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Abstract
Throughout this article, a two-phase sampling (TPS) technique is employed to estimate the population mean of
the sensitive variable. The current article endeavours to develop a chain ratio type estimator for the estimation of
sensitive variable(s) in the presence of non-response and measurement error simultaneously by utilizing ORRT
models under a two-phase sampling technique. The significant aspects associated with the suggested estimator
characterized by bias and mean squared error have been evaluated. Besides this, the utterance for the minimum
mean squared error for the optimal values has also been identified. The supremacy of the proposed estimator
has been compared with the modified existing estimators under the TPS scheme by using two sensitive auxiliary
variables. To clarify the theoretical findings, a simulation study along with a hypothetical generated population
and a real population which is based on abortion rates from Statistical Abstract of the United States: 2011 are
also addressed in this study.

Keywords: Measurement error, Non-response, Optional Randomized Response Models (ORRT), Sensitive
variable(s), Two-phase Sampling (TPS)
2010 AMS: 62D05

1Department of Statistics, University of Jammu, J&K, India, sunilbhougal06@gmail.com, ORCID: 0000-0003-0249-8415
2Department of Statistics, University of Jammu, J&K, India, sanamkour903@gmail.com, ORCID: 0000-0002-2894-2556
*Corresponding author: sanamkour903@gmail.com
Received: 23 September 2023, Accepted: 16 November 2023, Available online: 5 December 2023
How to cite this article: S. Kumar, S. P. Kour, Quantify the Impact of Non-Response and Measurement Error of Sensitive Variable(s) under
Two-Phase Sampling employing ORRT Models, Commun. Adv. Math. Sci., 6(4) (2023), 196-210.

1. Introduction
Sympathetic or contentious issues that are raised in a brusque way may cause some respondents to feel anxious or insecure.

As a consequence, they may hide the truth because they donot want their personal intentions to be revealed. Because of the
perversion against negative behaviours, respondents may answer ‘No’ to questions like addiction of drugs, gambling, criminal
conviction, domestic abuse, induced abortions, illegal income, tax evasion, even if they have. Such questionnaires encompassing
sensitive characteristics necessarily entail the use of innovative techniques such as Randomized Response Technique (RRT)
to evoke responses from the sampled units. Warner [1] is the first who posit an inventive RRT for estimating an unknown
population prevalence of a sensitive criterion. Greenberg et al. [2] pioneered the estimation of the mean of quantitative sensitive
variable by utilising RRT models. Afterwards, Pollack and Bek [3] developed the scrambling response technique for estimating
the population mean of a sensitive variable. Gupta et al. [4] models are based on multiplicative scrambling whereas Gupta et al.
[5] models are based on additive scrambling which works better than multiplicative scrambling as demonstrated by Gupta et al.



Quantify the Impact of Non-Response and Measurement Error of Sensitive Variable(s) under Two-Phase Sampling
employing ORRT Models — 197/210

[6]. The notable authors include Zhang et al. [7], Kumar and Kour [8, 9], Kumar et al. [10, 11], Zaman et al. [12] and so forth
developed estimation of mean of sensitive variables under non-response and measurement error using ORRT under simple
random sampling and two-phase sampling.

In medical sciences, there are well documented instances where sensitive research must be surveilled over time in order to
truly comprehend the problem. The evolution of these kind of varying variables may be analyzed by using two-phase sampling
(TPS) technique which was first initiated by Neyman [13] and several researchers have since used it in varied incarnations.
For illustration, in a survey to estimate the manufacturing of avocado crop predicated on orchards under the crop, only a
sub-sampled of the orchards chosen for deciding land area is being used to ascertain the yield rate. Individual authors have been
used TPS in varied incarnations including Sanullah et al. [14] who developed a generalized exponential chain ratio estimators
under stratified two-phase random sampling, Zaman and Kadilar [15] introduced a new class of exponential estimators for
estimating finite population mean in two-phase sampling, Khalil et al. [16] proposed an enhanced two-phase sampling ratio
estimator for estimating population mean and among others.

A bulk of studies in a research presume that the data acquisition in a survey is error-free. Unfortunately this is not the reality;
measurement error and non-response are very serious flaws in survey sampling. Measurement error (ME) is the difference
between the observed value and the theoretical value of the target variable. Cognitive impairment, reputation bias, processing
errors and erroneous respondent responses all contribute to measurement errors. Previously, Khalil et al. [17], Onyango et al.
[18] deal with the problem of estimation of sensitive variable under measurement error in simple random sampling and double
sampling. Withal, it is essential to tackle the issue of non-response in a sampling survey. Non-response (NR) happens when the
analyst is unable to gather information from the estimated units of the population. Hansen and Hurwitz [19] is the first one who
fix the problem of non-response by conducting a strategy that entails by collecting a sub-sample of non-respondents following
the initial mail effort and then analyzing information through personal interview. Diana et al. [20], Gupta et al. [21], Zhang et
al. [22], Mukhopadhhyay et al. [23] and so on addressed the problem of estimating the population mean to adjust non-response
in varied sampling schemes.

