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Introduction 
The symptoms of deterioration or damage manifest 
themselves with the changes in the dynamic state of the 
structural system and are reflected as discrepancies in its 
anticipated vibration response. This is the fundamental 
principle upon which any vibration-based method is based. 
Vibration-based damage detection is a field of study within 
the general framework of structural health monitoring 
(SHM) that primarily focuses on extracting damage-
sensitive features from the vibration measurements and 
developing approaches that can be employed for damage 
detection and localization purposes [1-4].  

Within this context, time series analysis is involved with 
analyzing a sequence of response signals collected over a 
time period to extract the pattern in the data and develop an 
appropriate model to describe it accurately. With their 
potential to process high volumes of sensor data in an 
efficient and easily automated manner and to produce 
robust and reliable results without the requirement of 
physics based models, time series analysis methods lend 
themselves quite suitable for SHM applications [5-10] 
especially when they are cast in conjunction with a 
statistical pattern recognition framework such as novelty or 
outlier detection. 

 

Autoregressive models (AR) are among the parametric 
methods used for time-series representations of stationary 
signals that are regularly sampled and acquired from a 
dynamic system assuming that the structure is subjected to 
random excitation. Methods based on the time series 
representations have received increased attention for SHM 
purposes and the corresponding model coefficients as well 
as the residual signals have been explored as damage 
detection measures [8-14.] 

Selection of the model order and the sensitivity of the model 
to measurement noise are the among the critical issues that 
must be dealt with for robust and reliable application of the 
model as well as the success of the damage detection 
methodology. Akaike information criterion (AIC), 
Bayesian information criterion (BIC) and final prediction 
error (FPE) are the most widely used conventional 
approaches to select model order. However, these methods 
usually cannot guarantee the correct model order [15] and 
furthermore, for a transient signal, the applicability of these 
criteria is questionable.  

In this study, singular value decomposition (SVD) of the 
response matrix obtained with a unit delay time is utilized 
for finding the optimal order of the model. With the 
effective singular values and the associated vectors, the 
SVD-based low-rank approximation is obtained to 
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ABSTRACT 

  

Structural health monitoring (SHM) methodologies employing data-driven techniques are becoming 
increasingly popular for detection of structural damage at the earliest stage possible. With measured 
vibration signals from the structure, time series modeling methods provide quantitative means for 
extracting such features that can be utilized for damage diagnosis. In this study, one-step prediction error 
of an autoregressive (AR) model over a data set is used as damage indicator. In particular, the difference 
between the prediction of the AR model that is fit to the measured acceleration signal obtained from the 
intact structure and actual measured signals collected for different damage states of the structure are 
interrogated for diagnosis purposes. More specifically, the standard deviation of the residual error is 
employed to locate the damaged region. Singular-value decomposition (SVD) is employed to find the 
optimal order for an AR model created using the impulse responses of the system. Numerical simulations 
are carried out using the impulse responses acquired from a four-story frame structure contaminated with 
additive noise including single and multiple damaged elements. The results of the simulations demonstrate 
that the method can be effectively employed to detect and locate damage. The performance of the proposed 
procedure are further demonstrated using the impact data acquired from a reinforced concrete frame for 
real applications. 
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reconstruct the signal from the reduced number of 
components. The SVD allows for the correct estimation of 
the model order as well as to help reduce the measurement 
noise. AR model is then fit to this ‘filtered’ version of the 
data acquired at the baseline state of the structure. The 
proposed method uses this AR model to predict the 
response measurements acquired at different damaged 
states of the system. The difference between the predicted 
response and the measured responses are utilized for 
detecting and locating damage.  

The remainder of the paper is organized as follows: Next 
section reviews the basic principles of the AR time series 
modeling and the singular value decomposition. The 
proposed approach implemented for detection and 
localization based on the damage index is discussed next. 
The results of the investigation carried out with numerically 
simulated data on a four-story frame structure and the 
experimental implementation on a reinforced concrete test 
frame is presented in the following section. The final 
discussion on the proposed methodology and the 
concluding remarks are summarized in the last section of 
the manuscript.  

