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Abstract 

Theoretical models that predict the lipid content of microalgae are an important tool 

for increasing lipid productivity. In this study, response surface methodology (RSM), 

RSM combined with artificial neural network (ANN), and RSM combined with 

ensemble learning algorithms (ELA) for regression were used to calculate the 

maximum lipid percentage (%) from Chlorella minutissima (C. minutissima). We 

defined one set of rules to achieve the highest lipid content and used 

trees.RandomTree (tRT) to simulate the process parameters under various 

conditions. Among the various models, results showed the optimum values of the 

root mean squared error (0.2156), mean absolute error (0.1167), and correlation 

coefficient (0.9961) in the tRT model. RSM combined with tRT estimated that the 

lipid percentage was 30.3% in wastewater (< 35%), lysozyme (≥ 3.5 U/mL), and 

chitinase (< 15 U/mL) concentrations, achieving the best model based on 

experimental data. The optimal values of wastewater concentration, chitinase, and 

lysozyme were 20% (v/v), 5 U/mL, and 10 U/mL, respectively. Also, the if-then rules 

obtained from tRT were also used to test the process parameters. The tRT model 

served as a powerful tool to obtain maximum lipid content. The final rankings of the 

performance of various algorithms were determined. Furthermore, the models 

developed can be used by the fuel industry to achieve cost-effective, large-scale 

production of lipid content and biodiesel. 
 

 
1. Introduction 

 

The demand for renewable energy has increased in 

emerging nations. The majority of countries are 

trying to find renewable energy alternatives to replace 

fossil fuels [1], [2]. Biodiesel production has become 

very important for the global fuel market due to the 

consumption of fossil fuels, growing energy 

consumption, climate change, and environmental 

pollution, but it needs highly innovative research and 

development [3], [4]. Biodiesel obtained from 

microalgal biomass is an encouraging source of 

renewable energy; however, there are some 

difficulties in producing algae-derived biodiesel [5]-

[7]. Therefore, researchers are looking into new 

                                                           

*Corresponding author: aonay@thk.edu.tr                           Received: 18.09.2023, Accepted: 02.12.2023 

economical production techniques [8]-[10]. Biomass 

features intracellular lipids and rigid cell walls thus 

an appropriately selected solvent is needed to extract 

the lipids [11], [12]. Many studies have been 

conducted to investigate cell wall destruction and 

optimal solvent selection to improve microalgal lipid 

yields. Water in biomass also acts as a barrier to 

achieving lipid extraction. The biodiesel efficiency of 

microalgae is based on dry biomass [13], [14]. The 

industry has struggled to decrease the cost of not only 

wet but also high-water-content algal biomass. 

Microalgae are used as health foods and in cosmetics 

by different industries. They have produced some 

impressive products, like lipids, carbohydrates, 

pigments, and proteins [15]. The high-volume 
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production of various metabolic products looks quite 

promising for obtaining lipids, biomass, green energy 

products, enzymes, polymers, toxins, and pigments. 

Microalgae use solar energy and consume carbon 

dioxide for photosynthesis [16], [17]. The cultivation 

conditions are important for microalgae, affecting 

their growth characteristics and cellular composition 

[18], [19]. The most-used culture media include 

photoautotrophic, heterotrophic, and mixotrophic 

media. The major drawback is the cultivation cost to 

obtain biomass. Nitrogen (80 kg) and phosphorous (5 

kg) are needed to get about one ton of biomass [20]. 

Therefore, optimizing the process parameters is 

important to obtain high amounts of lipids in a cost-

effective way. Researchers have searched for 

different theoretical methods and developed software 

tools to predict the maximum lipid content and 

biomass productivity based on cultivation conditions 

and medium compositions. Among them, RSM is the 

major optimization technique [21]–[24]. RSM 

combined with ANN has also been performed to 

determine the optimal medium components and 

cultivation conditions [25], [26]. Furthermore, based 

on optimization studies in the literature, the genetic 

algorithm with support vector machines (SVM) and 

fuzzy logic methods (FLM) were implemented. 

Mondal et al. [27] performed the central composite 

design (CCD) to optimize three main process 

parameters: temperature, light intensity, and CO2. 

Chlorella sp. BTA 9031 was used in the cultivation 

medium for biomass and lipid formation. The 

optimum levels of 28.26 °C, 76.64 μmol m−2s−1, and 

4.00% CO2 were determined for temperature, light 

intensity, and CO2, respectively. The results show 

that the model achieved reliable results. Alam et al. 

[28] searched for the effects of process parameters on 

three-phase partitioning performance (TPP). The 

temperature, incubation duration, and extraction time 

were optimized by using RSM. C. vulgaris, which has 

a high water content, was used for the extraction of 

lipids. At a ratio of 1:1 solvent to DKP, the optimum 

results for the temperature, incubation duration, and 

extraction time were 60 °C, 120 min, and 60 min, 

respectively. The results revealed that the lipid 

extraction procedure can be performed to form 

biodiesel. Ishola et al. [29] focused on developing a 

model. The transformation of sorrel (Hibiscus 

sabdariffa) oil to H. sabdariffa methyl esters (HSME) 

was modeled using RSM, ANN, and a neuro-fuzzy 

inference system (ANFIS). According to the 

statistical tests, the models developed to describe the 

transesterification process were very precise and 

reliable. The ANFIS model achieved the highest R2 

value (0.9944). The ANFIS model optimized with 

genetic algorithm (GA) predicted the optimum 

conditions for maximum HSME product yield (99.71 

wt%) at the methanol/oil molar ratio of 8:1. Catalyst 

weight, reaction time, and temperature were found to 

be 1.23 wt%, 43 min, and 65 °C, respectively. The 

results show that the HSME can be used as an 

alternative to petro-diesel.  

