Research Article
On the Unit Group of the Integral Group $\operatorname{Ring} \mathbb{Z}\left(S_{3} \times C_{3}\right)^{\text {\# }}$

Ömer KÜSMÜŞ ${ }^{* 1}$, İsmail Hakki DENİZLER ${ }^{1}$, Richard LOW ${ }^{2}$

${ }^{1}$ Van Yuzuncu Yil University, Faculty of Science, Department of Mathematics, 12345, Van, Türkiye
${ }^{2}$ San Jose State University, Faculty of Science, Department of Mathematics, California, USA
Ömer KÜSMÜŞ, ORCID No: 0000-0001-7397-0735, İsmail Hakkı DENİZLER, ORCID No: 0000-0002-33606696, Richard LOW, ORCID No: 0000-0003-2320-8296
*Corresponding author e-mail: omerkusmus@yyu.edu.tr

Article Info

Received: 18.09.2023
Accepted: 18.12.2023
Online April 2024
DOI:10.53433/yyufbed. 1361776

Keywords

Complex representation,
Cyclic group,
Direct product group, Group rings, Integral group rings, Symmetric group

Abstract

Describing the group of units in the integral group ring is a famous and classical open problem. Let S_{3} and C_{3} be the symmetric group of order 6 and a cyclic group of order 3, respectively. In this paper, a description of the units of the integral group ring $\mathbb{Z}\left(S_{3} \times C_{3}\right)$ of the direct product group $S_{3} \times C_{3}$ concerning a complex representation of degree two is given. As a result, a part of the conjecture which is introduced in (Low, 2008) and related to group rings over a complex integral domain is resolved using representation theory.

$\mathbb{Z}\left(S_{3} \times C_{3}\right)$ İntegral Grup Halkasındaki Birimsel Elemanlar Grubu Üzerine

Makale Bilgileri

Geliş: 18.09.2023
Kabul: 18.12.2023
Online Nisan 2024
DOI:10.53433/yyufbed. 1361776

Anahtar Kelimeler

Devirli grup,
Direkt çarpım grubu, Grup halkaları, İntegral grup halkaları, Kompleks temsil, Simetrik grup

Öz: Verilen bir sonlu grubun integral grup halkasındaki birimsel elemanların grubunu belirlemek çoğu grup için meşhur ve klasik bir açık problemdir. S_{3} ve C_{3} strasiyla 6 mertebeli simetrik grup ve 3 mertebeli bir devirli grup olsun. Bu makalede, iki dereceli bir kompleks temsile göre $S_{3} \times C_{3}$ direkt çarpım grubunun $\mathbb{Z}\left(S_{3} \times C_{3}\right)$ integral grup halkasının birimsel elemanlarının yapısı verilmektedir. Sonuç olarak, kompleks bir tamlık bölgesi üzerinde tanımlı grup halkalarına ilişkin (Low, 2008)' de sunulan konjektürün bir kısmı, temsil teorisi kullanılarak çözülmüştür.

1. Introduction

We denote the integral group ring of a given finite group G over the ring of integers by $\mathbb{Z} G$. Its elements are all finite sums of the form $\sum_{g \in G} \alpha_{g} g$ where $\alpha_{g} \in \mathbb{Z}$. The ring epimorphism defined by

[^0]$\epsilon: \mathbb{Z} G \longrightarrow \mathbb{Z}, \epsilon(g)=1$, is called the augmentation map. The kernel of ϵ is the augmentation ideal $\Delta_{\mathbb{Z}}(G)=\{g-1: g \in G\}$.

The group of units of $\mathbb{Z} G$ is denoted by $U(\mathbb{Z} G)$ and the group of units (of augmentation one) is denoted by $U_{1}(\mathbb{Z} G)$. Clearly, $\pm U_{1}(\mathbb{Z} G)=U(\mathbb{Z} G)$ and the set $\pm G$ are the trivial units in $U(\mathbb{Z} G)$.

Describing units of integral group rings is a difficult and open classical problem. Over the years, it has drawn the attention of those working in the areas of algebra, number theory, and algebraic topology. Most descriptions of $U(\mathbb{Z} G)$ in the mathematical literature either give an explicit description of unit group, the general structure of $U(\mathbb{Z} G)$, or a subgroup of finite index of the unit group $U(\mathbb{Z} G)$. Interested readers can read more about group rings in (Jespers \& del Rio A, 2016) and (Milies \& Sehgal, 2002). Additional information can be found in Sehgal's comprehensive study (Sehgal, 1993) on the unit problem in integral group rings.