Although we all aware that queries in a survey may have differing levels of sensitivity, and it may be important to quantify this
sensitivity. Consequently, the accentuation of this article is exclusively on the chain ratio type estimator for the estimation of
sensitive variable(s) in the presence of non-response and measurement error at the same time by making use of ORRT models
when study and both two auxiliary variables are sensitive in nature under TPS technique. In section 2 and section 3 there
are an ORR technique, an enhanced Hansen and Hurwitz [19] technique, some usual notations and some existing estimators.
The Proposed estimator is described in section 4. In section 5, we have studied the efficiency comparisons of all considered
estimator(s). To validate the theoretical findings an empirical study for both hypothetical and real population is performed in
section 6. Finally, an ultimate conclusion is given in section 7.

2. The ORR Technique

Assume that Θ = Θ1,Θ2, ...,ΘN be a finite population of size N in which Y be the sensitive study variable and X and Z be
two sensitive auxiliary variables with means Ȳ , X̄ and Z̄ and variances S2

y , S2
x and S2

z . Take S and S′ be two scrambling variables
with means S̄ and S̄′ and variances S2

s and S2
s′ , respectively. Let ‘π’ signifies the probability that the respondent will find the

question sensitive. If the respondent consider the question is sensitive, then he or she is prompted to provide a scrambled
response for the study Y as well as the auxiliary variables (X , Z), otherwise a legitimate response is recorded. Presuming simple
random sampling without replacement (SRSWOR) at each phase, the TPS strategy works as follows

1. During the first phase, a large sample of fixed size n′ is taken from Θ to examine X and Z in order to find estimates of X̄ and
Z̄.

2. In the second phase sample, a fixed-size n sub-sample is taken from n′ to observe Y only , so that (n < n′).

A conventional additive RRT model with Y +S′ as the scrambled response (as in Gupta et al. [6]) or a more comprehensive
RRT model with SY +S′ as the scrambled response (as in Diana and Perri [24]) could be employed. The simple additive model
is a particular case of the more general model if E(S) = 1 and with varying variances. The basic additive approach is more
efficient, according to Khalil et al. [25], whereas the general model gives greater privacy. Even yet, the generalized randomized
response model performs better when we utilize Gupta et al. [21] combined measure of efficiency and privacy, i.e. υ = Var(–Z1)

ϒ
,

where –Z1 is the scrambled response and ϒ = E(–Z1−Y )2 is the privacy level for the same model as given by Yan et al. [26]. It
is important to note that the model with the lower value is preferable since it indicates either a higher level of privacy or a lower
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value of Var(ŷ), or both. It is worth noting that

υadditiveRRT = 1+
S2

y

S2
s′
> 1+

S2
y

S2
s′ +S2

s (ȳ+S2
y)

= υgeneralRRT

Under such circumstances, we will utilize the general scrambling model –Z1 = SY +S′ as

–Z1 =

{
Y with probability 1-π
SY +S′ with probability π,

where S and S′ follows normal distribution with mean (1,0) and variances (S2
s ,S

2
s′) i.e. S ∼ N(1,S2

s ) and S′ ∼ N(0,S2
s′). The

mean and variance of –Z1 are as

E(–Z1) = E(Y )(1−π)+E(SY +S′)π = E(Y )

and Var(–Z1) = E(–Z2
1)−E2(–Z1) = S2

y +S2
s′π +S2

s (S
2
y + Ȳ 2)π .

We can write the randomized linear model as follows

–Z1 = (SY +S′)J+Y (1−J), where J ∼ Bernoulli(π) with E(J) = π,Var(J) = π(1−π) and E(J2) =Var(J)+E2(J) = π . And
the expectation and variance of randomized mechanism is ER(–Z1) = (S̄π +1−π)Y + S̄′π and VR(–Z1) = (Y 2S2

s +S2
s′)π .

In our research, we assume X and Z to be a sensitive variable(s) then first the general scrambling model for the auxiliary
variable X is stated as follows

–Z2 =

{
X with probability 1-π
SX +S′ with probability π,

Now, The mean and variance of –Z2 are given by

E(–Z2) = E(X)(1−π)+E(SX +S′)π = E(X)

and Var(–Z2) = E(–Z2
2)−E2(–Z2) = S2

x +S2
s′π +S2

s (S
2
x + X̄2)π .

