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Abstract 

To test null hypothesis against umbrella alternative for scale parameters, a test statistic 
h

W based 

on a scale estimator is proposed in [1]. In this study, 
h

W  statistics based on different estimators 

of scale parameters are compared according to type I error ,  , and power. For the nominal 

0.05   and given values of  peak of umbrella, number of populations and sample sizes, the 

results are obtained using the data is generated from two-parameter exponential and normal 

distributions in simulation design. According to the simulation results, when the data generated 

from normal distribution, the power values of test statistics based on robust scale estimators are 

almost the same to the ones based on maximum likelihood estimator of scale parameters as the 

sample sizes increase. Moreover, the similar results are obtained when the data is generated from 

the two-parameter exponential distribution. 
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1. INTRODUCTION 

 

Let 
1 2
, ,...,

k
   , 1,2,...,i k , be independent populations and the cumulative distribution function (cdf) 

of an observation from population
i
  is  ( )

i i i
F x F x      where 

i
  is the scale parameter, 

i   is 

the location parameter and (.)F  is any absolutely continuous cdf. The umbrella ordering 

1
... ...

h k
        with at least one strict inequality is assumed to be satisfied for given 1 h k 

where h is the peak of umbrella. Umbrella ordering is important in close-response experiments. For details, 

the reader may refer to [2-4]. Testing the null hypothesis against the umbrella ordering with at least one 

strict inequality is studied by many researchers among them are [5-7]. Rank test statistics were proposed 

for umbrella alternative in [8,9]. In k -sample problems, the test statistic for pattern alternatives that can be 

transformed to umbrella alternatives is developed in [10]. For testing of equality of location parameters 

against the umbrella ordering with at least one strict inequality, a likelihood ratio test statistic is proposed 

in [11]. In [12], the simultaneous confidence intervals for umbrella alternatives for normal means are 

studied. Testing the equality of normal means against simple tree alternatives is examined in [13].  

 

This study focuses on 
h

W  statistics based on different estimators of the population scale parameters.  The 

frame of the paper is as follows. For testing the null hypothesis 
0 1
: ...

k
H      against the umbrella 

alternative hypothesis 
1 1
: ... ...

h k
H         with at least one strict inequality, the test procedure 

proposed by [1] is introduced in section 2. Some robust estimators for scale parameter 
i  are given in 

section 3. The design of carrying out the simulation study and the presentation of the simulation results are 

given in section 4 and 5, respectively.  
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2. SINGH AND LIU'S TEST STATISTIC 

 

Let 
1
,...,

i in
X X be a random sample of a common size n from the i th population 

i , 1,2,...,i k  and 
i

S  

be any suitable estimator based on these random samples for scale parameter 
i
 . To test the null hypothesis 

0 1
: ...

k
H      against the umbrella alternative hypothesis 

1 1
: ... ...

h k
H         with at least one 

strict inequality for a given 1 h k  , the test statistic 
h

W  proposed in [1] is  

 

    
1
max , max

h j i j i
i j h h j i k

W Max S S S S
     


. 

 

The null hypothesis 
0

H  is rejected at   significance level if 
, , ,h k h v

w c


  where 
h

w  is the calculated value 

from sample for the statistic 
h

W  and  0 , , ,h k h v
P W c


    under the null hypothesis. The critical value 

, , ,k h v
c


is calculated for 3(1)10,k  3(1)15(5)40n   and 0.01,   0.05  and presented as a table in [1]. 

 

3. SOME ROBUST ESTIMATORS FOR SCALE PARAMETER 

 

In the literature, there are many robust estimators for scale parameter 
i
 . In this section, trimmed   and 

winsorized variance estimators will be presented due to having high breakdown point and efficiency. 