Units, as well as other special elements in a group ring such as idempotent, nilpotent, etc., are useful elements to obtain novel results in group ring theory. Küsmüş (2020) introduced some results related to units which are generated from idempotent elements of group rings. Hanoymak \& Küsmüş (2023) studied some units which are correlated with nilpotent elements in group rings. Jespers \& Parmenter (1993) described $U(\mathbb{Z} G)$ for groups of order 16. Jespers \& Parmenter (1992) described $U(\mathbb{Z} G)$ where G is the dihedral group of order twelve and for $G=D_{8} \times C_{2}$. Kelebek \& Bilgin (2014) gave the structure of $U\left(\mathbb{Z}\left(C_{n} \times V\right)\right)$ where V is a Klein-4 group. Bilgin, Küsmüş \& Low (2016) determined the unit group of the integral group ring of

$$
T \times C_{2}=\left\langle a, b, x: a^{6}=x^{2}=1, a^{3}=b^{2}, b a b^{-1}=a^{-1}, a x=x a, b x=x b\right\rangle
$$

as a semidirect product of finitely generated free groups.
In (Low, 1998 and 2008), a general algebraic framework was developed to study $U\left(\mathbb{Z} G^{*}\right)$, where $G^{*}=G \times C_{p}$, where p is prime and G is a finite group. Low (2008) asserts that an implicit characterization of $U\left(\mathbb{Z}\left(G \times C_{p}\right)\right)$ depends on an understanding of the structure of $U(R G)$, where $R=$ $\mathbb{Z}[\zeta]$ is a complex integral domain, for prime $p \geq 3$ and ζ is a primitive p th root of unity.

Eisele et al. (2015) have introduced a general (but implicit) characterization of the unit group of $\mathbb{Z} G$ for some finite groups up to commensurability, using Wedderburn decompositions and idempotent elements from $\mathbb{Q} G e$. Their method is based on exploring an isomorphism between components of Wedderburn decompositions of $\mathbb{Q} G$ and $\mathbb{Q} G e$, where $e \in \mathbb{Q} G e_{i}$ is a non-central idempotent element (Eisele et al., 2015). In our paper, we do not utilize idempotent elements as in (Eisele et al., 2015). We focus on the open problem which is related to the unit group of integral group ring $\mathbb{Z}\left(G \times C_{p}\right)$, using its ideals where G is a symmetric group of order 6 and $p=3$ found in (Low, 2008). In particular, we characterize the unit group of the integral group ring of

$$
S_{3}^{*}:=S_{3} \times C_{3}=\left\langle a, b, x: a^{3}=b^{2}=x^{3}=1, b a b^{-1}=a^{-1}, a x=x a, b x=x b\right\rangle
$$

in terms of a decomposition of ideals of $\mathbb{Z} S_{3}^{*}$. To do this, we utilize linear extensions of a specific complex representation of degree two of the group S_{3}^{*} to some ideals of its integral group ring and correlate units in $\mathbb{Z} S_{3}^{*}$ with the units in some matrix rings.

2. Material and Methods

We first recall the theorem found in (Jespers, 1995) and (Jespers \& Parmenter, 1992).
Theorem 2.1. In $U_{1}\left(\mathbb{Z} S_{3}\right), S_{3}$ has a torsion-free normal complement which is generated by bicyclic units as $U_{1}\left(\mathbb{Z} S_{3}\right)=V \rtimes S_{3}$ such that $V=\left\langle u_{b, a}, u_{b a, a}, u_{b a^{2}, a}\right\rangle$, where

$$
\begin{gathered}
u_{b, a}=1+(1-b) a(1+b) \\
u_{b a, a}=1+(1-b a) a(1+b a) \\
u_{b a^{2}, a}=1+\left(1-b a^{2}\right) a\left(1+b a^{2}\right) .
\end{gathered}
$$

Since $S_{3}^{*}:=S_{3} \times C_{3}=\left\langle a, b, x: a^{3}=b^{2}=x^{3}=1, b a b^{-1}=a^{-1}, a x=x a, b x=x b\right\rangle$, we have

$$
\begin{gathered}
\mathbb{Z} S_{3}^{*} \simeq\left(\mathbb{Z} S_{3}\right) C_{3}=\left\{c_{0}+c_{1} x+c_{2} x^{2}: c_{i} \in \mathbb{Z} S_{3}\right\}, \\
\mathbb{Z} S_{3}^{*} \simeq\left(\mathbb{Z} C_{3}\right) S_{3}=\left\{c_{0}^{\prime}+c_{1}^{\prime} a+c_{2}^{\prime} a^{2}+c_{3}^{\prime} b+c_{4}^{\prime} b a+c_{5}^{\prime} b a^{2}: c_{i}^{\prime} \in \mathbb{Z} C_{3}\right\}, \\
\mathbb{Z} S_{3}^{*} \simeq \mathbb{Z}\left[\left(C_{3} \times C_{3}\right) \rtimes C_{2}\right] \simeq\left\{c_{1}^{\prime \prime}+c_{1}^{\prime \prime} b: c_{i}^{\prime \prime} \in \mathbb{Z}\left(C_{3} \times C_{3}\right)\right\} .
\end{gathered}
$$