Likewise, we can write randomized linear model as –Z2 = (SX + S′)J + X(1− J), where J ∼ Bernoulli(π) with E(J) =
π,Var(J) = π(1− π) and E(J2) = Var(J)+E2(J) = π . And the expectation and variance of randomized mechanism is
ER(–Z2) = (S̄π +1−π)X + S̄′π and VR(–Z2) = (X2S2

s +S2
s′)π .

Similarly, for auxiliary variable Z, the general scrambling model is given as

–Z3 =

{
Z with probability 1-π
SZ +S′ with probability π,

Now, The mean and variance of –Z3 are given by

E(–Z3) = E(Z)(1−π)+E(SZ +S′)π = E(Z)

and Var(–Z3) = E(–Z2
3)−E2(–Z3) = S2

z +S2
s′π +S2

s (S
2
z + Z̄2)π .

As well, we can write randomized linear model as –Z3 = (SZ +S′)J+Z(1− J), where J ∼ Bernoulli(π). The expectation and
variance of randomized procedure is ER(–Z3) = (S̄π +1−π)Z + S̄′π and VR(–Z3) = (Z2S2

s +S2
s′)π .

The variance of –Z1, –Z2 and –Z3 increases with increase in the probability π which demonstrates that the optional RRT model is
definitely more efficient than the non-optional RRT model.

3. Enhanced Hansen and Hurwitz Technique [19]
From the population Θ, we suppose that only n1 units respond on the first call and the residual n2 = n−n1 units do not

respond. Out from n2 non-responding units, a subsample of size ns =
n2
k ; (k > 0) is selected. Also, (N1,N2) are the sizes of the

respondent and non-respondent group. Let us suppose that Ȳ(2), X̄(2) and Z̄(2); S2
y(2)

, S2
x(2)

and S2
z(2)

are the mean and variances of
non-respondent group of size N2, respectively. Hansen and Hurwitz [19] conducted a mail survey on the first conversation and
then face-to-face interview on the second call.
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The entire population mean of study variable is given by

Ȳ =W1Ȳ(1)+W2Ȳ(2),

where W1 =
N1
N and W2 =

N2
N .

Let ȳ1 =
∑

N1
i=1 yi
n1

be the sample mean for the response group, and ȳ2 =
∑

N2
i=1 yi
n2

be the sample mean for non-response group. It is
worth noting note that ȳ1 and ȳ2 are unbiased estimators of Y1 and Y2, respectively.

Hansen and Hurwitz [19] suggested an unbiased population mean estimator which is given by

ȳ = w1ȳ1 +w2ȳ2s

where w1 =
n1
n and w2 =

n2
n .

The variance of ȳ is given by

Var(ȳ) =
(

N−n
Nn

)
S2

y +
W2(k−1)

n
S2

y(2)

Within the second phase of the Hansen and Hurwitz [19] methodology, wherein face-to-face interviews of subsampled units of
non-respondents are undertaken, we give respondents the opportunity to scramble their response using ORRT to incentivize
them to answer a sensitive question honestly. In this scenario, we adapt Hansen and Hurwitz’s technique by stating that the
respondent group provides direct responses in the first phase, and then the ORRT model is being applied in the second phase to
obtain answers from a sample of non-respondents.

Let ŷi denote a transformation of the randomized response on the ith unit, the expectation of which is the true response yi under
the randomization startegy is given by

ŷi =
--z1i− S̄′

S̄π +1−π

with ER(ŷi) = yi and VR(ŷi) =
VR(--z1i)

(S̄π+1−π)2 =
(y2

i S2
s+S2

s′ )π

(S̄π+1−π)2 = δ1i

Contrastingly, assume that x̂i and ẑi denote a transformation of the randomized response on the ith block, the expectation of
which is the true response xi and zi, respectively under the mechanism and is given by

x̂i =
--z2i− S̄′

S̄π +1−π

with ER(x̂i) = xi and VR(x̂i) =
VR(--z2i)

(S̄π+1−π)2 =
(x2

i S2
s+S2

s′ )π

(S̄π+1−π)2 = δ2i

Analogously

ẑi =
--z3i− S̄′

S̄π +1−π

with ER(ẑi) = zi and VR(ẑi) =
VR(--z3i)

(S̄π+1−π)2 =
(z2

i S2
s+S2

s′ )π

(S̄π+1−π)2 = δ3i

From the previous discussions, we alter the Hansen and Hurwitz [19] estimator in the presence of non-response by utilizing
ORRT.

