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Abstract  Öz 

In this study, the Improved Map Generation Algorithm 

(IMGA) method is presented to improve traditional 

methods in procedural map creation. Traditional procedural 

map generation techniques using noise generation exhibit 

shortcomings in the consistent composition of a real map 

with its uniformly distributed features. On the other hand, 

procedural map creation techniques that use wave function 

collapse require that some map pieces already exist to 

create a map. The observed disadvantages were eliminated 

by using a hybrid technique with the designed IMGA 

method. The developed algorithm is similar to real maps in 

terms of the distribution of map regions, does not need 3D 

model parts, and performs map creation operations without 

increasing the algorithm's time complexity. The evaluation 

of IMGA was carried out by coding the method into the 

Unity game engine. 

 Bu çalışmada, prosedürel harita oluşturma alanındaki 

geleneksel metotları geliştirmek amacıyla Geliştirilmiş 

Harita Oluşturma Algoritması (Improved Map Generation 

Algorithm, IMGA) metodunu sunulmuştur. Gürültü üretme 

yöntemini kullanan geleneksel prosedürel harita oluşturma 

teknikleri, düzgün dağılmış özellikleriyle gerçek bir 

haritanın tutarlı bileşiminde eksiklikler sergiler. Öte yandan 

dalga fonksiyon çöküşü kullanan prosedürel harita 

oluşturma teknikleri ise harita oluşturabilmek için harita 

parçalarının bir kısmının hâlihazırda bulunmasını 

gerektirmektedir. Tasarlanan IMGA metoduyla hibrit bir 

teknik kullanılarak gözlemlenen dezavantajlar 

giderilmiştir. Tasarlanan algoritma, harita bölgelerinin 

dağılımı açısından gerçek haritalara benzeyen, 3D model 

parçalarına ihtiyaç duymayan ve harita oluşturma 

işlemlerini algoritma zaman karmaşıklığını arttırmadan 

gerçekleştirmektedir. IMGA’nın değerlendirilmesi ise, 

metodun Unity oyun motoruna kodlanması ile 

gerçekleştirilmiştir. 

Keywords: Procedural terrain generation, Wave function 

collapse, Noise, Algorithm. 

 Anahtar kelimeler: Prosedürel harita oluşturma, Dalga 

fonksiyonu yığılma, Gürültü, Algoritma. 

1 Introduction 

Recently, there has been a substantial escalation in the 

dimensions and details of maps within the gaming industry. 

Therefore, the process of designing and modeling extended 

maps requires a more extensive investment [1, 2]. While the 

option to counter this by opting for smaller or less intricate 

maps exists, such a choice is deemed unfavorable due to its 

potential to curtail gameplay duration.  

Creating maps and terrains can be achieved by applying 

procedural content generation techniques. This approach 

involves using algorithmic generation mechanisms instead 

of manual content creation. Procedural content generation 

(PCG) finds utility in producing diverse forms of content, 

spanning from three-dimensional models and textures to 

animated sequences and auditory elements. This 

methodology has gained substantial traction across different 

domains, notably in the domains of gaming and cinematic 

production, facilitating the efficient generation of substantial 

volumes of content. Illustrative instances of its 

implementation can be observed in gaming titles like "No 

Man's Sky," "Terraria," and "Minecraft," as well as in 

cinematic productions such as "The Lord of the Rings" and 

"Avatar." 

PCG has gained significant attention in academic studies 

as well. These studies have been directed toward enhancing 

established PCG methodologies, aiming to yield superior 

content outcomes with reduced computational overhead. 

Conventional techniques for procedural content generation 

include noise generation [3], cellular automata [4], 

replacement grammars [5], optimization algorithms [6, 7], 

and neural networks [8]. Unlike AI-driven models like 

WASPAS and GANs, which have gained attraction for their 

ability to produce terrain resembling real-world geography, 

particle swarm optimization (PSO) [6] offers a distinct 

advantage in its capacity to provide finer-grained control 

over the generation process. While AI models often yield 

impressive results, their reliance on complex algorithms 

sometimes leads to less malleable terrain, limiting flexibility 
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for modifications such as generating neighboring tiles. While 

PSO excels at providing control and adaptability, it may 

require extensive parameter tuning for better results. 