Now, let π_{g} denote the natural projection defined over S_{3}^{*} with $\pi(g)=1$. We can linearly extend π_{g} to the integral group ring of S_{3}^{*}. Here, we can define the ring epimorphisms as $\pi_{x}: \mathbb{Z} S_{3}^{*} \rightarrow$ $\mathbb{Z} S_{3}$,

$$
\pi_{x}\left(c_{0}+c_{1} x+c_{2} x^{2}\right)=c_{0}+c_{1}+c_{2}
$$

and

$$
\pi_{a}: \mathbb{Z} S_{3}^{*} \simeq\left(\mathbb{Z} C_{3}\right) S_{3} \rightarrow \mathbb{Z}\langle b, x\rangle \simeq \mathbb{Z}\left(C_{2} \times C_{3}\right) \simeq\left(\mathbb{Z} C_{3}\right) C_{2}
$$

such that

$$
\pi_{a}\left(\sum_{i=0}^{2} \alpha_{i} a^{i}+\beta_{i} b a^{i}\right)=\sum_{i=0}^{2} \alpha_{i}+\beta_{i} b,
$$

where $c_{i} \in \mathbb{Z} S_{3}$ and $\alpha_{i}, \beta_{i} \in \mathbb{Z}\langle x\rangle \simeq \mathbb{Z} C_{3}$, respectively. Thus we observe that

$$
\operatorname{Ker}\left(\pi_{x}\right)=\mathbb{Z} S_{3}(1-x) \oplus \mathbb{Z} S_{3}\left(1-x^{2}\right)
$$

and

$$
\operatorname{Ker}\left(\pi_{a}\right)=\mathbb{Z}\langle b, x\rangle(1-a) \oplus \mathbb{Z}\langle b, x\rangle\left(1-a^{2}\right)
$$

Restricting π_{x} to $\operatorname{Ker}\left(\pi_{a}\right)$, the image of an element of the form

$$
\gamma=\left(\gamma_{0}+\gamma_{1} x+\gamma_{2} x^{2}\right)(1-a)+\left(\delta_{0}+\delta_{1} x+\delta_{2} x^{2}\right)\left(1-a^{2}\right)
$$

is

$$
\pi_{x}(\gamma)=\sum_{i=0}^{2} \gamma_{i}(1-a)+\sum_{i=0}^{2} \delta_{i}\left(1-a^{2}\right)
$$

where $\gamma_{i}, \delta_{i} \in \mathbb{Z}\langle b\rangle$. Thus, kernel of this restriction (denoted by K^{x}) is

$$
K^{x}=\left\{k_{1} \alpha_{11}+k_{2} \alpha_{12}+k_{3} \alpha_{21}+k_{4} \alpha_{22}: k_{i} \in \mathbb{Z}\langle b\rangle\right\} \subseteq \operatorname{Ker}\left(\pi_{x}\right)
$$

where $\alpha_{i j}=\left(1-x^{i}\right)\left(1-a^{j}\right)$ for $i, j \in\{1,2\}$. Note that this is a direct sum. That is,

$$
K^{x}=\prod_{j} \prod_{i} \mathbb{Z}\langle b\rangle \alpha_{i j} .
$$

3. Results

Proposition 3.1. Let K^{a} be the kernel of π_{a}, restricted to $\operatorname{Ker}\left(\pi_{x}\right)$. Then, $K^{a}=K^{x}$.
Proof. For an element $w \in K^{a}$, we know that $w \in \operatorname{Ker}\left(\pi_{x}\right)$ and $\pi_{a}(w)=0$. This implies that $\pi_{x}(w)=$ 0 and so $w \in K^{x}$. Therefore, $K^{a} \subseteq K^{x}$. The converse of this inclusion is similarly shown.

Note that these kernels yield a noncommutative $\mathbb{Z}\langle b\rangle$-algebra which we denote by $J_{4}=$ $\left\langle\alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}\right\rangle_{\mathbb{Z}\langle b\rangle}$. In J_{4}, the following hold:

$$
\begin{gather*}
\alpha_{11}^{2}=4 \alpha_{11}-2 \alpha_{12}-2 \alpha_{21}+\alpha_{22}, \tag{1}\\
\alpha_{12}^{2}=-2 \alpha_{11}+4 \alpha_{12}+\alpha_{21}-2 \alpha_{22}, \tag{2}\\
\alpha_{21}^{2}=-2 \alpha_{11}+\alpha_{12}+4 \alpha_{21}-2 \alpha_{22}, \tag{3}\\
\alpha_{22}^{2}=\alpha_{11}-2 \alpha_{12}-2 \alpha_{21}+4 \alpha_{22}, \tag{4}\\
\alpha_{11} \alpha_{12}=\alpha_{12} \alpha_{11}=2 \alpha_{11}+2 \alpha_{12}-\alpha_{21}-\alpha_{22}, \tag{5}\\
\alpha_{11} \alpha_{21}=\alpha_{21} \alpha_{11}=2 \alpha_{11}-\alpha_{12}+2 \alpha_{21}-\alpha_{22}, \tag{6}\\
\alpha_{11} \alpha_{22}=\alpha_{22} \alpha_{11}=\alpha_{11}+\alpha_{12}+\alpha_{21}+\alpha_{22}, \tag{7}\\
\alpha_{12} \alpha_{21}=\alpha_{21} \alpha_{12}=\alpha_{11}+\alpha_{12}+\alpha_{21}+\alpha_{22}, \tag{8}\\
\alpha_{12} \alpha_{22}=\alpha_{22} \alpha_{12}=-\alpha_{11}+2 \alpha_{12}-\alpha_{21}+2 \alpha_{22}, \tag{9}\\
\alpha_{21} \alpha_{22}=\alpha_{22} \alpha_{21}=-\alpha_{11}-\alpha_{12}+2 \alpha_{21}+2 \alpha_{22} \tag{10}
\end{gather*}
$$

and

$$
b \alpha_{11}=\alpha_{12} b, \quad b \alpha_{12}=\alpha_{11} b, \quad b \alpha_{22}=\alpha_{21} b, \quad b \alpha_{21}=\alpha_{22} b .
$$

Theorem 3.1. Let J_{2} denote $\mathbb{Z}\langle b\rangle(1-a) \oplus \mathbb{Z}\langle b\rangle\left(1-a^{2}\right)$. Then,

$$
U_{1}\left(1+J_{2}\right) \rtimes\langle b\rangle \simeq V \rtimes\langle a\rangle \rtimes\langle b\rangle
$$

where V is a torsion-free normal complement of S_{3}.

Proof. We know that $J_{2}=\mathbb{Z}\langle b\rangle(1-a) \oplus \mathbb{Z}\langle b\rangle\left(1-a^{2}\right)$ is the kernel of the map $\pi_{a}: \mathbb{Z} S_{3} \rightarrow \mathbb{Z}\langle b\rangle$ by $a \mapsto 1$. It is known that if I is an augmentation ideal, then the augmentation of I is 0 . Hence, the unit group which is generated from I lies in $1+I$, due to the fact that the augmentation of a unit has to be one. Thus, $U_{1}\left(1+J_{2}\right)=\left(1+J_{2}\right) \cap U_{1}\left(\mathbb{Z} S_{3}^{*}\right)$ is the kernel of π_{a} (restricted to the unit groups) with the exact sequence

$$
1 \rightarrow U_{1}\left(1+J_{2}\right) \xrightarrow{i} U_{1}\left(\mathbb{Z} S_{3}\right) \xrightarrow{\pi_{a}} U_{1}(\mathbb{Z}\langle b\rangle) \rightarrow 1 .
$$

Since $U_{1}(\mathbb{Z}\langle b\rangle) \hookrightarrow U_{1}\left(\mathbb{Z} S_{3}\right)$ is an embedding, the sequence splits as

$$
U_{1}\left(\mathbb{Z} S_{3}\right)=U_{1}\left(1+J_{2}\right) \rtimes U_{1}(\mathbb{Z}\langle b\rangle) .
$$

As $U_{1}(\mathbb{Z}\langle b\rangle)=\langle b\rangle$ and $U_{1}\left(\mathbb{Z} S_{3}\right)=V \rtimes S_{3}$ from Theorem 2.1, we see that

$$
U_{1}\left(1+J_{2}\right) \rtimes\langle b\rangle \simeq V \rtimes\langle a\rangle \rtimes\langle b\rangle .
$$

Theorem 3.2. Let J_{3} denote $\mathbb{Z}\langle b\rangle(1-x) \oplus \mathbb{Z}\langle b\rangle\left(1-x^{2}\right)$. Then,

$$
U_{1}\left(1+J_{3}\right)=\langle x\rangle \simeq C_{3} .
$$

Proof. Let $J_{3}=\mathbb{Z}\langle b\rangle(1-x) \oplus \mathbb{Z}\langle b\rangle\left(1-x^{2}\right)$. In particular,

$$
J_{3}=\left\{\left(k_{0}+k_{1} b\right)(1-x)+\left(k_{2}+k_{3} b\right)\left(1-x^{2}\right): k_{i} \in \mathbb{Z}\right\} .
$$