ˆ̄y = w1ȳ1 +w2 ˆ̄y2

ˆ̄x = w1x̄1 +w2 ˆ̄x2

ˆ̄z = w1z̄1 +w2 ˆ̄z2

where ˆ̄y2 = ∑
ns
i=1(

ŷi
ns
), ˆ̄x2 = ∑

ns
i=1(

x̂i
ns
) and ˆ̄z2 = ∑

ns
i=1(

ẑi
ns
).

It is simple to illustrate that
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E( ˆ̄y) = Ȳ ; E( ˆ̄x) = X̄ ; E( ˆ̄z) = Z̄

and

The variance of ˆ̄y is given by

Var( ˆ̄y) = λS2
y +λ

∗S2
y(2)+

W2k
n

[{(S2
y(2)+ ȳ2

(2))S
2
s +S2

s′}π
(S̄π +1−π)2

]
Similarly, the variance of ˆ̄x is given by

Var( ˆ̄x) = λS2
x +λ

∗S2
x(2)+

W2k
n

[{(S2
x(2)+ x̄2

(2))S
2
s +S2

s′}π
(S̄π +1−π)2

]
and

Var( ˆ̄z) = λS2
z +λ

∗S2
z(2)+

W2k
n

[{(S2
z(2)+ z̄2

(2))S
2
s +S2

s′}π
(S̄π +1−π)2

]
where λ = (N−n)

Nn and λ ∗ = (k−1)W2
n .

Measurement error, additionally to non-response, is a prominent cause of non-sampling errors in a survey. Let Ui = yi−Yi,
Vi = xi−Xi and Wi = zi−Zi be the measurement error for the study variable (Y ) and auxiliary variables (X , Z) in the population.
Let Pi = --z1i− –Z1i, Qi = --z2i− –Z2i and Ri = --z3i− –Z3i indicate the respective measurement error associated with the sensitive
variables (–Z1, –Z2 and –Z3) in the face-to-face interview phase. These measurement errors are recognised to be random and
uncorrelated, with mean zero and variances S2

u, S2
v , S2

w, S2
p, S2

q and S2
r , respectively.

Numerous notations are presented here, supposing that the population mean of the sensitive auxiliary variable(s) are unknown
and that non-response happens on both the study as well as on both the auxiliary variables i.e X , Y and Z.

∆̂
∗
y =

n

∑
i=1

(yi− Ȳ ); ∆̂
∗
x =

n

∑
i=1

(xi− X̄); ∆̂
∗
z =

n

∑
i=1

(zi− Z̄)

∆̂
∗
u =

n1

∑
i=1

Ui +
n2

∑
i=1

Pi; ∆̂
∗
v =

n1

∑
i=1

Vi +
n2

∑
i=1

Qi; ∆̂
∗
w =

n1

∑
i=1

Wi +
n2

∑
i=1

Ri

where Ui, Vi, Wi, Pi, Qi and Ri are measurement errors on Y , X , Z, –Z1, –Z2 and –Z3 respectively.

Furthermore, in the presence of measurement error, the variance of ˆ̄y, ˆ̄x and ˆ̄z is given by

Var( ˆ̄y∗) = λ (S2
y +S2

u)+λ
∗(S2

y(2)+S2
p)+κ1;

Var( ˆ̄x∗) = λ (S2
x +S2

v)+λ
∗(S2

x(2)+S2
q)+κ2

and

Var( ˆ̄z∗) = λ (S2
z +S2

w)+λ
∗(S2

z(2)+S2
r )+κ3

where κ1 =
W2k

n

[
{(S2

y(2)+ȳ2
(2))S

2
s+S2

s′}π
(S̄π+1−π)2

]
; κ2 =

W2k
n

[
{(S2

x(2)+x̄2
(2))S

2
s+S2

s′}π
(S̄π+1−π)2

]
and κ3 =

W2k
n

[
{(S2

z(2)+z̄2
(2))S

2
s+S2

s′}π
(S̄π+1−π)2

]
.

Taking ˆ̄y∗ = Ȳ (1+ ê∗0), ˆ̄x∗ = X̄(1+ ê∗1), ˆ̄z∗ = Z̄(1+ ê∗2), x̄′ = X̄(1+ e′1) and z̄′ = Z̄(1+ e′2) such that E(ê∗0) = E(ê∗1) = E(ê∗2) =
E(e′1) = E(e′2) = 0

To acquire mean squared error, we will used the following notations

E(ê∗20 ) = 1
Ȳ 2

[
λ (S2

y +S2
u)+λ ∗(S2

y(2)+S2
p)+κ1

]
= 1

Ȳ 2 (A+κ1) = A1;

E(ê2
0) =

1
Ȳ 2

[
λS2

y +λ ∗S2
y(2)+κ1

]
= 1

Ȳ 2 (Â+κ1) = A2;