Theoretical Background 
Autoregressive (AR) Models  

An AR model is in the form of stochastic difference 
equation regresses the output variable based on its own 
previous values and are used in the analysis of stationary 
time series processes. A univariate AR model of order p is 
represented as AR(p) and can be written as 

𝑥𝑥𝑡𝑡 = 𝜑𝜑1𝑥𝑥𝑡𝑡−1 + 𝜑𝜑2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜑𝜑𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝑒𝑒𝑡𝑡 (1) 

where  𝑥𝑥𝑡𝑡 ,⋯ , 𝑥𝑥𝑡𝑡−𝑝𝑝 are the current and previous values of 
the time series, 𝜑𝜑1,⋯ ,𝜑𝜑𝑝𝑝 are the unknown AR coefficients 
and et is the error term with zero mean and constant 
variance. The values of 𝜑𝜑𝑖𝑖 are estimated by fitting the AR 
model to the time history data using Burg’s method. The 
method estimates the coefficients recursively up to the 
selected order p by minimizing forward and backward 
predictions as p-linear least squares problem. It is 
computationally simple and the estimated coefficients are 
guaranteed to be stable [16]. 

Singular Value Decomposition (SVD) and Model Order 
Determination 

The decomposition schemes with the fundamental idea of 
decomposing a complicated signal in to simpler yet similar 
components provides insight into the data and the 
underlying system by revealing which components are the 
most important for describing the original data. This allows 
for major data compression as well as facilitating removal 
of measurement noise and extraction of features.  

Singular value decomposition has been used effectively in 
a variety of applications, including, signal denoising, data 
compression and fault diagnosis. The first step to 
decompose a one-dimensional signal is transforming it into 
a trajectory matrix form through the so called ‘embedding 
process’ [17, 18]. One of the most widely used form of 
matrix transformation is the Hankel matrix due to its zero 
phase shift characteristic [19].  

For a discrete signal 𝑥𝑥 = [𝑥𝑥(1), 𝑥𝑥(2),⋯ , 𝑥𝑥(𝑛𝑛)] a Hankel 
matrix can be formed as 

𝐴𝐴 = �

𝑥𝑥(1) 𝑥𝑥(2) … 𝑥𝑥(𝑚𝑚)
𝑥𝑥(2) 𝑥𝑥(3) … 𝑥𝑥(𝑚𝑚 + 1)
⋮ ⋮ ⋮ ⋮

𝑥𝑥(𝑘𝑘) 𝑥𝑥(𝑘𝑘 + 1) … 𝑥𝑥(𝑛𝑛)

� 

(2) 

The SVD of matrix 𝐴𝐴 ∈ 𝑅𝑅𝑘𝑘×𝑚𝑚 leads to the following 
factorization: 

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 (3) 

where the two orthogonal matrices𝑈𝑈 = [𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑚𝑚]  ∈
𝑅𝑅𝑘𝑘×𝑘𝑘 and 
𝑉𝑉 = [𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑚𝑚] ∈ 𝑅𝑅𝑚𝑚×𝑚𝑚 are the left and the right 
singular vectors, and each of these column vectors are the 
eigenvectors of the covariance matrix, 𝐴𝐴𝐴𝐴𝑇𝑇 and 𝐴𝐴𝑇𝑇𝐴𝐴, 
respectively. Σ is a diagonal matrix of size 𝑘𝑘 × 𝑚𝑚 in which 
the entries of the leading diagonal are the signular values of 
A. The diagonal entries, �𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑝𝑝� where p=min(k, m), 
are the non-negative square roots of the eigenvalues of the 
covariance matrix, 𝐴𝐴𝑇𝑇𝐴𝐴.  

It is possible to rewrite eqn.3 using summation as :  

𝐴𝐴 = �𝑠𝑠𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇  
(4) 

As expected, the number of non-zero singular values 
coincides with the rank of [𝐴𝐴]. Since zero singular values 
can be interpreted as ‘small’ values, smaller than a certain 
tolerance, due to the noise effects in the measurements, the 
number of significant singular values can be used to 
determine the model order. 