 

3.1. Trimmed Mean and Variance 

 

Trimmed estimation of location parameter would be to discard a proportion of the largest and smallest 

values. More precisely, let [0,1/ 2)    and  1m n      where [.] stands for the integer part, and 

define the trimmed   mean as  

 
( )

1

1

2

n m

t i

i m

X X
n m





 





                                                               (2) 

where 
( )iX denotes the .i order statistics [14]. Using trimmed   mean, trimmed variance is defined as, 

see [15], 

 
 

 
2

2

( )

1

1
ˆ

2 1

n m

t i t

i m

X X
n m

 


 

 
 


  .                                           (3) 

 

3.2. Winsorized Mean and Variance 
 

The winsorized   mean  0 1 2   of a sample 
1 2, ,..., nx x x  is defined as follows. First, order the 

sample, obtaining      1 2
...

n
x x x   . Then replace the  n h   smallest observations by 

 1h
x


 hence 

counting this value  1h   times. Analogously, replace the h  largest observations by 
 n h

x


. Then 

winsorized   mean is calculated as 

 

         

1

1
2

1
1 1

n h

w h i n h
i h

X h X X h X
n



 

 
 

 
     

 


 
[16] . Winsorized variance suggested by [17]  is calculated as 
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12 2
2

1
2

1
ˆ 1 1

2 1

n h

w w w wh i n h
i h

h X X X X h X X
n h

   
 

 
 

 
        

   


       (4) 

 

4. SIMULATION 

 

This simulation study consists of two parts. In first part, 10000 samples, each of which has size n, are 

generated from standart normal distribution and following exponential distribution  

 

( )/1
( / , ) , 0 ,i i ix

i i i i i

i

f x e
    



 
     

 
with parameters ( 0, 1)i i    under hyphotesis H0. Wh statistics based on different scale estimators 

are calculated for these samples. These Wh values are ordered and [10000 ]th value is taken as Monte 

Carlo estimation for criticial value 
, , ,k h vc  .  

 

In second part, normal distribution and two-parameter exponential distribution with parameters 

( 0, )i i   are used to generate 10000 samples, each of which has size n, under umbrella alternative 

hyphotesis H1. Similarly, Wh statistics based on different scale estimators are calculated for these samples. 

Ratio of Wh values, which are greater than the critical value in the first part, is taken as Monte Carlo 

estimation of 1  . 

 

hW  statistic based on 
iS , trimmed   and winsorized  variance estimators for scale parameter 

i  is 

used for testing null hypothesis 
0

H  when the data is generated from the two-parameter exponential 

distribution. It is known that the minimum variance-unbiased estimator of the scale parameter of the two-

parameter exponential distribution is  
1

/ ( 1)
n

i ij i
j

S X Y n


    where 
1
min

i ij
j n

Y X
 

 [1]. trimmed   

and winsorized  variance estimators are presented in Eq. (3) and Eq. (4). In this study, 
hW  test statistics 

based on 
iS , trimmed   and winsorized  estimators of scale parameter are shown as 

1 2
,T T  and 

3
T , 

respectively.  

 

When the data is generated from the normal distribution, trimmed   and winsorized  estimators and 

the maximum likelihood estimator  
2

2

1

/ ( 1)
n

i ij i
j

S X X n


    instead of 
iS , are used for scale 

parameter. 
hW  test statistics based on 

2

iS , trimmed   and winsorized estimators of scale parameter 

are shown as 
4 5
,T T  ve 

6
T , respectively.  

 

In the simulation studies, the iteration number is set as 10000. In each iteration, n  observations are 

generated as described above under 
0

H  and 
1

H . The values of test statistics 
1 2 6
, ,...,T T T  are calculated 

from this observations. The critical value of each statistic for a given α is calculated as the [10000 ] th  

value as these values are arranged in ascending order. The [.] operator represents the ceil operation. The 

Monte Carlo estimation of power value, 1  , is obtained with 10000 iterations by using this critical 

values for umbrella alternative hypothesis.  

 

Figure 1 and 2 are constructed for 5, 2,3,4k h   and 5,10,50,100n   values when 0.05  . 

Umbrella hypotheses in these figures are taken as follows for 2,3,4h   , respectively, 

1 2 3 4 51 1 1 1 1t m t               
  

 1 2 3 4 51 1 1 1 1t m t               
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1 2 3 4 51 1 1 1 1t m t               
. 

 

Similarly, Figure 3 and 4 are constructed for 7, 3,4,5k h   and 5,10,50,100n   values when 

0.05   and umbrella hyphotheses in these figures are defined as follows for 3,4,5h   , respectively, 

 

1 2 3 4 5 6 71 1 1 1 1 1 1t m t                     
 

1 2 3 4 5 6 71 1 1 1 1 1 1t m t                     
 

1 2 3 4 5 6 71 1 1 1 1 1 1t m t                     
 

 

For each possible k, h and n values, unique umbrella hyphotheses are constructed by initiating t and m 

values from 0 and increasing these values by 0.025 and 0.05 respectively in each step. For these 

hyphotheses, power values of these statistics are shown in vertical axis.   