E(e∗20 ) = 1
Ȳ 2

[
λ (S2

y +S2
u)+λ ∗(S2

y(2)+S2
u(2))

]
= 1

Ȳ 2 A∗ = A3;
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E(ê∗21 ) = 1
X̄2

[
λ (S2

x +S2
v)+λ ∗(S2

x(2)+S2
q)+κ2

]
= 1

X̄2 (B+κ2) = B1;

E(ê2
1) =

1
X̄2

[
λS2

x +λ ∗S2
x(2)+κ2

]
= 1

X̄2 (B̂+κ2) = B2;

E(e∗21 ) = 1
X̄2

[
λ (S2

x +S2
v)+λ ∗(S2

x(2)+S2
v(2))

]
= 1

X̄2 B∗ = B3;

E(ê∗22 ) = 1
Z̄2

[
λ (S2

z +S2
w)+λ ∗(S2

z(2)+S2
r )+κ3

]
= 1

Z̄2 (C+κ3) =C1;

E(ê2
2) =

1
Z̄2

[
λS2

z +λ ∗S2
z(2)+κ3

]
= 1

Z̄2 (Ĉ+κ3) =C2;

E(e∗22 ) = 1
Z̄2

[
λ (S2

z +S2
w)+λ ∗(S2

z(2)+S2
w(2))

]
= 1

Z̄2 A∗ =C3;

E(e′1) =
1

X̄2 λS2
x = A11; E(e′2) =

1
Z̄2 λS2

z =C11;

E(ê∗0ê∗1) =
1

Ȳ X̄

[
λρyxSySx +λ ∗ρyx(2)Sy(2)Sx(2)

]
= 1

Ȳ X̄ D = D1;

E(ê0ê1) =
1

Ȳ X̄

(
λρyxSySx

)
= 1

Ȳ X̄ D̂ = D2;

E(ê∗1ê∗2) =
1

X̄ Z̄

[
λρxzSxSz +λ ∗ρxz(2)Sx(2)Sz(2)

]
= 1

X̄ Z̄ E = E1;

E(ê1ê2) =
1

X̄ Z̄

(
λρxzSxSz

)
= 1

X̄ Z̄ Ê = E2;

E(ê∗0ê∗2) =
1

Ȳ Z̄

[
λρyzSySz +λ ∗ρyz(2)Sy(2)Sz(2)

]
= 1

Ȳ Z̄ F = F1;

E(ê0ê2) =
1

Ȳ Z̄

(
λρyzSySz

)
= 1

Ȳ Z̄ F̂ = F2;

E(ê∗0e′1) =
1

Ȳ X̄ λ ′ρyxSySx =
1

Ȳ X̄ G = G1;

E(ê∗0e′2) =
1

Ȳ Z̄ λ ′ρyzSySz =
1

Ȳ Z̄ H = H1;

E(ê∗1e′1) =
1

X̄2 λ ′S2
x =

1
X̄2 I = I1;

E(ê∗1e′2) =
1

X̄ Z̄ λ ′ρxzSySz =
1

X̄ Z̄ J = J1;

E(ê∗2e′1) =
1

Z̄X̄ λ ′ρzxSzSx =
1

Z̄X̄ K = K1;

E(ê∗2e′2) =
1

Z̄2 λ ′S2
z =

1
Z̄2 L = L1;

E(e′1e′2) =
1

X̄ Z̄ λ ′ρxzSxSz =
1

X̄ Z̄ M = M1.

where λ =
( 1

n −
1
N

)
; λ ′ =

( 1
n′ −

1
N

)
and λ ∗ = W2(k−1)

n .

Next we take the modified conventional estimators i.e. ratio and product estimators into six antithetic strategies depending upon
the accessible sensitive auxiliary variables using ORRT models under two-phase sampling (TPS) scheme.
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Strategies Conventional Esti-
mator(s)

Bias Mean Squared Error (MSE)

Strategy 1: When ˆ̄y∗, ˆ̄x∗

and x̄′ are used and NR
and ME occurs on both sen-
sitive study and auxiliary
variable

T̂ ∗r = ˆ̄y∗
( ˆ̄x∗

x̄′
)

Bias(T̂ ∗r ) = κϕB − κϕI −
ϕG+ϕD+κϕκ2

MSE(T̂ ∗r ) = A + κ2B + κ2A11 −
2κ2I + 2ϕG + 2ϕD + (κ1 + κ2κ2)

where κ = Ȳ
X̄ and ϕ = 1

X̄

Strategy 2: When ˆ̄y, ˆ̄x and
x̄′ are in use and there is ab-
sence of NR and ME

T̂r = ˆ̄y
( ˆ̄x

x̄′
)