In this study, RSM, RSM combined with 

ANN, and RSM combined with ELA [random forest 

(RF), random tree (RT), and bagging (BA)] were 

used to calculate the maximum lipid percentage (%) 

from C. minutissima using the MATLAB, 

SIMULINK and Weka software [30]-[34]. Different 

concentrations of wastewater, chitinase, and 

lysozyme were tested using Box-Wilson design to 

observe the process parameters that cause changes in 

the lipid content.  

Wastewater can be used to produce biofuels 

from microalgae. High levels of carbon, nitrogen, 

and phosphorus in wastewater can act as nutrients for 

microalgae and enable them to grow. The microalgal 

mass obtained in large amounts can also be used in 

biofuel production. Thus, economically 

advantageous biofuel can be obtained without 

providing carbon, nitrogen, and phosphorus input to 

the system from the outside [35]. Chitinase and 

lysozyme are two important enzymes that can take 

part in the degradation of the outer surface of 

microalgae cells. With this pre-treatment technique, 

the outer membranes of microalgae can be further 

broken down, and quickly, enabling greater access to 

their metabolic contents. In this case, it means 

producing more lipids [36]. Since the optimization of 

variables such as carbon source, temperature, pH, 

and light in biodiesel production is well known, the 

parameters used in this study can increase the lipid 

amount and generate more metabolic content. The 

synergistic effects of the parameters on lipid content 

were also examined by performing a circumscribed 

central composite design (CCCD) of RSM. In this 

study, AI algorithms were run together with RSM in 

a combined structure. The literature describes the 

ANN and RSM models on biofuel production as 

“black boxes.” By developing explainable platforms 

and simplifying the models for the researcher’s 

understanding, we make the models more robust and 

transparent. Also, there are few reported models and 

articles on biofuel research using combined RSM-

ELA models. The trees.RandomTree (tRT) model is 

an explainable machine-learning model that lays out 

one set of rules to achieve the optimal parameters 

and serves as a decision-support tool to achieve 

maximum lipid content. This theoretically obtained 

decision mechanism is of great importance to 

researchers. Interactive response surface modeling 
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(rstool) and prediction plots were also developed and 

drawn for the three process parameters of wastewater 

concentration (v/v %), chitinase (U/mL), and 

lysozyme (U/mL). The novelty of this study is the 

production of lipids, which are biodiesel raw 

materials, theoretically in high amounts by using 

wastewater-containing nutrients for microalgae and 

enzyme technologies such as chitinase and 

lysozyme. This theoretical study can be achieved by 

using the parameters without the need for repeated 

experiments in the production of biodiesel. Thus, the 

cost will be reduced, as no experimental repetitions 

are made. The paper also overviews AI algorithms 

that can be used in other projects with similar 

conditions and practical applications. 

2. Material and Method 

 

ANN is ideal for building regression models and 

conditions, and it has the ability to learn and model 

nonlinear and complicated interactions, which is 

crucial because the parameter relationships 

(wastewater concentration, chitinase, and lysozyme) 

between inputs and outputs are nonlinear and 

complex. As the number of parameters used in biofuel 

studies increases, using a decision tree structure in 

optimization studies is very important in terms of 

simulating parameter values under various 

environmental conditions. In this regard, our research 

is important. Bagging of regression trees helps to 

make machine-learning algorithms work better and 

more accurately. They are used to deal with trade-offs 

between bias and variance and to lower the variance 

of a prediction model. Therefore, RSM combined 

with ELA models were used for regression. The 

performance results of all the algorithms were given 

to the researchers for comparison. 

  

2.1. Cultivation of Microalgae and Lipid 

Extraction  

The experimental data related to C. minutissima 

CCALA 723 were obtained from Van YYU, 

Department of Environmental Engineering, Turkey. 

Microalgae were grown in BG-11 medium and 

municipal wastewater. Wastewater was prepared 

according to Khan’s method with a few modifications 

[37]. The medium includes glucose (540 mg/L), 

ammonium chloride (180 mg/L), sodium bicarbonate 

(140 mg/L), and potassium dihydrogen phosphate (55 

mg/L). The medium was mixed with distilled water in 

a ratio of 1:50. Wastewater (0–100%) was mixed with 

BG-11 medium proportionally. Chitinase (0–50 

U/mL) and lysozyme (0–20 U/mL) were combined 

for the disruption of microalgae. Microalgae were 

harvested by centrifugation at 3000g for 10 min, and 

lipid extraction was performed according to the Folch 

method [38]. The final ratio of methanol, chloroform, 

and water was 1:1:0.9. Lipid samples were weighed 

gravimetrically. 