One can obtain low-rank approximation of matrix A, �̃�𝐴, by 
truncating the contributions of the small singular values and 
the associated singular vectors in order to remove the noise 
and unrelated components from the measured signal. With 
the truncated matrix �̃�𝐴 in Hankel form, the associated time-
series signal 𝑋𝑋� can be reconstructed using reverse Hankel 
construction approach which essentially takes the first row 
of the matrix and pads it with the values in the last column 
starting from the second row. More specifically if: 

�̃�𝐴 = �

𝑥𝑥�(1) 𝑥𝑥�(2) … 𝑥𝑥�(𝑚𝑚)
𝑥𝑥�(2) 𝑥𝑥�(3) ⋯ 𝑥𝑥�(𝑚𝑚 + 1)
⋮ ⋮ ⋮ ⋮

𝑥𝑥�(𝑘𝑘) 𝑥𝑥�(𝑘𝑘 + 1) … 𝑥𝑥�(𝑛𝑛)

� 

(5) 

then the reconstructed time series is: 

𝑋𝑋�𝑡𝑡 = [𝑥𝑥�(1)  𝑥𝑥�(2) … 𝑥𝑥�(𝑚𝑚) 𝑥𝑥�(𝑚𝑚 + 1) … 𝑥𝑥�(𝑛𝑛)] (6) 

An important issue that requires clarification regarding the 
Hankel matrix representation is number of rows and 
columns to be included in the matrix. Based on [20], the 
optimal number of matrix columns should be selected based 
on the maximum energy of the singular values since the 
energy of the singular values are inherently related to the 
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information richness of the trajectory matrix. It is proven in 
[36] that the Hankel matrix is square or close to square, the 
corresponding energy in the singular values is maximized. 
This means that if the signal length n is even, selecting the 
number of columns, 𝑚𝑚 = 𝑛𝑛/2 and the number of rows, 
𝑘𝑘 = 𝑛𝑛/2 + 1 will maximize the energy of the singular 
values. If n is odd, the energy can be maximized by 
selecting  𝑚𝑚 = (𝑛𝑛 + 1)/2 and 𝑘𝑘 = 𝑚𝑚. 

 

Damage Localization Methodology 

 

 
Figure 1. Extraction of damage sensitive features 

 

Fig 1. illustrates the steps of the methodology employed to 
extract the damage-sensitive features. The initial processing 
of the sensor data from the structural system at any state is 
identical. The data is transformed into the Hankel form and 
using SVD the optimal order for the AR model is 
determined. Once the system order is decided based on the 

response signal obtained at the baseline state, it is assumed 
as set for the system at any state. Using the respective 
singular values and vectors corresponding to the system 
order, the signal is reconstructed following equations (3)-
(5). The residual error defined as the difference between the 
predicted signal using the AR-model established for the 
baseline state and the reconstructed signal of the unknown 
state. The ratio of the standard deviation of the residual 
errors, the unknown state to that of the baseline state, 
𝜎𝜎(𝜀𝜀𝑦𝑦)/𝜎𝜎(𝜀𝜀𝑥𝑥), is exploited as the damage-sensitive feature. 
Clearly, in order to arrive at a decision regarding the 
existence of damage, some threshold value for this ratio 
should be specified. This can be achieved by acquiring 
sensor data under different operating conditions and 
carrying out a statistical analysis.  

Among various statistical tools for detecting anomalies in 
the data, an outlier detection algorithm which essentially 
classifies a value that is more than three scaled median 
absolute deviations (MAD) from the median as an anomaly 
is implemented in this study. Proven to be a resilient 
statistical tool for outliers, MAD, for a vector x of length N, 
is defined as: 

𝑀𝑀𝐴𝐴𝑀𝑀 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(|𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑥𝑥)|)      𝑚𝑚 = 1:𝑁𝑁 (7) 

It should be noted that damage detection step can be 
implemented at the sensor level; that is each sensor 
information can be processed individually. However, 
localization of damage requires fusing the information 
collected from all sensor positions. In this regard, the same 
index can be used to locate damage with the assumption that 
the residual errors are maximized at the sensors closest to 
the damaged region.  