Notice that $\langle b, x\rangle \simeq\langle b x: o(b x)=6\rangle \simeq C_{6}$. Then, J_{3} is the kernel of the ring epimorphism $\pi_{x}: \mathbb{Z}\langle b x\rangle \rightarrow$ $\mathbb{Z}\langle b\rangle$, given by

$$
\pi_{x}\left(\sum_{i=0}^{5} c_{i}(b x)^{i}\right)=\left(c_{1}+c_{3}+c_{5}\right)+\left(c_{0}+c_{2}+c_{4}\right) b
$$

Using the linearity of π_{x}, we have $\tilde{\pi}_{x}: U_{1}(\mathbb{Z}\langle b x\rangle) \rightarrow U_{1}(\mathbb{Z}\langle b\rangle)$ and

$$
\operatorname{Ker}\left(\tilde{\pi}_{x}\right)=U_{1}\left(1+J_{3}\right)=\left(1+J_{3}\right) \cap U_{1}\left(\mathbb{Z} C_{6}\right) .
$$

It follows that

$$
1 \rightarrow U_{1}\left(1+J_{3}\right) \xrightarrow{i} U_{1}(\mathbb{Z}\langle b x\rangle) \xrightarrow{\tilde{\pi}_{x}} U_{1}(\mathbb{Z}\langle b\rangle) \rightarrow 1
$$

and

$$
U_{1}(\mathbb{Z}\langle b x\rangle)=U_{1}\left(1+J_{3}\right) \times U_{1}(\mathbb{Z}\langle b\rangle) .
$$

It is well known that the unit groups of integral group rings of abelian groups of order 2,3,4 and 6 have to be trivial (Sehgal, 1993). Hence, $U_{1}(\mathbb{Z}\langle b x\rangle) \simeq U_{1}\left(\mathbb{Z} C_{6}\right)=\langle b x\rangle$ and

$$
U_{1}(\mathbb{Z}\langle b\rangle) \simeq U_{1}\left(\mathbb{Z} C_{2}\right)=\langle b\rangle .
$$

Thus, $C_{6} \simeq U_{1}\left(1+J_{3}\right) \times C_{2}$ and we conclude that $U_{1}\left(1+J_{3}\right)=\langle x\rangle \simeq C_{3}$.
Theorem 3.3. Let $J_{4}=\left\langle\alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}\right\rangle_{\mathbb{Z}\langle b\rangle}$ where $\alpha_{i j}=\left(1-x^{i}\right)\left(1-a^{j}\right)$, as described in equations (1)-(11). Then,

$$
U_{1}\left(1+J_{4}\right)=\left\{1+c_{0} W_{1}+c_{1} W_{2}: c_{0}, c_{1} \in \mathbb{Z}\right\}
$$

where $W_{1}=(1-b)(1-x)\left(a^{2}-a\right)$ and $W_{2}=(1-b)\left(1-x^{2}\right)\left(a^{2}-a\right)$.

Proof. We know that $U_{1}\left(1+J_{4}\right)$ is implicitly composed of units of the form

$$
u=1+\left(k_{0}+l_{0} b\right) \alpha_{11}+\left(k_{1}+l_{1} b\right) \alpha_{12}+\left(k_{2}+l_{2} b\right) \alpha_{21}+\left(k_{3}+l_{3} b\right) \alpha_{22} .
$$

By applying a linear extension of the projection operator

$$
\pi_{b}(\alpha)= \begin{cases}1, & \alpha=b \\ \alpha, & \alpha \neq b\end{cases}
$$

to J_{4}, it is possible to separate this ideal into two distinct parts. Using the short exact sequence

$$
0 \rightarrow \operatorname{Ker}\left(\pi_{b}\right) \xrightarrow{i} J_{4} \xrightarrow{\pi_{b}} \operatorname{Im}\left(\pi_{b}\right) \rightarrow 0,
$$

note that

$$
\operatorname{Im}\left(\pi_{b}\right)=\left\{c_{0} \alpha_{11}+c_{1} \alpha_{12}+c_{2} \alpha_{21}+c_{3} \alpha_{22}: c_{i} \in \mathbb{Z}\right\} .
$$

When we move the above sequence to the subgroup $U_{1}\left(1+J_{4}\right)$ of units, we obtain the sequence

$$
1 \rightarrow 1+\operatorname{Ker}\left(\pi_{b}\right) \xrightarrow{i} U_{1}\left(1+J_{4}\right) \xrightarrow{\pi_{b}} 1+\operatorname{Im}\left(\pi_{b}\right) \rightarrow 1 .
$$