PCG can be categorized into subtopics based on the 

specific type of content being generated. One such 

subcategory is procedural terrain generation (PTG), which 

involves the creation of terrains through various 

methodologies. A prominent and pervasive technique uses a 

digital elevation map (DEM) to utilize terrain objects. A 

DEM comprises a two-dimensional grid containing elevation 

values within designated grid cells. The generation of a DEM 

employs diverse algorithms, among which neural networks 

and noise generation algorithms hold significance. Noise 

generation, recognized for its prevalence, comprises a range 

of algorithms differing in quality, memory demands, and 

processing speed. These algorithms are the diamond-square 

algorithm, Worley noise, value noise, simplex noise, and 

Perlin noise [9]. 

The studies use noise generation with a combination of 

other techniques because noise alone results in uniform 

terrain without special features when used as a DEM. In a 

recent investigation by [10], noise generation is enriched 

through the implementation of octaves applied to Perlin 

noise. While the introduction of octaves introduces intricacy 

to the resultant maps, it is noted that features remain evenly 

dispersed across larger scales. An alternative strategy 

involves the integration of biomes to shape maps that align 

with specific biome boundaries [11]. It is worth noting that 

while this approach demands higher computational 

resources, it effectively mitigates the uniformity observed in 

maps generated solely through noise techniques. 

In the modern era, driven by the rapid progress of 

Artificial Intelligence (AI), there have emerged instances of 

terrain and game level generation employing machine 

learning models like WASPAS and General Adversarial 

Networks (GANs) [8, 12]. Notably, the utilization of satellite 

imagery for training GAN models and subsequently 

generating DEMs has gained popularity, primarily due to its 

capacity to yield maps resembling real-world geographical 

layouts [8, 13, 14]. However, while the outcomes derived 

from AI models indeed offer enhanced terrain, a notable 

limitation is their need for more direct control over the terrain 

generation process. Consequently, the generated terrains 

become less malleable and pose challenges when attempting 

modifications such as generating neighbor tiles. 

Erosion-based simulation has also emerged as a 

noteworthy approach to generating terrain that resembles 

actual landscapes [15, 16]. For instance, Jacob Olsen's 

research leveraged noise generation algorithms alongside 

erosion simulation techniques to enhance the authenticity of 

the generated terrain. Furthermore, hydrology-based 

methodologies have been explored, yielding comparable 

outcomes [17, 18]. The result has been the creation of maps 

that closely mimic real-world topographies. However, due to 

their foundation in noise-based techniques, these generated 

terrains face challenges in terms of malleability to suit 

designer preferences. Additionally, their applicability to 

infinitely scalable real-time maps is constrained as they 

struggle to produce coherent neighboring maps. 

Conversely, [19] presents an approach for terrain 

generation that adheres to constraints defined by designers. 

Their methodology employs terrain reasoning agents, which 

operate under the influence of designer-specified constraints 

to produce terrains. Consequently, this method yields 

algorithms subject to designer control; however, the 

outcomes deviate significantly from real-world terrains 

regarding resemblance. 

The core problem lies in the fact that procedural maps 

generated using noise algorithms yield outcomes 

characterized by uniformity and even distribution, a 

departure from the intricate variations found in real-world 

terrains. In contrast, GANs yield more favorable results; 

however, their effectiveness is confined to maps boasting 

extensive training data. Furthermore, even after training, 

these models remain incapable of generating infinitely 

expansive terrains automatically because they can’t generate 

neighbor maps. 