 

Numerical Simulations 
This section presents the numerical simulations conducted 
on a frame structure to investigate the performance of the 
proposed algorithm and the damage index. The 4-story 
moment resisting frame with 24 degrees-of-freedom (DOF) 
is depicted in Figure 2. The parameters of the model are 
arbitrarily chosen so that the fundamental period of 
corresponding to the first translational mode is 1 sec. Mass 
of the system  is assumed to be lumped along the 
translational DOF and 2% proportional damping is assigned 
for all the modes. The damage scenarios including single 
and multiple damaged elements in the form of plastic hinge 
formations are also depicted in the same figure. The 
analytically computed natural frequencies corresponding to 
the translational modes for all the simulation cases are listed 
in Table 1. It is assumed that a total of four acceleration 
sensors, one in each floor measuring in the lateral direction, 
are deployed through the structure to measure the output 
signals. At each different health state of the structure, a total 
of 50 simulations are performed and impact data is 
generated. To simulate the variations during normal 
operating conditions, sensor noise is contemplated using a 
random number generator with a level ranging 5-10% of the 
root-mean-square (RMS) of the response measured at the 



DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 753-759 
 

756 
 

 
Figure 2. (a) Healthy State, (b) Damage Case 1, (c) Damage 
Case 2, (d) Damage Case 3 

 

associated sensor such that signal-to-noise ratio is defined 
as 

𝑆𝑆𝑁𝑁𝑅𝑅 = 𝜎𝜎𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛2 𝜎𝜎𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠2�  (8) 

where 𝜎𝜎𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛2  and  𝜎𝜎𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠2  are the variance of the noise and 
response signals. 

Following the data acquisition stage, extraction  of damage 
sensitive features has to take place. To achieve that, the first 
task is to estimate the order and the parameters of the AR-
model using the data acquired at the baseline state. 
Following the proposed procedure shown in the flowchart 
of Fig.1, each of the simulated signals is transformed into 
Hankel matrix form and SVD is carried out. Examination of 
the singular values reveals that the suitable model order for 
the system can be selected as eight. A sample singular value 
plot is provided in Fig. 3. 

 

Table 1. Natural frequencies corresponding to the 
translational modes 

Mode Healthy DC 1 DC 2 DC3 
1 1.00 0.88 0.93 0.86 
2 3.42 3.42 3.14 3.12 
3 6.44 6.08 6.43 5.74 
4 8.96 8.96 8.90 8.86 

 

Figure 3. SV plot for a sample signal 

 

With the model order determined, the signal is 
reconstructed using these eight singular values and vectors. 
AR model is then fit to this reconstructed signal and eight 
AR coefficients are extracted. Using these parameters, the 
predicted signal is computed and the difference between the 
predicted and the original signal is stored as the residual 
error. The standard deviation of this residual error 
constitutes the first part of the damage-sensitive feature. 
The same process is repeated for all the sensor data and all 
the simulations and the statistics of the residual error and 
the fit model are recorded for later use in the damage 
detection and localization stages.  

Next stage starts with data processing at an unknown health 
state of the structural system. Using the order of the system 
determined for the baseline state, first SVD process is 
utilized and the signals are reconstructed with the 
determined number of singular values and vectors. based. 
Using the AR-model created at the baseline state, response 
signal is predicted. The discrepancy between the predicted 
response and the actual response gives the residual error for 
the unknown state.  

At this stage detection algorithm can be invoked for the 
SHM activity. Using the three scaled MADs from the 
median as the threshold for the classification, all the 
simulation cases are successfully classified as ‘novelty’. For 
these cases proven to be ‘not-belonging’ to the baseline 
state, damage localization must be carried out. The ratio of 
the standard deviation of the residual error obtained for the 
unknown state to that of the baseline state, 𝜎𝜎(𝜀𝜀𝑦𝑦)/𝜎𝜎(𝜀𝜀𝑥𝑥), is 
defined as the damage index and the normalized value of 
this index for all the simulation cases are presented in the 
form of a box-plot for damage cases 1-3 in Fig. 4 (a)-(c), 
respectively. On each box in these figures, the central mark 
indicates the median value and the bottom and top edges of 
the box indicate the 25th and 75th percentiles, respectively. 
The outliers are plotted individually with circle markers. It 
follows that for the single member damages at second and 
third floors, damage cases 1 and 2, damage index 
successfully isolates the damaged region. For damage case 
3 involving multiple damaged elements on second and 
fourth floors, damage index in descending order arrives at 
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correct ranking list, however, cannot single out the damaged 
floors. 