We claim that $1+\operatorname{Im}\left(\pi_{b}\right)$ has no nontrivial units. To see this, consider $\rho\left(1+\operatorname{Im}\left(\pi_{b}\right)\right)$, where $\rho: S_{3}^{*} \rightarrow G L(2,\langle\omega\rangle)$ is a complex representation of degree two such that

$$
\rho(a)=\left[\begin{array}{ll}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right], \rho(b)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \rho(x)=\left[\begin{array}{cc}
\omega & 0 \\
0 & \omega
\end{array}\right]=\omega I_{2}
$$

and ω is the primitive 3 rd root of unity. Restriction of ρ to ideal J_{4} gives the following representations:

$$
\begin{aligned}
& \rho\left(\alpha_{11}\right)=\left[\begin{array}{ll}
2(1-\omega)-\left(1-\omega^{2}\right) & 0 \\
0 & (1-\omega)+\left(1-\omega^{2}\right)
\end{array}\right], \\
& \rho\left(\alpha_{12}\right)=\left[\begin{array}{ll}
(1-\omega)+\left(1-\omega^{2}\right) & 0 \\
0 & 2(1-\omega)-\left(1-\omega^{2}\right)
\end{array}\right], \\
& \rho\left(\alpha_{21}\right)=\left[\begin{array}{ll}
(1-\omega)+\left(1-\omega^{2}\right) & 0 \\
0 & -(1-\omega)+2\left(1-\omega^{2}\right)
\end{array}\right], \\
& \rho\left(\alpha_{21}\right)=\left[\begin{array}{ll}
(1-\omega)+\left(1-\omega^{2}\right) & 0 \\
0 & -(1-\omega)+2\left(1-\omega^{2}\right)
\end{array}\right], \\
& \rho\left(\alpha_{22}\right)=\left[\begin{array}{ll}
-(1-\omega)+2\left(1-\omega^{2}\right) & 0 \\
0 & (1-\omega)+\left(1-\omega^{2}\right)
\end{array}\right] .
\end{aligned}
$$

As a linear operator, extending ρ to integral group ring $\mathbb{Z} S_{3}^{*}$ yields the representation of a unit in $1+$ $\operatorname{Im}\left(\pi_{b}\right)$ as

$$
\rho(u)=\left[\begin{array}{ll}
u_{1} & 0 \\
0 & u_{2}
\end{array}\right]
$$

with inverse

$$
\rho(u)^{-1}=\left[\begin{array}{ll}
u_{1}^{-1} & 0 \\
0 & u_{2}^{-1}
\end{array}\right]
$$

where

$$
\begin{aligned}
& u_{1}=1+\left(2 c_{0}+c_{1}+c_{2}-c_{3}\right)(1-\omega)+\left(-c_{0}+c_{1}+c_{2}+2 c_{3}\right)\left(1-\omega^{2}\right), \\
& u_{2}=1+\left(c_{0}+2 c_{1}-c_{2}+c_{3}\right)(1-\omega)+\left(c_{0}-c_{1}+2 c_{2}+c_{3}\right)\left(1-\omega^{2}\right) .
\end{aligned}
$$

As $\operatorname{Det}(\rho(u))=u_{1} u_{2} \in U_{1}(\mathbb{Z}\langle\omega\rangle)$ and $U_{1}(\mathbb{Z}\langle\omega\rangle) \simeq U_{1}\left(\mathbb{Z} C_{3}\right) \simeq C_{3}$, we see that both u_{1} and u_{2} must be trivial units. Moreover, notice that $u_{1}=u_{2}=1$. Thus, we conclude that

$$
U_{1}\left(1+J_{4}\right)=\left(1+\operatorname{Ker}\left(\pi_{b}\right)\right) \cap U_{1}\left(1+J_{4}\right)
$$

Recall that

$$
\operatorname{Ker}\left(\pi_{b}\right)=\left\{(1-b)\left(d_{0} \alpha_{11}+d_{1} \alpha_{12}+d_{2} \alpha_{21}+d_{3} \alpha_{22}\right): d_{i} \in \mathbb{Z}\right\}
$$

Since $v \in\left(1+\operatorname{Ker}\left(\pi_{b}\right)\right) \cap U_{1}\left(1+J_{4}\right)$, the representation $\rho(v)$ is obtained as

$$
\rho(v)=\left[\begin{array}{ll}
1+v_{1} & -v_{2} \\
-v_{1} & 1+v_{2}
\end{array}\right]
$$

where

$$
v_{1}=\left(2 d_{0}+d_{1}+d_{2}-d_{3}\right)(1-\omega)+\left(-d_{0}+d_{1}+d_{2}+2 d_{3}\right)\left(1-\omega^{2}\right)
$$

and

$$
v_{2}=\left(d_{0}+2 d_{1}-d_{2}+d_{3}\right)(1-\omega)+\left(d_{0}-d_{1}+2 d_{2}+d_{3}\right)\left(1-\omega^{2}\right)
$$

Observe that $\operatorname{Det}(\rho(v))=1+v_{1}+v_{2}$ is invertible if and only if

$$
\operatorname{Det}(\rho(u))=1+(1-\omega)\left(3 d_{0}+3 d_{1}\right)+\left(1-\omega^{2}\right)\left(3 d_{2}+3 d_{3}\right) \in U_{1}(\mathbb{Z}\langle\omega\rangle)=\langle\omega\rangle
$$

Hence, we deduce that $d_{0}+d_{1}=0$ and $d_{2}+d_{3}=0$. This shows us that v can be written in the form $v=1+d_{0} W_{1}+d_{2} W_{2}$.