Recently, a novel procedural generation technique called 

"wave function collapse" has emerged, circumventing the 

limitations observed in preceding methodologies, which are 

practical design constraints. This algorithm operates by 

taking an input map and generating content following the 

provided input. Research studied in [20] underscores the 

feasibility of customizability within this method, enabling 

user-driven modifications. Furthermore, a study in [21] 

demonstrates the algorithm's capability to execute while 

imposing specific states on predetermined cells. This 

evidence substantiates the method's potential to generate 

maps on a chunk-by-chunk basis, leveraging pre-defined 

forms of adjacent chunks [21]. Additionally, the algorithm 

displays an aptitude for producing more structured maps, as 

highlighted in the investigation by [22]. Nonetheless, it is 

noteworthy that this algorithm needs pre-modelled tiles 

provided by the user to facilitate content generation. 

Cellular automata, the prominent method in procedural 

content generation, shares similarities with the wave 

function collapse technique and has been extensively 

explored over the years. A notable study introduces the 

utilization of layered cellular automata to generate structured 

and intricate maps [23]. However, a drawback of this 

approach is its susceptibility to falling into repetitive patterns 

since the underlying rule is predefined. 

This study presents an algorithm for procedural terrain 

generation that exhibits captivating terrain formations and 

possesses scalability without reliance on pre-established tiles 

while maintaining real-time computational efficiency. The 

main contributions of this study can be summarized as 

follows: 

 

 We introduce a hybrid approach that can be used with 

different noise generation algorithms and wave 

function collapse algorithms for further work in the 

field of terrain generation 

 Unlike conventional methods such as wave function 

collapse and GAN-based algorithms, our approach is 

free from predefined 3D models, datasets, or any prior 

data. 
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 The terrains generated allow for customizations 

according to user preferences, distinguishing them 

from maps generated using conventional noise and 

GAN methods. 

 

2 Material and method 

2.1 Perlin noise 

Perlin noise is a noise generation algorithm recognized 

for producing gradient noise, characterized by its smoothly 

varying values [3, 24]. This technique establishes a lattice of 

randomly oriented unit-length vectors across distinct 

directions. Subsequently, an interpolation procedure is 

applied among these unit vectors. At any given coordinate 

within a grid cell, the noise value is approximated by 

evaluating the dot product involving the displacement 

vectors of the respective grid cell corners and their 

corresponding unit-length gradient vectors. The resultant dot 

products are further subject to interpolation, yielding the 

final Perlin noise value.  

2.1.1 Octaves 

Perlin noise, in its standalone form, represents a uniform 

texture and lacks natural variability. To introduce a more 

intricate and authentic character, supplementary layers of 

noise are incorporated through octave summation along with 

the fundamental noise layer. These additional layers, termed 

octaves, are generated by multiplying the frequency of the 

Perlin noise with a factor greater than one while 

simultaneously adjusting the amplitude by a factor less than 

one. The cumulative outcome produces an octave endowed 

with distinct noise characteristics. In the context of 

generating DEMs, this aggregated noise contributes to the 

refinement of DEM quality, imbuing it with heightened 

intricacy and detail. 

2.2 Wave function collapse 

Wave function collapse (WFC) is a texture generation 

algorithm engineered to produce a texture akin to a provided 

input texture. Maxim Gumin developed it, and the algorithm 

was first made publicly accessible as a GitHub repository in 

2016 through an initial implementation [25]. The pseudo-

code of the base WFC algorithm is shown in Algorithm 1. 

 

Algorithm 1: Base WFC Algorithm 

1 Initialize cell grid  

2 while  there are cells to collapse 

3  Select a cell to be collapsed  

4  Collapse the selected cell 

5  Update neighbour cells  

 

The WFC algorithm starts by constructing a grid with 

cells set to superposition. Subsequently three steps are 

iterated for each cell, until there is no cells remain in 

superposition state. The primary step involves the 

identification of a cell hosting the minimal count of potential 

states, often referred to as the cell exhibiting the lowest 

entropy. Following this, a state is arbitrarily chosen from the 

possible states affiliated with the designated cell. After  

establishing the cell's state, neighboring cells undergo 

updates according to the selected state. This cascade of 

updates extends to the neighbors' own neighbors, persisting 

until no further alterations to the potential states of 

neighboring cells are feasible. 