Bias(T̂r)=κϕB̂−κϕI−ϕG+
ϕD̂+κϕκ2

MSE(T̂r) = Â + κ2B̂ + κ2A11 −
2κ2I +2ϕG+2ϕD̂+(κ1 +κ2κ2)

Strategy 3: When ȳ∗, x̄∗

and x̄′ are utilized and NR
and ME both occurs on
study as well as on auxil-
iary variable

T ∗r = ȳ∗
(

x̄∗
x̄′

)
Bias(T ∗r ) = κϕB∗ − κϕI −
ϕG+ϕD+κϕκ2

MSE(T ∗r ) = A∗ + κ2B∗ + κ2A11 −
2κ2I++2ϕG+2ϕD+(κ1+κ2κ2)

Strategy 4: When ˆ̄y∗, ˆ̄x∗,
ˆ̄z∗, x̄′ and z̄′ are used and
NR and ME happens on
both the sensitive study as
well as auxiliary variables

T̂ ∗p = ˆ̄y∗
( ˆ̄x∗

x̄′
)( ˆ̄z∗

z̄′
)

Bias(T̂ ∗r ) = κϕA11 − ϖρL +
ϖρC11 − κρK + κρE −
κϕI−ρH−ϕG

MSE(T̂ ∗p ) = A + κ2B + ϖ2C +

ρ2C11 + 4κ2A11 + 4κϖM −
2ϖ2L − 2ϖH − 4κ2I − 4κϖK −
4κG+2κϖE +2κD+2ϖF +κ1 +
+κ2κ2 +ϖ2κ3

Strategy 5: When ˆ̄y, ˆ̄x, ˆ̄z, x̄′

and z̄′ are utilized and there
is no NR and ME happens

T̂p = ˆ̄y
( ˆ̄x

x̄′
)( ˆ̄z

z̄′
)

Bias(T̂r) = κϕA11 − ϖρL +
ϖρC11 − κρK + κρÊ −
κϕI−ρH−ϕG

MSE(T̂p) = Â + κ2B̂ + ϖ2Ĉ +
ρ2C11 + 4κ2A11 + 4κϖM −
2ϖ2L − 2ϖH − 4κ2I − 4κϖK −
4κG+2κϖ Ê +2κD̂+2ϖ F̂ +κ1 +
κ2κ2 +ϖ2κ3

Strategy 6: When ȳ∗, x̄∗,
z̄∗, x̄′ and z̄′ are employed
and NR and ME both oc-
curs on study as well as on
the auxiliary variables

T ∗p = ȳ∗
( x̄∗

x̄′
)( z̄∗

z̄′
)

Bias(T ∗r ) = κϕA11 − ϖρL +
ϖρC11 − κρK + κρE −
κϕI−ρH−ϕG

MSE(T ∗p ) = A∗ + κ2B∗ + ϖ2C∗ +
ρ2C11 + 4κ2A11 + 4κϖM −
2ϖ2L − 2ϖH − 4κ2I − 4κϖK −
4κG+2κϖE +2κD+2ϖF +κ1 +
κ2κ2 +ϖ2κ3

Table 1. Conventional estimators with their bias and mean square errors using ORRT

4. Proposed Chain Ratio Type Estimator

Grabbing inspiration from the existing evidences, an efforts have been made to propose an estimator to improve conventional
estimators by multiplying a tuning constant term α whose optimum value is based on the coefficient of variation, which is
relatively a stable variable. In addition, inspired by Kumar and Kour [8] and Zhang et al. [22], an information on more than one
auxiliary variable can be utilized to suggest a more efficient chain ratio type estimator in the presence of non-response and
measurement error simultaneously when the study as well as both the auxiliary variables are sensitive in its essence under three
different strategies in two-phase sampling technique by utilizing ORRT models so that one could get a more precise estimate of
the population mean.

Methodology 1: Assuming ˆ̄y∗, ˆ̄x∗, ˆ̄z∗, x̄′ and z̄′ are deployed and non-response and measurement error occured on both the
sensitive study as well as auxiliary variables i.e. (X ,Z) under TPS scheme then the chain ratio type estimator is given as

T̂ ∗s = α ˆ̄y∗
[

α1

( ˆ̄x∗

x̄′

)( ˆ̄z∗

z̄′

)
+(1−α1)

(
x̄′

ˆ̄x∗

)(
z̄′

ˆ̄z∗

)]

where α = Ȳ 2

Ȳ 2+λS2
y+λ ∗S2

y(2)
.