2.2. Design of Experiments 

2.2.1. Quadratic Response Surfaces for Modeling  

The synergistic and individual effects of the 

parameters were examined with CCCD to calibrate 

the quadratic models and construct a five-level three-

factor model. This model generated 24 theoretical 

runs. The theoretical design contained 8 factorials, 6 

axial points, and 10 replicate results at the center 

points, maintaining knowledge of the interior of the 

experimental region. To determine the repeatability 

of the method, the center point was repeated ten 

times. Using a Box-Wilson model, the ideal levels of 

three process variables were determined: wastewater 

concentration (% v/v) (X1), chitinase (U/mL) (X2), 

and lysozyme (U/mL) (X3). Factors X1, X2, and X3 

were figured out on -2 (the axial points), -1, 0 (central 

point), +1 and +2 (the axial points) theoretical levels, 

as given in Table 1. Each test was implemented on the 

data to determine the average of the duplicates. The 

relationship between the independent factors and the 

dependent value Y was modeled as the second-degree 

polynomial in X1, X2, and X3. The second-order 

polynomial coefficients were solved by MATLAB to 

obtain high amounts of lipids. The results were also 

used to generate the response surface graphs. The 

quadratic equation was solved to determine the 

response Y value of the model given as follows: 

Ylipidpercentage=𝛃𝟎+𝛃𝟏X1+𝛃𝟐X2+𝛃𝟑X3+𝛃𝟏𝟐X1X2+𝛃𝟏𝟑X1X3+

𝛃𝟐𝟑X2X3+𝛃𝟏𝟏X1X1+𝛃𝟐𝟐X2X2+𝛃𝟑𝟑X3X3                     (1)                    

where Y was the predicted lipid percentage (%). 𝛃𝟎 

represents the intercept; 𝛃𝟏, 𝜷𝟐, 𝜷𝟑 the linear effect, 

𝛃𝟏𝟏, 𝜷𝟐𝟐, 𝜷𝟑𝟑 the quadratic coefficients, and  
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Table 1. The axial and central points for the model 

 

 

 

  *+∝ and - ∝ indicate the axial points  

𝛃𝟏𝟐𝛃𝟏𝟑𝜷𝟐𝟑 the interaction effect. The theoretical 

data obtained from CCCD were adjusted for the 

quadratic equation.

2.2.2. ANOVA Statistics  

          The analysis of variance (ANOVA) was 

calculated to determine the accuracy of the RSM 

model with the degree of freedom (DF) values for 

each term, sum of squares (SS) for the regression 

model, mean squared error (MSE) for each term, F-

statistic value, and P-value for the F-test. The 

coefficient of determination (R2) and the adjusted R2 

were used to denote the validity of the model. The R2 

value is advanced by approximately 1. When p has a 

very small value (p < 0.05), the involved term in the 

model achieves an important action on the response. 

The best model is constructed by getting a very good 

agreement between predicted and experimental 

results. MATLAB was run to perform the ANOVA 

calculation. 

 

2.3. Application of the ANN Model  

 

      ANN closely mimics the human brain and has 

several advantages over the traditional theoretical 

model. It can be implemented quickly into rigorous 

phenomenological models. The network design was 

constructed with MATLAB to model the 

optimization process of lipid extraction. A two-layer 

feed-forward network with sigmoid hidden neurons 

and linear output neurons was defined for the network 

architecture. The Levenberg-Marquardt algorithm 

was used to train the neural network. The 

experimental data were arbitrarily split into three 

groups: 70% for the training set, 15% for the 

validation set, and 15% for the test set. The model was 

based on this dataset. After training the network, 

MSE, and regression analysis were used to evaluate 

its performance. MSE measures the average squared 

difference between the output and targets. The lower 

the MSE value, the stronger the model is. In addition, 

regression (R) predicts the relationships between the 

response variable and predictors or features. An R is 

expected to be close to 1. In this study, the network 

was formed from an input layer, a hidden layer, and 

an output layer. An input layer had three neurons, 

such as wastewater concentration, chitinase, and 

lysozyme. The number of hidden neurons (20) was 

optimized to get the minimum value of MSE. Also, 

an output layer had one neuron. 

2.4. Interactive Response Surface Modeling and 

Prediction Plots 

The maximum values of y were searched by using 

rstool. Rstool displays a graphical user interface for 

exploring one-dimensional contours of 

multidimensional response surface models 

interactively using MATLAB. Syntax was 

determined as rstool (x, y, quadratic, alpha, xname, 

yname). X defines the input values, y defines the 

response values, and alpha is 0.01. The y values were 

theoretically found for the ANN and ELA models, 

and the y values for the RSM model were 

experimentally determined. For the fitted response 

surface, rstool plots two red curves, representing a 

95% confidence band. Input values were given in the 

text boxes on the horizontal axis and marked by 

vertical dashed blue lines in the plots. In this study, 

interactions and full quadratic models were used. The 

interaction model contains constant, linear, and 

interaction terms. The full quadratic model also 

contains squared terms. These terms take place in the 

quadratic response surface equation as given in Eq. 1. 

By interacting with the rstool interface, the RSM, 

ANN, and ELA demos are able to display the 

outcomes of simulated experiments involving data or 

pre-specify combinations of predictors. The 

maximum lipid percentages for each model were 

predicted. Root mean squared error (RMSE) and 

beta/constant (intercept) values were used to evaluate 

the model performance. 

2.5. Ensemble Learning Algorithms 

RF, RT, and BA were used for building regression 

models. Weka software was used to execute 

algorithms to obtain the maximum lipid content. The 

experiments were done in 24 sets, as mentioned above. 

Factors  Variables codes   Coded factor levels*     

                      -2 (-∝) -1 0 +1 +2 (+∝) 

Wastewater concentration (% v/v)       X1                         0  20 50 80  100 

Chitinase (U/mL )       X2                         0 5 10 25   50 

Lysozyme (U/mL)       X3                         0 2 5 10   20 
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To improve the accuracy of the model, runs 15 to 24 

were set at the same input conditions. After 

 

 
Figure 1. Graphical representation of the various models. 

performing the experiments, the outputs were 

collected. Then, the RSM model was obtained to fit 

the data. The experimental outputs were used to 

develop regression models. Predictor variables (X1, 

X2, X3) and response variables (Y) built the model. 