 
Figure 4. Box plot of damage index: (a) Damage case 1, (b) 
Damage case 2, (c) Damage Case 3. 

 
Experimental Verification 
A one-story one bay reinforced concrete frame with a height 
of 1.5m. and a span length of 2m. shown in Fig. 5 is 
subjected to lateral loading at the top level of the column in 
a quasi-static cyclic manner. The loads were applied in a 
displacement-controlled manner in sets of three cycles and 
damage is inflicted on the system. The completion of the 
load test at the predetermined drift levels is followed by 
vibration tests using impact hammer and accelerometer data 
is acquired at seven different locations with a sampling 
frequency of 500 Hz (dt=0.002s). The impact locations are 
chosen to coincide with these accelerometer locations. 
Further details of the experimental procedure can be found 
in [20]. In this study, the associated vibration data 
corresponding to the baseline state before any lateral loads 

 
Figure 5. (a) Test-specimen and accelerometer locations (b) 
load test set-up (c) impact testing 

 

are applied and the one after the structure is pushed to a drift 
level of 2%, are processed to investigate the applicability of 
the proposed approach for localizing the damaged region.  

Following the flowchart presented in Fig. 1, the first stage 
of data processing involves fitting an AR model to the 
sensor data recorded at the baseline state of the structure.  

 
Figure 6. Singular value plot for a sample acceleration 
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Interrogation of the singular values, shown in Fig. 6, the 
system order is selected as 16. With the associated singular 
values and vectors, data is reconstructed and AR model fit 
is obtained. The difference between the predicted response 
based on this model and measured response defines the 
residual signal. The ratio of standard deviations of the 
residuals, damaged state with respect to the baseline state, 
as damage index computed at all seven sensor locations is 
presented in Fig. 7.  

 
Figure 7. Damage localization index 

Region around accelerometer 6, which is the beam column 
connection is identified as the potential damage location. 
This is in fact consistent with the observed damage at this 
drift level. The visual inspections however, also revealed 
damage infliction in the proximity of sensor 2. Examining 
the ranking of the members based on the damage index, 
sensor 2, although is among the top three potential damage 
locations, it does not distinctly stand out from two of the 
remaining six locations.  

 

Concluding Remarks 
A methodology to detect and locate damage that using the 
measured vibration data, that can operate on noisy transient 
signals is presented. The method has been shown to be 
successfully applied on simulated acceleration data from a 
frame type structure subjected to impact type unmeasured 
excitation. The experimental work on the reinforced 
concrete frame demonstrated that although a truly damaged 
region is successfully located, multiple damage locations 
represents a challenge with the current form of the 
methodology.  

Selection of appropriate model order and the sensitivity of 
the AR model parameters, the two critical issues effecting 
the reliability of the model, are overcome through the SVD 
approach. The singular values defining the system order 
although form a clearly separable cluster with the simulated 
data; they are not as well separated for the measured data 
from the test specimen. 

As for the damage index, the standard deviations of the 
residual error between the measured and predicted signals, 
more specifically the ratio between the unknown state and 
that of the baseline state as damage sensitive feature has 
proven its potential to localize damage for the simulated 

damage cases. With several advantages it offers, such as; 
detection of damage being carried out in an unsupervised 
learning mode and in a decentralized manner where data 
processing takes place individually at each senor, requiring 
only the output signals and its robustness in the presence of 
noise, the proposed methodology appears to be a promising 
signal-based approach for damage diagnosis. The 
improvement in the efficiency of the methodology when 
dealing with multiple damage locations from a real structure 
is required which is reserved for future work. 
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