Since W_{1} and W_{2} are nilpotent elements of nilpotency index two and $W_{1} W_{2}=W_{2} W_{1}=0$, the subgroup $U_{1}\left(1+J_{4}\right)$ consists of units of form $v=1+d_{0} W_{1}+d_{2} W_{2}$ with the inverse $v^{-1}=1-$ $d_{0} W_{1}-d_{2} W_{2}$. It is clear that $U_{1}\left(1+J_{4}\right)$ is torsion-free since

$$
u^{n}=1+n c_{0} W_{1}+n c_{1} W_{2}
$$

for any $n \in \mathbb{Z}$. Thus, $U_{1}\left(1+J_{4}\right)=\left\{1+c_{0} W_{1}+c_{1} W_{2}: c_{0}, c_{1} \in \mathbb{Z}\right\}$.
Corollary 3.1. $U\left(\mathbb{Z} S_{3}^{*}\right)=\left(U_{1}\left(1+J_{4}\right) \times C_{3}\right) \rtimes\left(V \rtimes S_{3}\right)$ where $C_{3}=\langle x\rangle, V$ is a torsion-free normal complement of S_{3} and $U_{1}\left(1+J_{4}\right)=\left\{1+c_{0} W_{1}+c_{1} W_{2}: c_{0}, c_{1} \in \mathbb{Z}\right\}$ such that W_{1} and W_{2} are as obtained in Theorem 3.3.
Proof. We construct the following commutative diagram of exact sequences:

$$
\begin{array}{ccccc}
J_{4} & \xrightarrow{i} & Z\langle b, x\rangle\left[(1-a) \oplus\left(1-a^{2}\right)\right] & \xrightarrow{\pi_{x}} & J_{2} \\
\downarrow & \downarrow & & & \downarrow \\
\mathbb{Z} S_{3}\left[(1-x) \oplus\left(1-x^{2}\right)\right] & \xrightarrow{i} & \mathbb{Z} S_{3}^{*} & \xrightarrow{\pi_{x}} & \mathbb{Z} S_{3} \\
\downarrow & \downarrow & & & \downarrow \\
J_{3} & & \xrightarrow{i} & \mathbb{Z}\langle b, x\rangle & \xrightarrow{\pi_{x}} \\
\mathbb{Z}\langle b\rangle
\end{array}
$$

Since the inverses of the projections π_{a} and π_{x} are embeddings, the sequences split in all of the rows and columns. This implies that

$$
\begin{gathered}
\mathbb{Z} S_{3}^{*}=\left[\mathbb{Z} S_{3}(1-x) \oplus \mathbb{Z} S_{3}\left(1-x^{2}\right)\right] \rtimes \mathbb{Z} S_{3}, \\
\mathbb{Z} S_{3}^{*}=\left[\mathbb{Z}\langle b, x\rangle(1-a) \oplus \mathbb{Z}\langle b, x\rangle\left(1-a^{2}\right)\right] \rtimes \mathbb{Z}\langle b, x\rangle, \\
\mathbb{Z} S_{3}=J_{2} \rtimes \mathbb{Z}\langle b\rangle,
\end{gathered}
$$

$$
\begin{gathered}
J_{4} \rtimes J_{3}=\mathbb{Z} S_{3}(1-x) \oplus \mathbb{Z} S_{3}\left(1-x^{2}\right), \\
J_{4} \rtimes J_{2}=\mathbb{Z}\langle b, x\rangle(1-a) \oplus \mathbb{Z}\langle b, x\rangle\left(1-a^{2}\right), \\
\mathbb{Z}\langle b, x\rangle=J_{3} \times \mathbb{Z}\langle b\rangle .
\end{gathered}
$$

Moving these sequences and split extensions to the unit groups level, we have

We can conclude that

$$
U\left(\mathbb{Z} S_{3}^{*}\right)=U\left(1+J_{4}\right) \rtimes U\left(1+J_{3}\right) \rtimes U\left(1+J_{2}\right) \rtimes U(\mathbb{Z}\langle b\rangle) .
$$