The correlation coefficient, mean absolute error, and 

RMSE were calculated to prove the accuracy of the 

regression model parameters. Figure 1 shows the 

different models in a simplified diagram. 

AI algorithms are used to perform various 

tasks such as classification, clustering, and 

regression. In this study, RF and RT were used to 

determine the most effective parameters for lipid 

production. The model developed with RF or RT can 

be used as a decision-support tool. RF was extended 

by Leo Breiman and Adele Cutler, who obtained a 

trademark for the tool [39], [40]. Both RF and RT 

achieved good results to estimate the lipid percentage 

(%). The if-then rules obtained from tree algorithms 

are provided in the results section.  

The learning models used by Random Forest 

consist of numerous decision trees. For each model, 

we create a sample dataset by randomly selecting 

rows and features from the dataset. This section is 

known as Bootstrap. 

 

BA has three stages. Firstly, it creates several 

samples from the main training set by assigning each 

combination the same probability. Then, it performs 

a base learner (regression tree in our case) model for 

the samples. Finally, it averages the values calculated 

for the test sets over the models. Weka builds this 

process using “meta-learning” under the name 

bagging. The dataset was in .csv format and contained 

24 experimental run results with regard to the three 

attributes (inputs) and response values (outputs; see 

Table 2). Our data matrix was composed of three 

parameters. The training set in .csv format was used 

to obtain developed regression models in this study. 

After the file in .csv format is converted to .arff, this 

model can be loaded into the Weka software and used 

to make predictions on new data. All models obtained 

in the study can be run by researchers to perform the 

prediction procedure on the lipid percentage (%).  

Because of the little available data (Table 2), 

cross-validation was performed to improve the 

model’s predictive performance. K-fold (a cross-

validation technique) was used in this part of the 

study, and 10-fold validation (k = 10) was chosen. 

This technique is done k times such that each subset 

is validated exactly once. For smaller datasets, k-fold 

technique is recommended. Because training and 

validation are performed multiple times, cross-
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validation can be a computationally costly procedure. 

It is, nonetheless, an important stage in the model 

building since it reduces the risk of overfitting or 

underfitting a model. The average errors across all k 

= 10 partitions are reported in this study. After 

loading the models to Weka software, the results of 

the new test sets for which the option “Re-evaluate 

model on current test set” is worked can be obtained 

using the algorithms above. The predictions for each 

new test are given in the “Classifier Output” pane in 

the program. 

3. Result and Discussion  

In this section, the interactions of wastewater 

concentration, chitinase, and lysozyme and their 

impacts, positive or negative, on the lipid 

percentage (%) are discussed.  

3.1. Comparison of The Quadratic RSM and ANN 

Model  

RSM is a practical technique for searching for the 

effects of several factors affecting the process of 

calling the optimal terms. This method provides a 

way to reduce the number of experiments, evolve 

statistical interpretation possibilities, and specify the 

interaction among various variables. The equation 

was improved to correlate Y with the functions of X1, 

X2, and X3. The empirical model developed by RSM 

is given by the equation below: 

Y = 20.879 + 0.0897 X1 – 0.0927 X2 + 1.446 X3 + 0.0018 

X1X2 + 0.0016 X1X3 – 0.0031 X2X3 – 0.0014 X1X1 –  

0.0011 X2X2 – 0.0604 X3X3                                           (2)    

RSM results showed that the MSE, R2, and adjusted 

R2 values are 0.2414, 0.9765, and 0.9614, 

respectively. The MSE of a model relative to a test set 

is the mean of the squared prediction errors in all 

instances in the test set. When there are no errors in a 

model, the MSE equals 0. The proportion of the 

variance in the dependent variable that can be defined 

by the independent variable is evaluated by R2. R2 

indicates how well the data fit the regression model 

(the goodness of fit). The greater the R2 value, the 

smaller the MSE. If the value of R2 reaches 1 (ideal-

world scenario), the model fully fits the data with an 

MSE of 0. Adjusted R2 is a modified form of R2 that 

adjusts for nonsignificant factors in a regression 

model. The modified R2 indicates whether the 

addition of more predictors improves a regression 

model. Adjusted R2 will never exceed R2. R2 states 

that every variable explains the variation in the 

dependent variable. Adjusted R2 signifies how much 

variation is explained by independent variables that 

affect the dependent variable. A higher adjusted R2 in 

a model with additional input variables implies that 

the additional input variables provide value to the 

model. Table 2 shows both the experimental design 

and the results.  

Lipid content ranges from 21.4% to 30.3% for 

experimental data (Table 2). Interdependent effects 

are denoted by a positive sign in front of the variables, 

whereas opposite effects are denoted as a negative 

sign in equation Y, which included linear, interaction, 

and squared terms with the three factors. P-value 

(probability value) is expected to be less than 0.05, 

and F-value is expected to be high (~1) in the models. 

MATLAB was used to construct the models. The 

maximum lipid percentage of 30.4% was obtained by 

using RSM, in which wastewater concentration, 

chitinase, and lysozyme were 20% (v/v), 5 U/mL, and 

10 U/mL, respectively. The highest lipid percentage 

determined by the experiments was 30.3%. ANOVA 

was used to calculate degrees of freedom (DF), sum 

of square (SS), MSE, F-statistic value, and P-value 

for the model. It measures the model effectiveness 

and the fitness of the regression model. ANOVA 

results for the RSM are presented in Table 3. As 

shown in Table 3, the P-value and F-value were found 

to be 0.00001 and 64.7132, respectively. The results 

show that the quadratic model is highly important to 

predict lipid content based on the experimental data.   