2.3 Proposed method 

The core problem is that the use of noise in DEM results 

in uniform terrain with evenly distributed features; the WFC 

algorithm is much more promising than the noise generation 

algorithm, but it necessitates the use of pre-designed tiles and 

adopts a tile-by-tile approach in generating the DEM. As a 

consequence of this approach, the resulting terrain exhibits 

visible tile boundaries, detracting from its resemblance to 

real-life landscapes. Hence, our goal with this proposed 

method is to generate expansive terrains that closely 

resemble real-life landscapes. We aim to achieve this without 

the uniform characteristics commonly associated with 

terrains generated using noise algorithms and without relying 

on pre-designed tiles, a requirement in the case of WFC. 

By incorporating Perlin noise, we prevent the need for 

pre-modeled tiles and leverage its capacity to generate 

terrain. To rectify the issue of terrain uniformity and likeness 

to existing maps, we introduce a region map generated using 

a tailored wave function collapse algorithm. This map serves 

as a blueprint for adapting the terrain based on distinct region 

values, thereby reducing uniformity. Notably, this approach 

heightens the fidelity of the generated map by emulating 

real-world terrain characteristics, as regions are delineated in 

alignment with neighboring features. Ultimately, our 

approach sets itself apart from noise-based generated maps 

due to its distinct topographical regions and non-uniform 

nature. It also distinguishes itself from WFC-generated maps 

by eliminating discernible tile boundaries and negating the 

necessity for predefined tile models. Our proposed method, 

the Improved Map Generation Algorithm (IMGA), executes 

the steps in Figure 1. The pseudo-code of this algorithm is 

illustrated in Algorithm 2. 

 

 

Figure 1. The proposed IMGA algorithm steps 
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Algorithm 2: Improved Map Generation Algorithm (IMGA) 

Input: Mesh colors, region heights and exclusion rules 

Output: Terrain mesh 

1   Generate base map with noise generation 

2   Generate region map with modified WFC based on cluster factor criteria. 

3  Procedure CombineMaps()  

4  Construct a mesh with the combined map 

5   Paint the map according to the point heights 

 

 

 

 

Procedure: CombineMaps() 

Input: baseMap, regionMap, regionMapRatio 

Output: combinedMap 

1  Interpolate(start, end, t){ 

2    return (end - start) * t + start 

3  } 

4  scale ← baseMap.length / regionMap.length 

5  for (every point (x, y) in baseMap): 

6    point ← baseMap[x,y] 

7    point *= 1 - regionMapRatio 

8    region ← point.regionCell() 

9    if (x MOD scale < scale / 2): 

10     if (region.leftNeighbor is none): 

11       point += regionMapRatio *  region.value 

12     else: 

13       i ← 2 / (scale - 1) * (x MOD scale) 

14       point += regionMapRatio * Interpolate(region.leftNeighbor.value, region.value, i) / 2 

15   else: 

16     if (region.rightNeighbor is none): 

17       point += regionMapRatio * region.value 

18     else: 

19       i ← -2 / (scale - 1) * (x MOD scale) + 2 

20       point += regionMapRatio * Interpolate(region.rightNeighbor.value, region.value, i) / 2 

21   if (y MOD scale < scale / 2): 

22     if (region.bottomNeighbor is none): 

23       point += regionMapRatio * region.value 

24     else: 

25       i ← 2 / (scale - 1) * (y MOD scale) 

26       point += regionMapRatio * Interpolate(region.bottomNeighbor.value, region.value, i) / 2 

27   else: 

28     if (region.topRegion is none): 

29       point += regionMapRatio * region.value 

30     else: 

