onbaşioğlu, Applying Perlin noise on

3D hexagonal tiled maps. In 2022 International

Symposium on Multidisciplinary Studies and

Innovative Technologies (ISMSIT), pp. 670-673,

Ankara, Turkey, 2022.

[11] R. Fischer, P. Dittmann, R. Weller and G. Zachmann,

AutoBiomes: procedural generation of multi-biome

landscapes. The Visual Computer, 36, 2263-2272,

2020. https://doi.org/10.1007/s00371-020-01920-7

[12] A. Petrovas and R. Bausys, Procedural video game

scene generation by genetic and neutrosophic

WASPAS algorithms.. Applied Sciences, 12(2), 772,

2022. https://doi.org/10.3390/app12020772

[13] E. Panagiotou and E. Charou, Procedural 3D terrain

generation using Generative Adversarial Networks.

arXiv preprint arXiv:2010.06411, 2020.

https://doi.org/10.48550/arXiv.2010.06411

[14] A. Wulff-Jensen, N. N. Rant, T. N. Møller and J. A.

Billeskov, Deep convolutional generative adversarial

network for procedural 3D landscape generation based

on DEM. In Interactivity, Game Creation, Design,

Learning, and Innovation: 6th International

Conference, ArtsIT 2017, and Second International

Conference, pp. 85-94, Heraklion, Crete, Greece, 2017.

[15] J. Olsen, Realtime procedural terrain generation. 2004.

[16] G. C. Backes, T. A. Engel, and C. T. Pozzer, Real-Time

Massive Terrain Generation using Procedural Erosion

on the GPU. In Proceedings of 17th Brazilian

Symposium on Computer Games and Digital

Entertainment (SBGames), pp. 675-678, Foz do

Iguaçu, Brazil, 2018.

[17] H. Zhang, D. Qu, Y. Hou, F. Gao and F. Huang,

Synthetic modeling method for large scale terrain based

on hydrology. IEEE Access, 4, 6238-6249, 2016.

10.1109/ACCESS.2016.2612700

[18] J. D. Génevaux, É. Galin, E. Guérin, A. Peytavie and

B. Benes, Terrain generation using procedural models

based on hydrology. ACM Transactions on Graphics

(TOG), 32(4), 1-13, 2013.

https://doi.org/10.1145/2461912.2461996

[19] J. Doran and I. Parberry, Controlled procedural terrain

generation using software agents. IEEE Transactions

on Computational Intelligence and AI in Games, 2(2),

111-119, 2010. 10.1109/TCIAIG.2010.2049020

[20] T. S. L. Langendam and R. Bidarra, miWFC-Designer

empowerment through mixed-initiative Wave Function

Collapse. In Proceedings of the 17th International

Conference on the Foundations of Digital Games, pp.

1-8, Athens, Greece, 2022.

[21] Q. E. Morris, Modifying Wave function collapse for

more complex use in game generation and design.

Computer Science Honors Theses. USA, 2021.

[22] S. Alaka and R. Bidarra, Hierarchical Semantic Wave

function collapse. In Proceedings of the 18th

International Conference on the Foundations of Digital

Games, pp. 1-10, Lisbon, Portugal, 2023.

[23] Wu, Z., Mao, Y., and Li, Q., Procedural game map

generation using multi-leveled cellular automata by

machine learning. In Proceedings of the 2nd

International Symposium on Artificial Intelligence for

Medicine Sciences,pp. 168-172. https://doi.org/

10.1145/3500931.3500962

[24] K. PERLIN, An image synthesizer. ACM Siggraph

Computer Graphics, 1985, 19 (3), 287-296.

https://doi.org/10.1145/325165.325247

[25] Gumin, M. 2016. Wave Function Collapse Algorithm

(Version 1.0) [Computer software].

https://github.com/mxgmn/WaveFunctionCollapse,

Accessed: 15 September 2023

https://doi.org/10.1007/s00371-020-01920-7
https://doi.org/10.3390/app12020772
https://doi.org/10.48550/arXiv.2010.06411
https://doi.org/10.1109/ACCESS.2016.2612700
https://doi.org/10.1145/2461912.2461996
https://doi.org/10.1109/TCIAIG.2010.2049020
https://doi.org/%2010.1145/3500931.3500962
https://doi.org/%2010.1145/3500931.3500962
https://doi.org/10.1145/325165.325247
https://github.com/mxgmn/WaveFunctionCollapse

	1 Introduction
	2 Material and method
	2.1 Perlin noise
	2.1.1 Octaves

	2.2 Wave function collapse
	2.3 Proposed method
	2.3.1 Layout and structure of the map

	3 Simulation results
	4 Discussions and conclusions
	Conflict of interest
	Similarity rate (iThenticate): 17%
	References