The regression equations (Eq. 2) that describe the 

impacts of independent process factors on lipid 

production are graphically represented in the 3D and 

2D plots. The elliptical shape in the contours defines 

important impacts among parameters. The spherical 

form of the contour plot indicates that the interaction 

effect of parameters is insignificant. The maximum 

value for the lipid content is indicated by the center 

ellipse in the contour plot. This value is found within 

the intervals of parameters that have been specified. 

The 3D and 2D plots that are obtained depend on two 

parameters, while the third parameter stays the same 

at the origin. In Figure 2a, a surface plot (3D) displays 

both mutual and interaction effects between X1 and 

X2. The increase in X2 from low to high levels 

decreased the lipid content. The maximum lipid 

content occurred when X1 (50 %) was at the middle 

level and X2 was at the minimum level. Lipid content 

was thus significantly affected by the interaction 

between X1 and X2. P-value (0.0048333) is an 

indicator of this. The form of the contours in Figure 

2b clearly reveals significant interactions between 

factors. As shown in Figure 2c, the 3D surface plot 

displays the mutual and interaction effects of X1 and 

X3 on the lipid content. Increasing X1 and X3 caused 

an increase in the lipid content to some extent, but 

then it had an adverse effect on the  
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Table 2. RSM and ANN model-based design for optimization of lipid content 

 

Table 3. ANOVA Results for the RSM 

Source Lipid percentage (%)     

 DF a SSb MSc F-value P-value Significance  

Model 9.0000 140.5901 15.6211 64.7132 0.0000 Significant  

Residual 14.0000 3.3795 0.2414    

Total  23.0000 143.9696     
aDegrees of freedom for each term 
bSum of square for the regression model 
cMean squared error for each term 

 

the lipid content. Figure 2d shows that there is no 

significant interaction effect between X1 and X3 to 

contribute to lipid content. This can be also observed 

from the P-value (0.28883).  

Figure 2a and Figure 3a show that the 

interaction of X1 and X2 was more significant than 

that of X2 and X3 on lipid content. Lipid content also 

shows a nonlinear effect with the increase of X3 from 

0 to 20, and with the increase of X2 from 0 to 50 under 

constant X1. The irregular contour plot in Figure 3b 

shows that both X2 and X3 had an interaction effect, 

but it was not enough to change the lipid content (P-

value, 0.4727). According to the ANOVA results, the 

overall model is important (P-value < 0.00001). 

ANN, based on feed-forward neural networks with 

TANSIG transfer function, was used to optimize the 

process variables on lipid content. The model 

predicted lipid percentage (%) at the times (t = 0, t + 

n), presented in Table 2. ANN was iterated with 

varying numbers of hidden neurons with transfer 

functions in the layer to optimize the training and 

validation data set to achieve a coefficient of 

determination. Figure 4 shows all input and output 

variables that compare the R2 value of the training, 

the validation and test data, and all prediction 

networks, with the values 0.99548, 0.96336, 0.98257, 

and 0.92838, respectively.  

Exp. 

order 

Process parameters    Lipid percentage  (%)    

 Wastewater concentration 

(% v/v) 

Chitinase  

(U/mL ) 

Lysozyme  

(U/mL) 

Experimental RSM 

predicted 

ANN 

predicted 

1 20 5 2 24.4 24.5 24.4 

2 20 5 10 30.3 30.4 30.3 

3 20 25 2 22.0 22.6 22.0 

4 20 25 10 28.1 28.0 28.1 

5 80 5 2 21.4 22.1 22.8 

6 80 5 10 29.0 28.7 29.0 

7 80 25 2 22.2 22.4 22.2 

8 80 25 10 28.2 28.6 28.2 

9 0 10 5 25.6 25.4 24.5 

10 100 10 5 23.2 22.8 23.2 

11 50 0 5 27.4 27.9 27.4 

12 50 50 5 24.6 24.4 20.2 

13 50 10 0 22.5 21.7 22.5 

14 50 10 20 27.4 27.4 27.4 

15 50 10 5 28.1 27.7 27.7 

16 50 10 5 27.3 27.7 27.7 

17 50 10 5 27.9 27.7 27.7 

18 50 10 5 27.3 27.7 27.7 

19 50 10 5 27.8 27.7 27.7 

20 50 10 5 28.4 27.7 27.7 

21 50 10 5 27.5 27.7 27.7 

22 50 10 5 27.8 27.7 27.7 

23 50 10 5 27.6 27.7 27.7 

24 50 10 5 27.5 27.7 27.7 
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Figure 2. 3D and related 2D plots for the various effects of (a-b) wastewater concentration (X1) and chitinase (X2); (c-d) 

wastewater concentration (X1) and lysozyme (X3) on the lipid percentage (%). 

 

Figure 3. (a) 3D and (b) related 2D contour plots for the various effects of chitinase (X2) and lysozyme (X3) on the lipid 

percentage (%). 
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Figure 4. Fitness of the different datasets and all prediction networks in the ANN model. 

ANN model reached an R2 value close to 1 for the 

data sets in Figure 4 and had high-accuracy results in 

modeling to the output parameters estimating lipid 

content. The MSEs of the ANN model for the training 

and test data were 0.0484 and 0.5221, respectively. 