31       i ← -2 / (scale - 1) * (y MOD scale) + 2 

32       point += regionMapRatio * Interpolate(region.topNeighbor.value, region.value, i) / 2 

33   baseMap[x,y] ← point  

33 return baseMap 
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In the initial phase, a pseudo-random generator (C# 

UnityEngine CoreModule) is used as a seed for the Perlin 

noise generation algorithm to generate a base noise with 

dimensions of 240 units in width and length. Subsequently, 

another three Perlin noise maps are generated, featuring 

higher frequency and lower amplitude than the maps before 

them. Following this, these maps are summed together. This 

way, we generated a fractal noise, which forms the 

foundational basis for our subsequent procedures. 

The second phase consists of generating the region map. 

Unlike the base map, which has 240 cells with one-unit 

length each, the region map has 24 cells with ten units in 

width and height. This alteration allows individual cells 

within the region map to exert influence over more extensive 

areas than the base noise map we generated using the Perlin 

noise approach. In the context of crafting a coastal or island-

themed map, three key regions are introduced: mountainous, 

terrestrial, and aquatic. Corresponding height values of 0.9, 

0.5, and 0.1 are assigned to these regions, respectively. A 

stipulation is imposed to foster the creation of a region map 

resembling shorelines or islands where no cell of a 

mountainous region should share a border with a cell of an 

aquatic region, and vice versa. In addition to the base WFC 

algorithm, a cluster factor is introduced, significantly 

influencing the cells' selection. Specifically, when a given 

cell finds itself encompassed by neighboring cells belonging 

to the same region, it is inclined to adopt the identity of those 

neighboring cells' regions. A predefined cluster factor value 

determines the extent of this influence. By applying this 

mechanism during the process of region assignment, the 

resultant map exhibits a tendency towards forming localized 

clusters of regions. This aspect contributes to the emergence 

of coherent and concentrated region areas within the 

generated map. 

To combine the noise and region maps, the procedure 

CombineMaps() is executed. The lines from 5 to 34 will be 

executed for every point on the map.  

First, the point value is squashed to reduce the influence 

of the detailed map on the final combinedMap values (line 

7). Then, the corresponding region for the given point is 

stored (line 8). This region is used to access the neighboring 

region values for the interpolation process. In the next step, 

a section of the region where the given point is located must 

be determined to determine the region value (lines 9-32). 

Suppose the index x corresponds to the left part of the region 

area the interpolation is made with the left region cell value 

(lines 10-14). In that case, the interpolated value is added on 

top of the base map value. If the index x corresponds to the 

right part of the region, the interpolation is made with the 

right region cell, then the interpolated value is added on top 

of the base map value (lines 16-20). The current region value 

is used alone if there is no neighboring cell to interpolate 

(lines 10-11 and 16-17). At the end of line 20, the 

interpolation for the x-axis is complete, and the interpolation 

for the y-axis is calculated in a similar way, but checking for 

bottom and top instead of left and right (lines 22-32). Finally, 

the calculated point is updated (line 33). 

Figure 2 illustrates these sections for a single region cell. 

The reason for this separation is that the interpolation 

formula and the neighboring region cell to be interpolated 

change depending on which section of the region the point is 

located in. Initially, the interpolation for the x-axis is 

calculated (lines 9-20), and following that, the interpolation 

for the y-axis is calculated (lines 21-32). These procedures 

are evaluated on top of the base map value when calculated 

to produce the final value for that given point.  

 

 
Figure 2. Illustration of four sections for a single region 

cell 

 

To aid in visual understanding, Figure 3 shows the 

process of combining the maps for a single axis where the 

base map is 1000 units in total length and 250 units in length 

for a single region. 