To evaluate the bias and mean squared error of T̂ ∗s by reducing and eliminating terms to first order of approximation, one could
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verify that

(T̂ ∗s − Ȳ ) = Ȳ (α−1)+αȲ (ê∗22 − ê∗2 + e′2− ê∗2e′2 + ê∗1ê∗2− ê∗2e′2 + e′1− ê∗2e′1 + e′1e′2− ê∗1e′1−2α1e′2 +2α1ê∗2−2α1e′1+

α1e′22 +α1e′21 −α1ê∗22 −α1ê∗21 +2α1ê∗1 + ê∗0− ê∗0ê∗2 + ê∗0e′2− ê∗0ê∗1 + ê∗0e′1−2α1ê∗0e′2 +2α1ê∗0ê∗2−
2α1ê∗0e′1 +2α1ê∗0ê∗1).

The bias and mean squared error of the chain ratio type estimator ˆ̄T ∗s in the inclusion of non-response and measurement error at
the same time, is given by

Bias(T̂ ∗s ) = α
∗{(2α1−1)(F1 +D1−H1−G1)+E1− (α1−1)C1−α1B1−2L1−K1 +M1 + J1 +α1ζ}−β

∗

where β ∗ =

(
Ȳ 2+λS2

y+λ ∗S2
y(2)

Ȳ + Ȳ
)

; α∗ = Ȳ 3

Ȳ 2+λS2
y+λ ∗S2

y(2)
; ζ = λ ′

(
1

Z̄2 S2
z +

1
X̄2 S2

x

)
.

and

MSE(T̂ ∗s ) = γ
2 +α

∗2[A1 +θC1 +θA11 +θC11 +4α
2
1 B1 +2φF1−2φG1−2φH1 +4α1D1−2θK1 +2θL1+

4α1φE1 +2θM1 +4α1φ I1−4α1φJ1
]

(4.1)

where θ = 1+4α2
1 −4α1; φ = 2α1−1 and γ =

(
−(λS2

y+λ ∗S2
y(2))Ȳ

2

Ȳ 2+λS2
y+λ ∗S2

y(2)

)
.

To get the optimum solution of the constant ‘α1’ in ˆ̄T ∗s , we differentiate (4.1) with respect to ‘α1’ and equating it to zero, we
have

α̂
∗
1opt. =

−(γ2 +4η)

8α∗2η∗
(4.2)

where η = F1−G1−H1 +D1;

and η∗ = B1 +C1 +A11 +C11−2K1 +2L1 +2M1 +2E1 +2I1−2J1.

Substituting the optimum value from (4.2), the minimum mean squared error of T̂ ∗s is given as

min.MSE(T̂ ∗s ) = γ
2 +α

∗2(A1 +C1 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1)−ψ(D1−F1 +G1 +H1−B1)+ψ
∗

where ψ = −(γ2+4η)
2 and ψ∗ = ψ2

α∗2η∗
.

Methodology 2: Letting ˆ̄y, ˆ̄x, ˆ̄z, x̄′ and z̄′ are being used and there is absence of non-response and measurement error on
the sensitive study as well as both the sensitive auxiliary variables i.e. (X ,Z) under TPS technique then the chain ratio type
estimator is given as

T̂s = α̂ ˆ̄y
[

α1

( ˆ̄x
x̄′

)( ˆ̄z
z̄′

)
+(1−α1)

(
x̄′

ˆ̄x

)(
z̄′

ˆ̄z

)]
where α̂ = Ȳ 2

Ȳ 2+λS2
y
.

The expressions for the bias as well as mean squared error are expressed as

Bias(T̂s) = α̂
∗{(2α̂1−1)(F2 +D2−H1−G1)+E2− (α̂1−1)C2− α̂1B2−2L1−K1 +M1 + J1 + α̂1ζ}− β̂

∗

where β̂ ∗ =

(
Ȳ 2+λS2

y
Ȳ + Ȳ

)
; α̂∗ = Ȳ 3

Ȳ 2+λS2
y
.

MSE(T̂s) = γ̂
2 +α

∗2[A2 +θC2 +θA11 +θC11 +4α
2
1 B2 +2φF2−2φG1−2φH1 +4α1D2−2θK1 +2θL1+

4α1φE2 +2θM1 +4α1φ I1−4α1φJ1
]

where γ̂ =

(
−(λS2

y )Ȳ
2

Ȳ 2+λS2
y

)
.
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which is optimum when

α̂1opt. =
−(γ̂2 +4η)

8α∗2η∗

where η̂ = F2−G1−H1 +D2;

and η̂∗ = B2 +C2 +A11 +C11−2K1 +2L1 +2M1 +2E2 +2I1−2J1.