 

In the Figures 1 and 3, the Monte Carlo estimations of  and 1   for 
1 2
,T T  and 

3
T  statistics are presented 

for given values of k , h  and n  when the data is generated from two-parameter exponential distribution. 

The results show that the Monte Carlo estimation of  is almost equal to nominal  . Moreover, 
1

T  statistic 

has more power than 
2

T  and 
3

T  statistics for given all k , h  and n  values. As the sample size increases, 

Monte Carlo estimations of the power values related to 
1

T , 
2

T  and 
3

T  statistics also increase and these 

estimated values are resulted to be quite close to each other. In addition, these estimated power values are 

observed to be almost similar for different h  values when k  and n  are constants.  

 

In the Figures 2 and 4, the Monte Carlo estimations of  and 1   for 
4 5
,T T  and 

6
T  statistics are presented 

for the given values of k , h  and n  when the data is generated from normal distribution. Similarly, it is 

observed that the Monte Carlo estimation of   is considerably close to nominal  . For all k , h  and n  

values, it is seen that 4
T

 statistic has more power than 5
T

 and 6
T

 statistics which is an expected result for 

normal distribution case. As the sample size increases, it is observed that the Monte Carlo estimations of 

the power values related to 4
T

, 5
T

 and 6
T

 statistics increase and these estimated power values are closer to 

each other than they are for the two-parameter exponential distribution case in Figures 1 and 3. 

Additionally, when k  and n  are constants, these estimated power values are observed to be almost similar 

for different h  values. 

 

According to Figures 1 to 4, the differences among estimated power values of the test statistics 
4 5
,T T ,

6
T  

are observed to be smaller than they are for the test statistics 
1

T , 
2

T , 
3

T . In addition, the differences among 

these estimated power values of the test statistics 
4 5
,T T ,

6
T  are resulted to decrease faster than they are for 

the test statistics 
1

T , 
2

T , 
3

T . 
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Figure 1. The Monte Carlo estimation of α and 1-β for k=5, n=5, 10, 50, 100 and 

h=2, 3, 4 when data is generated  from two-parameter exponential distribution. ('- - -

' , '. . .' and ' ' represent the power functions of  
1 2
,T T  and 

3
T , respectively) 

 
Figure 2. The Monte Carlo estimation of α and 1-β for k=5, n=5, 10, 50, 100 and 

h=2, 3, 4 when data is generated  from normal distribution. ('- - -' , '. . .' and ' ' 

represent the power functions of  
4 5
,T T  and 

6
T , respectively) 
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Figure 3. The Monte Carlo estimation of α and 1-β for k=7, n=5, 10, 50, 100 and 

h=3, 4, 5 when data is generated  from two-parameter exponential distribution. ('- - -

' , '. . .' and ' ' represent the power functions of  
1 2
,T T  and 

3
T , respectively) 

 
Figure 4. The Monte Carlo estimation of α and 1-β for k=7, n=5, 10, 50, 100 and 

h=3, 4, 5  when data is generated  from normal distribution. ('- - -' , '. . .' and ' ' 

represent the power functions of  
4 5
,T T  and 

6
T , respectively) 
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5. RESULTS 

According to the simulation results, the Monte Carlo estimation of   for 2
T

 and 3
T

 statistics based on 

Trimmed Variances and Winsorized Variances, which are robust estimators for scale parameters, and 1
T

 

statistics based on iS
 statistics are almost equal to nominal α for testing the null hypothesis against to 

umbrella alternative hypothesis. For given values of k , h  and n , it is observed that 1
T

 statistic has more 

power than 2
T

 and 3
T

statistics and as the sample size increases, the Monte Carlo estimation of power values 

increase and the power values of 1 2
,T T

 and 3
T

 statistics are similar to each other when the data is generated 

from exponential distribution. For different h  values, the Monte Carlo estimation of power values are 

observed to be almost similar when k  and n  are constants. When the data is generated from normal 

distribution, the results are similar to the ones calculated from exponential distribution. Although the power 

values increase as n  increases, the decrease in the difference among the power values of 4 5
,T T

 and 6
T

statistics is faster than the decrease in the difference among the power values of  1 2
,T T

 and 3
T

statistics. 
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