 

 
Figure 3. 1D representation of combining base map and 

region map 

 

Once the computation for each point is completed, a 

terrain mesh object is generated, mirroring the array's 

dimensions. A mesh object in this context serves as a three-

dimensional depiction of the terrain, encompassing its 
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constituent vertices. The values previously computed and 

combined in the map are employed as a Digital Elevation 

Model (DEM) for constructing the terrain. Essentially, these 

combined map values are utilized as vertex heights and are 

subsequently imparted to the mesh object. Provided in Figure 

4 is an overhead illustration that mirrors the fundamental 

indexing process for terrain meshes, which commences from 

the upper left corner and progresses downward and to the 

right. This diagram utilizes black numerical annotations to 

represent vertex indices, while red numbers are employed to 

denote triangle indices. 

 

 

Figure 4. Vertex and triangle indexes for a 3 by 3 terrain 

mesh 

 

When heights are applied to the vertexes of the mesh by 

using a DEM, a terrain with the elevation values of the DEM 

is constructed. A terrain hill constructed by applying a 

mountain DEM is illustrated in Figure 5. 

 

 

Figure 5. Small mountain constructed by using a DEM 

 

Subsequently, the vertices of the map undergo a process 

of coloration based on their respective heights. The elevation 

range of the terrain, extending from its minimum to 

maximum height, is partitioned into distinct regions, each 

associated with a unique color. The color assigned to a 

particular vertex is determined by the region it belongs to. 

In alignment with the objective of capturing island and 

shoreline aesthetics, the chosen color palette comprises blue 

to signify the sea, yellow to denote shores, green for forests, 

dark brown representing mountains, and white symbolizing 

snow. The colored representation of the mountain introduced 

in Figure 5 is showcased in Figure 6, providing a visual 

portrayal of the mountain using the designated color scheme. 

 

 
Figure 6. Small mountain painted according to vertex 

heights 

 

2.3.1 Layout and structure of the map 

The map generated by the IMGA process introduces 

enhanced structure through the implementation of neighbor 

exclusion rules, a heightened ratio of region map to detail 

map influence during their combination, and a cluster factor 

influencing neighboring region selection. 

An increased combined ratio signifies that the region map 

exerts a more pronounced influence on the final map 

compared to the detailed map. As a result of this heightened 

influence, the configuration of the map is predominantly 

shaped by the values from the region map, effectively 

outlining the map's overall layout. 

Conversely, the incorporation of neighbor exclusion 

rules serves to instill a sense of organization within the 

constructed regions, imparting a semblance to real-world 

geographical patterns. 

The cluster factor plays a pivotal role in determining 

region selection based on the prevalence of dominant regions 

among neighboring vertices. By manipulating this factor, the 

clustering of similar or identical regions is intensified during 

the process of region map generation. 

3 Simulation results 

We integrated the IMGA procedure into the Unity game 

engine for execution. The map generation process is 

performed on a laptop with an Intel i7 9750h CPU and 16GB 

of RAM. The dimensions of the generated maps are set at 

240 units in width and 240 units in length. The duration 

required to generate each map falls within the range of 0.5 to 

0.7 seconds.  

During the region map generation phase, only one 

constraint is upheld: the prevention of adjacency between 

water regions and mountain regions. The selection of the 
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region map to noise map ratio is fixed at 1.4, signifying that 

region map values wield 1.4 times greater influence 

compared to the base map values within the final map 

outcomes. In conjunction with this, a clustering factor of 0.7 

is designated, indicating that neighboring regions are 70% 

more inclined to match. 

To enable meaningful comparisons, the map generated 

using the wave function collapse algorithm employs region 

height values for the construction of a mesh. This way, the 

algorithm is executed without the need for pre-designed tiles. 

 

 

Figure 7. Procedural map generated with IMGA 

 

 

Figure 8. Procedural map generated with Perlin Noise 

Algorithm 

 

 

Figure 9. Procedural map generated with region map which 

is generated by Wave Function Collapse Algorithm 

 

Figures 7, 8, and 9 illustrate insights into maps generated 

through distinct algorithms. Notably, the map depicted in 

Figure 7 emerges from the IMGA approach, while the one in 

Figure 8 is a product of the Perlin Noise method. In contrast, 

the map showcased in Figure 9 stems from a region map 

generated by the wave function collapse algorithm. 