Using Theorems 3.2. and 3.3., we obtain

$$
U\left(\mathbb{Z} S_{3}^{*}\right)=\left(U_{1}\left(1+J_{4}\right) \times C_{3}\right) \rtimes\left(V \rtimes S_{3}\right) .
$$

4. Discussion and Conclusion

Keeping in mind that S_{3} has a torsion-free normal complement which is generated by bicyclic units and every \mathbb{Z}-module has a complex representation of finite degree, we have reduced the problem of describing the unit group of $\mathbb{Z} S_{3}^{*}$ to the problem of detecting units in matrix rings. We have moved a complex representation of S_{3} of degree 2 to a matrix ring whose entries are from the complex integral domain $\mathbb{Z}[\omega]$ where $\omega^{3}=1$. It is clear that $\mathbb{Z}[\zeta]=\mathbb{Z}$ when $\zeta^{2}=1$ and so we have characterization of the unit group of integral group ring $\mathbb{Z}\left(G \times C_{2}\right)$ in terms of the unit group in $\mathbb{Z} G$ for a given finite group G and a cyclic group C_{2} of order 2 as in (Low, 2008). However, giving an explicit description of $U\left(\mathbb{Z}\left(G \times C_{p}\right)\right)$ through ideals of $\mathbb{Z}\left(G \times C_{p}\right)$ and its complex representations over $\mathbb{Z}[\theta]$ is still an open problem when $p \geq 3$ and θ is primitive p th root of unity. In this paper, we have given an approach to this problem for $p=3$ and proved that $U\left(Z S_{3}^{*}\right)$ consists of trivial units, torsion-free units and torsionfree normal complement of S_{3}, using representation theory of finite groups.

The problem of establishing an explicit characterization of the unit group in the integral group ring for a given (as a general form) direct product group still remains an open problem. In this regard, we believe that the topic holds significant interest for researchers working on group rings and the representation theory of finite groups. This serves as a substantial source of motivation for future research endeavors.

Acknowledgements

The corresponding author of this paper would like to express gratitude to Dear Mr. DENIZLER for his encouragement regarding this article, as well as (Küsmüş, 2020) and (Hanoymak \& Küsmüş, 2023).

References

Bilgin, T., Küsmüş, Ö., \& Low, R. M. (2016). A characterization of the unit group in $\mathbb{Z}\left[T \times C_{2}\right]$. Bulletin of the Korean Mathematical Society, 53(4), 1105-1112. doi:10.4134/BKMS.b150526

Eisele, F., Kiefer, A., \& Gelder, I. V. (2015). Describing units of integral group rings up to commensurability. Journal of Pure and Applied Algebra, 219(7), 2901-2916. doi:10.1016/j.jpaa.2014.09.031
Hanoymak, T., \& Küsmüş, Ö. (2023). A generalization of G-nilpotent units in commutative group rings to direct product groups. Yuzuncu Yil University Journal of the Institute of Natural and Applied Sciences, 28(1), 8-18. doi:10.53433/yyufbed. 1097581
Jespers, E., \& Parmenter, M. M. (1992). Bicyclic units in $\mathbb{Z} S_{3}$. Bulletin of the Belgium Mathematical Society, 44, 141-146.
Jespers, E., \& Parmenter, M. M. (1993). Units of group rings of groups of order 16. Glasgow Mathematical Journal, 35, 367-379. doi:10.1017/S0017089500009952
Jespers, E. (1995). Bicyclic units in some integral group rings. Canadian Mathematics Bulletin, 38(1), 80-86. doi:10.4153/CMB-1995-010-4
Jespers, E., \& del Rio, A. (2016). Group Ring Groups. Vol. 1 and 2. Berlin, Germany: De Gruyter.
Kelebek, I. G., \& Bilgin, T. (2014). Characterization of $U_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)$. European Journal of Pure and Applied Mathematics, 7(4), 462-471.
Küsmüş, Ö. (2020). On idempotent units in commutative group rings. Sakarya University Journal of Science, 24(4), 782-790. doi:10.16984/saufenbilder. 733935
Low, R. M. (1998). Units in integral group rings for direct products. (PhD), Western Michigan University, Kalamazoo, MI.
Low, R. M. (2008). On the units of the integral group ring $\mathbb{Z}\left[G \times C_{p}\right]$. Journal of Algebra and its Applications, 7(3), 393-403. doi:10.1142/S0219498808002898
Milies, C. P., \& Sehgal, S. K. (2002). An Introduction to Group Rings. London, UK: Kluwer Academic Publishers.
Sehgal, S. K. (1993). Units in Integral Group Rings. Essex, England: Longman Scientific \& Technical.

[^0]: \# This paper has been generated from the corresponding author's Ph.D. thesis conducted under the supervision of Assoc. Prof. Dr. İsmail Hakkı DENİZLER.