The model estimated the optimum conditions for 

maximum lipid content as X1 = 20% (v/v), X2 = 5 

U/mL, and X3 = 10 U/mL, with a maximum lipid 

percentage of 30.3%. These results indicate that the 

ANN outperformed RSM in predicting lipid content.  

In this section, literature-based studies on 

experimental designs and theoretical models are 

presented. Mäkelä [22] presented a review of the 

energy field, which provides many aspects of 

experimental design and RSM with applications. 

Mäkelä (2017) reported many solutions for 

the modeling studies. Tourang et al. [20] studied the 

optimization of macronutrient concentrations for 

Spirulina microalgae, and CCD was used to optimize 

the culture medium. Muthuraj et al. [41] studied lipid-

rich biomass with a high density of Chlorella sp. FC2 

IITG under photoautotrophic conditions using a 

process engineering strategy. They used ANN or 

RSM with a genetic algorithm (GA) for medium 

optimization, and the results showed that ANN-GA 

achieved an increase in biomass titer of 157% (0.95 g 

L−1) in a shake flask. Thanaa et al. [42] researched 13 

filamentous fungi for their lipid production. CCD was 

performed to obtain the optimum concentrations to 

increase lipid productivity, and they concluded P. 

brevicompactum NRC 829 may be used for 

commercial development. Dammak et al. [43] 

optimized the V2-strain to maximize the cell growth 

and lipid content of the oleaginous microalgae by 

using RSM. The results indicated that strain V2 was 

convenient for food and nutraceutical applications. 

By using RSM, Onay (2020) studied increasing the 

lipid content of N. gaditana using several assisted 

lipid extraction methods. The greatest lipid content 

was achieved in 10 KCI% osmotic shock, 30 kHz 

ultrasound, and 10 U/mL lysozyme with a lipid 

percentage of 37% [44]. Khaouane et al. [45] used a 

hybrid method with CDD, ANN, and the particle 

swarm optimization algorithm (PSO) to optimize the 

culture conditions of pleuromutilin production. The 

hybrid technique determined the optimum levels of 

culture conditions at 242 rpm agitation speed, 
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temperature of 26.88 °C, and pH of 6.06 with a 

pleuromutilin yield of 10.074 ± 500 μg/g. Sohedein 

et al. (2020) used RSM to construct an optimization 

model to extract the maximum biomass (6.25 g L-1) 

and lipid content (14.88% DW) from 

Aurantiochytrium sp. They concluded that biomass 

concentration in the bioreactor increased 2.12-fold 

compared to the shake flask culture. The optimized 

model could provide large-scale biodiesel production 

[46]. Chakravarty et al. (2019) performed three sets 

of optimization with a central composite rotary 

design. Using the effects of nitrate, phosphate, and 

NaCl, they considered the fourth factor, incubation 

period, to achieve optimum lipid content in a 

minimum of days. Selenastrum sp. GA66 was 

subjected to stress factors. Researchers observed that 

the optimized process parameters required less 

nitrate. The improved model can be used to obtain 

biodiesel economically [47]. Zhang et al. [48] 

improved lipid extraction yield from Scenedesmus sp. 

This study involved cell-wall disruption. The RSM 

method was used to optimize enzyme-assisted lipid 

extraction methods. The analysis showed that the 

optimal conditions produced twice as much lipid 

content as not using enzymes. Ayoola et al. [26] 

performed RSM and ANN to determine the effects of 

KOH and NaOH catalysts on waste groundnut oil 

(WGO) biodiesel production. They reported that the 

maximum yield of biodiesel was obtained from KOH 

catalyst. The results show that ANN and RSM can be 

used to solve complex problems in biodiesel 

production. To maximize the lipid content of various 

microalgae, RSM or RSM combined with ANN 

methods are the most studied in literature. RSM 

combined with ELA was also performed in our study 

for lipid-rich biomass. 

3.2. Interactive Response Surface Method  

Interactive response surfaces with full quadratic and 

interaction models were improved to calculate the 

maximum lipid content. Fitted coefficients were 

determined for RSM, ANN, and ELA-based designs. 

The RMSE values for the full quadratic models were 

0.4913, 0.2500, and 0.6104 for RSM, ANN, and tRF, 

respectively. When modifying the value of a 

predictor, all plots are automatically updated to 

reflect the new data point within the predictor space. 

Therefore, when the value of a predictor changes, we 

can simultaneously observe it graphically. The 

models predicted the maximum lipid percentage at 

50% v/v of X1, 12.9167 U/mL of X2, and 5.75 U/mL 

of X3. The fitted coefficients are displayed in Table 4.   

Beta terms were also given to all developed 

models. From the beta terms, the effects of 

contributions from linear, interaction, and squared 

terms on the lipid content (Y), as functions of process 

variables, were found separately. Rstool models are 

displayed in Figure 5 for RSM. 

The RMSE value of 0.4021 was observed 

with a lipid percentage of 28.1678 ± 0.85206 % for 

tRT. In terms of making reliable predictions, a 

smaller RMSE is better. The experimental results 

were quite consistent with the predicted results. 

According to the tRT model, the contribution of linear 

and interaction terms to equation Y is mostly positive, 

whereas the contribution of squared terms to equation 

Y is negative. The lowest RMSE of 0.2500 was 

obtained from the ANN model. The tRT model also 

achieved a lower RMSE of 0.4021 than the other 

decision tree ensemble models. 