Comparing Figures 7 and 8, it is evident that the proposed 

IMGA technique yields a map of uneven characteristics in 

contrast to the Perlin noise-generated map, which presents a 

more uniform appearance. Furthermore, the map portrayed 

in Figure 7 exhibits a discernible organizational structure due 

to the application of rule-based generation, setting it apart 

from the Perlin noise counterpart. Conversely, the map 

resulting from the wave function collapse algorithm, as 

depicted in Figure 9, requires a substantial 2-second interval 

for generation. This lag in real-time generation efficiency is 

noteworthy, especially given that the map's size is smaller 

than a quarter of the maps generated using IMGA and Perlin 

noise methods. 

 

 

Figure 10 Region maps generated with cluster factors of 0.4, 0.62 and 0.84 from left to right 

 

 

Figure 11. Maps generated with region map / base map ratio of 0.3 , 0.6 and 0.9 from left to right 
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Displayed in Figure 10 are region maps generated using 

varying cluster factor values of 0.4, 0.62, and 0.84, 

progressing from left to right. The cluster factor parameter 

contributes to map clustering, its impact growing as the value 

increases. The leftmost image in Figure 10 portrays a map 

predominantly featuring land and mountain regions. This 

observation aligns with the constraint that prevents water 

regions from neighboring mountainous regions, resulting in 

the generation of maps predominantly characterized by 

mostly land regions when the cluster factor is set to an 

extremely low value. Although the low values impact 

negatively, values starting from 0.6 generate maps that 

contribute to the overall structure. 

Figure 11 illustrates maps generated under different 

conditions of the region map to base map ratio. This ratio 

determines the extent to which region map values influence 

the final map; higher values amplify the impact of region 

map values. The depicted ratio values in the images are 0.3, 

0.6, and 0.9, progressing from left to right. Notably, lower 

ratio values lead to final maps that exhibit a more remarkable 

resemblance to maps generated purely by noise algorithms. 

Conversely, when the ratio becomes excessively high, the 

resulting map tends to resemble tile-based maps, indicating 

a reduction in the influence of natural variations present in 

noise-based maps. It is noted that extremely low or 

extremely high values yield maps that closely resemble 

either solely the base map or solely the. In contrast, 

intermediate values lead to enhanced map quality. 

4 Discussions and conclusions 

This study introduces an innovative hybrid approach for 

procedural terrain generation, effectively addressing the 

limitations inherent in using Perlin noise and wave function 

collapse algorithms. The proposed method overcomes the 

shortcomings associated with each of these approaches. 

Noise generation lacks the structure and characteristics of an 

interesting map, but its computational cost is low. On the 

other hand, WFC provides structure in its map through 

neighbor constraints, but it is computationally high and 

needs predefined models to work with. Our proposed 

approach eliminates uniformity by combining the generated 

map with a modified WFC. It is computationally lower than 

pure WFC since the algorithm uses the WFC as a region map 

generator, which has a much smaller cell count than the 

actual map. 

The strengths and weaknesses of this study can be 

discussed as follows: 

 Unlike GANs and erosion simulations, our algorithm 

operates without the need for training or simulation, 

and it can be parallelized to achieve near real-time 

terrain generation. 

 In comparison to maps generated solely through Perlin 

noise, our method produces more diverse maps with 

structured layouts. Additionally, it eliminates the 

necessity for manually crafted tiles, offering a 

significant advantage over the wave function collapse 

algorithm. 

 The techniques and methodologies utilized in this study 

facilitate the generation of neighboring terrains, a 

capability lacking in current state-of-the-art map 

generation using GANs. 

 The abstract parameters render the algorithm 

challenging to configure. 
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