 

3.3. Ensemble Learning Algorithms for 

Regression 

 

In the Weka software, optimization of factor levels 

that satisfy the conditions was performed on the 

process parameters and responses. Table 5 shows the 

decision tree ensemble models used for the regression 

to predict the percentage of lipid content. 

 According to the tRT model, the optimal 

values of X1, X2, and X3 were determined at 20 % 

(v/v), 5 U/mL, and 10 U/mL, respectively. The model 

estimated a maximum lipid percentage of 30.3%, 

which is the same as the experimental result. In 

addition, the highest lipid percentages obtained for 

tRF and meta.Bagging.Classifier:RandomForest 

were 29.1% and 29.0%, respectively. RMSE is used 

to determine the data that is closest to the line of best 

fit. In this study, RMSE was used in regression 

analysis to validate experimental data. The predictive 

accuracy for ensemble algorithms is given in Table 6. 
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Table 4. Fitted coefficients of developed RSM, ANN, and tRF models 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 5. Rstool modeling for RSM 

Fitted coefficients RSM ANN tRF 

 Full 

quadratic 

Interactions Full 

quadratic 

Interactions Full 

quadratic 

Interactions 

RMSE 0.4913 2.1402 0.2500 2.0694 0.6104 1.8028 

Lipid percentage 

(%) 

28.1678 

   +/- 

1.0411 

26.4028 

   +/- 

2.2909 

28.2956 

   +/- 

0.5298 

26.2335 

   +/- 

2.2152 

27.8616 

   +/- 

1.2935 

26.5171 

   +/- 

1.9298 

beta       

Constant 20.8791 28.6302 19.7759 28.5802 21.4511 27.4311 

X1  0.0897 -0.0523 0.1201 -0.0284 0.0797 -0.0292 

X2  -0.0927 -0.2249 -0.0138 -0.2987 -0.0710 -0.1450 

X3  1.4460 0.1138 1.4012  0.1118 1.2457  0.1488 

X1X2  0.0018 0.0018 0.0013  0.0013 0.0009  0.0009 

X1X3  0.0016 0.0015 7.6747  7.6747 0.0004  0.0004 

X2X3 -0.0031 0.0134 0.0012  0.0196 -0.0014  0.0116 

X1X1  -0.0014  -0.0015  -0.0011  

X2X2  -0.0011  -0.0041  -0.0002  

X3X3 -0.0604  -0.0573  -0.0499  
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Table 5. ELA for regression to predict the percentage of lipid content 

 

 

 

 

 

 

 

 

 

 

 

 

 

aProcess parameters bLipid percentage (%) cWastewater concentration  (% v/v) dChitinase (U/mL ) eLysozyme (U/mL) fExperimental 

 

Table 6. Comparison of the predictive accuracy for ELA models  

 

 

 

 

 

 

 

 

 

The statistical analysis showed that the tRT model 

produced the lowest RMSE value. Additionally, the 

meta.Bagging.Classifier:RandomTree model has a 

very low RMSE value. Correlation analysis is 

performed to evaluate the linear association between 

two variables, and it takes a value between -1 and +1. 

In Table 6, tRT achieved the highest correlation 

coefficient of 0.9961 and the lowest MAE, another 

loss function performed for regression models. MAE 

was calculated to prove the sum of the absolute 

differences between our target and predicted 

parameters. Therefore, the tRT model was more 

successful than others. All models can be used to 

evaluate estimation procedures for the lipid 

percentage (%). Figure 6 shows the performance of 

Exp. 

order 

Process Pa   Lipid P (%)b     

     trees.  meta.Bagging  

 WC  

(% v/v) c 

C 

(U/mL)d  

L 

(U/mL)e  

Expf RandomForest 

predicted 

RandomTree

predicted 

Classifier: 

RandomForest 

predicted 

Classifier: 

RandomTree 

predicted  

1 20 5 2 24.4 24.0 24.4 24.4 23.9 

2 20 5 10 30.3 29.1 30.3 29.0 30.0 

3 20 25 2 22.0 22.7 22.0 23.1 22.6 

4 20 25 10 28.1 28.0 28.1 27.4 28.3 

5 80 5 2 21.4 22.5 21.4 23.5 22.6 

6 80 5 10 29.0 28.0 29.0 28.0 28.8 

7 80 25 2 22.2 22.6 22.2 22.8 22.3 

8 80 25 10 28.2 27.7 28.2 27.0 28.4 

9 0 10 5 25.6 26.5 25.6 26.8 26.6 

10 100 10 5 23.2 24.6 23.2 24.8 23.0 

11 50 0 5 27.4 27.6 27.4 27.7 27.9 

12 50 50 5 24.6 25.9 24.6 26.0 26.0 

13 50 10 0 22.5 22.7 22.5 23.9 23.2 

14 50 10 20 27.4 27.8 27.4 28.0 28.0 

15 50 10 5 28.1 27.7 27.7 27.7 27.7 

16 50 10 5 27.3 27.7 27.7 27.7 27.7 

17 50 10 5 27.9 27.7 27.7 27.7 27.7 

18 50 10 5 27.3 27.7 27.7 27.7 27.7 

19 50 10 5 27.8 27.7 27.7 27.7 27.7 

20 50 10 5 28.4 27.7 27.7 27.7 27.7 

21 50 10 5 27.5 27.7 27.7 27.7 27.7 

22 50 10 5 27.8 27.7 27.7 27.7 27.7 

23 50 10 5 27.6 27.7 27.7 27.7 27.7 

24 50 10 5 27.5 27.7 27.7 27.7 27.7 

Lipid percentage (%) predicted  

(10-fold validation (k = 10), Total number of instances 24)  

Ensemble 

algorithms 

Correlation 

coefficient 

Mean absolute 

error 

Root mean 

squared error 

Relative absolute 

error  (%) 

Root relative 

squared error (%) 

 

trees. 

RandomForest 

 

 

0.9731 

 

0.5290 

 

0.6723 

 

25.1221 

 

27.4493 

 

trees. 

RandomTree 

 

0.9961 0.1167 0.2156 5.5409 8.8043 

meta.Bagging 

Classifier: 

RandomForest 

 

0.9641 0.7202 0.9132 34.2064 37.2844 

meta.Bagging 

Classifier: 

RandomTree 

0.9795 0.4393 0.5620 20.8628 22.9469 
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the RSM, ANN, and tRT models against the 

experimental data. 

                                                                         

Different methods and algorithms have been 

used in the literature to perform optimization. Zhang 

et al. [49] developed models for microbial lipid 

production. The genetic algorithm with SVM was 

performed to obtain the optimum parameters, 

including biomass, lipid content, and chemical 

oxygen demand removal rate. SVM was the best-

fitting model to optimize fermentation conditions. 

The optimum biomass and lipid content were 11.87 

g/L and 2.18 g/L, respectively. Nassef et al. [50] 

focused on enhancing lipid extraction from S. 

quadricauda by using fuzzy modeling and particle 

swarm optimization. The effect of the process 

parameters, including power (W), heating time (min), 

and extraction time (h), on the lipid content was 

investigated. They reported that the fuzzy model 

outperformed experimental studies in terms of lipid 

extraction by 22%. 

 

 

 

 

 
 

Figure 6. Performance of RSM, ANN, and tRT models against experimental data. 

 

3.4. Explainable Machine Learning Model: tRT  

Large-scale biofuel production from microalgae has 

not yet been realized. Major research gaps, such as 

the reduction of energy input, maximization of yield, 

and those related to the effective use of materials and 

energy, remain unresolved. In microalgae cultivation, 

the nutrient supply has a considerable effect on cost, 

sustainability, and yield [51]. The aim is to research 

and create simulation tools in order to address these 

problems. Figure 7 shows the tRT model and the size 

of the tree. 

The ruleset given below was obtained from 

the tRT model for the dataset (Table 2). It was 

simulated under various parameters affecting lipid 

content. 

 if wastewater concentration < 65  

 and lysozyme ≥ 3.5  

 and chitinase < 37.5 

 and wastewater concentration ≥ 10  

 and wastewater concentration < 35 

 and chitinase < 15 

 then lipid percentage = 30.3  
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The explainable system [52] can be turned into an 

application program for different laboratories to use. 

The user can enter input values into the program and 

calculate the maximum biodiesel production for each 

AI model. The biggest advantage of this model is that 

when human-computer interaction is considered, the 

structure of the system can be observed in the 

decision tree. In this way, researchers understand how 

the decision stage is reached. The decision support 

tool can be easily used for the following purposes:  

 Model validation in labs   

 Validation of the lipid-production 

process in small-scale facilities 

 There is no need for repeated 

experiments on biodiesel production. 

In addition, there are many large and small-scale algal 

biofuel companies producing algae biomass and 

biofuel throughout the world. Some of the companies 

throughout the world are Albemarle Corporation 

(USA), Algenol Biofuels (USA), Aquaflow 

Bionomics (New Zealand), and Malaysian Rubber 

(Australia). In the near future, various models and 

tools can be collected and then presented to these 

companies as a service (i.e., the AI-Library) to 

upscale the production volumes.  

 

 

 

 
 

Figure 7. The trees.RandomTree model.

4. Conclusion and Suggestions 

 

For the maximum lipid content from C. minutissima, 

the RSM model predicted process parameters of 20% 

(v/v) wastewater concentration, 5 U/mL chitinase, 

and 10 U/mL lysozyme. Under these conditions, the 

lipid percentage was 30.4% with a very low MSE 

(0.2414) and a very high R2 value (0.9765). 

According to the ANOVA results, P-values 

(0.00021134 and 1.5141e-08) indicated that 

wastewater concentration and lysozyme had a 

positive effect on lipid production at a 95% 

confidence level, but chitinase had a negative effect. 

The ANN model, with a minimal experimental setup, 

can reduce chemical usage and provide low-cost lipid 

production. Under the conditions of 20% (v/v) 

wastewater concentration, 5 U/mL chitinase, and 10 

U/mL lysozyme, the lipid concentration was 30.3%. 

The R2 values of the training, validation and test data 

were 0.99548, 0.96336, and 0.98257, respectively. 

The effects of parameters were also examined by 

decision tree ensemble models.  

The tRT model had the lowest RMSE of 0.2156 and 

MAE of 0.1167, with the highest correlation 
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coefficient of 0.9961. Also, the lipid percentage was 

30.3% for the combined RSM-tRT model. The 

optimal values of wastewater concentration, 

chitinase, and lysozyme were 20% (v/v), 5 U/mL and 

10 U/mL, respectively. Compared to the RSM and 

ANN models, the tRT model was better at fitting 

experimental data and generalizing from it. It was 

also a powerful tool to help make decisions and 

optimize parameters. The if-then rules extracted from 

tRT are also given to researchers to test the new 

parameters in the model. The fuel industry can benefit 

from the developed models. This work further 

demonstrates that the combined RSM-tRT model is 

very close to experimental results and can also be 

used to obtain biodiesel in a more economical way. 
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