The minimum mean squared error for this methodology is given as

min.MSE(T̂s) = γ̂
2 + α̂

∗2(A2 +C2 +A11 +C11−2K1 +2L1 +2M1−2F2 +2G1 +2H1)− ψ̂(D2−F2 +G1+

H1−B2)+ ψ̂
∗

where ψ̂ = −(γ̂2+4η̂)
2 ; ψ̂∗ = ψ̂2

α̂∗2η̂∗
.

Methodology 3: Suppose ȳ∗, x̄∗, z̄∗, x̄′ and z̄′ are employed and there is presence both non-response and measurement error on
the sensitive study and auxiliary variables i.e. (X ,Z) using TPS technique. For this strategy the chain ratio type estimator is
given as

T ∗s = α ȳ∗
[

α1

(
x̄∗

x̄′

)(
z̄∗

z̄′

)
+(1−α1)

(
x̄′

x̄∗

)(
z̄′

z̄∗

)]
where α = Ȳ 2

Ȳ 2+λS2
y+λ ∗S2

y(2)
.

The formulation of bias and MSE when there is a presence of non-response and measurement error are given as

Bias(T ∗s ) = α
∗{(2α1−1)(F1 +D1−H1−G1)+E1− (α1−1)C3−α1B3−2L1−K1 +M1 + J1 +α1ζ}−β

∗

and

MSE(T ∗s ) = γ
2 +α

∗2[A3 +θC3 +θA11 +θC11 +4α
2
1 B3 +2φF1−2φG1−2φH1 +4α1D1−2θK1 +2θL1+

4α1φE1 +2θM1 +4α1φ I1−4α1φJ1
]

which in itself is optimal when

α
∗
1opt. =

−(γ2 +4η)

8α∗2η∗∗

where η∗∗ = B3 +C3 +A11 +C11−2K1 +2L1 +2M1 +2E1 +2I1−2J1.

Then, the min.MSE for this strategy is expressed as

min.MSE(T ∗s ) = γ
2 +α

∗2(A3 +C3 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1)−ψ(D1−F1 +G1+

H1−B3)+ψ
∗∗

where ψ∗∗ = ψ2

α∗2η∗∗
.

5. Efficiency Comparisons of Estimator(s)
To assess the effectiveness of the chain type proposed estimator, we relate it to the ratio and product estimator in different

strategic plans as

(i) min.MSE(T̂ ∗s )−MSE(T̂ ∗r )< 0

if γ
2 +α

∗2â∗+ψ
∗−ψ b̂∗− ĉ∗ < 0
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(ii) min.MSE(T̂s)−MSE(T̂r)< 0

if γ̂
2 + α̂

∗2â+ψ
∗−ψ b̂− ĉ < 0

(iii) min.MSE(T ∗s )−MSE(T ∗r )< 0

if γ
2 +α

∗2a∗+ψ
∗−ψb∗− c∗ < 0

(iv) min.MSE(T̂ ∗s )−MSE(T̂ ∗p )< 0

if γ
2 +α

∗2â∗+ψ
∗−ψ b̂∗− d̂∗ < 0

(v) min.MSE(T̂s)−MSE(T̂p)< 0

if γ̂
2 + α̂

∗2â+ψ
∗−ψ b̂− d̂ < 0

(vi) min.MSE(T ∗s )−MSE(T ∗p )< 0

if γ
2 +α

∗2a∗+ψ
∗−ψb∗−d∗ < 0

where â∗ = A1 +C1 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1;

b̂∗ = D1−F1 +G1 +H1−B1;

ĉ∗ = A+κ2B+κ2A11−2κ2I +2ϕG+2ϕD+(κ1 +κ2κ2);

â = A2 +C2 +A11 +C11−2K1 +2L1 +2M1−2F2 +2G1 +2H1;

b̂ = D2−F2 +G1 +H1−B2;

ĉ = Â+κ2B̂+κ2A11−2κ2I +2ϕG+2ϕD̂+(κ1 +κ2κ2);

a∗ = A3 +C3 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1;

b∗ = D1−F1 +G1 +H1−B3;

c∗ = A+κ2B+κ2A11−2κ2I +2ϕG+2ϕD+(κ1 +κ2κ2);

When the above conditions from (i)− (vi) are met then it is evident that the suggested estimators i.e. T̂ ∗s , T̂s and T ∗s are efficient
than the existing one.

min.MSE(T̂s)< min.MSE(T ∗s )< min.MSE(T̂ ∗s )< MSE(T̂p)< MSE(T ∗p )< MSE(T̂ ∗p )< MSE(T̂r)< MSE(T ∗r )< MSE(T̂ ∗p ).

To verify the performance of the above relations, we execute a simulation study by using both hypothetical and real populations
in R software which is relinquished in the next section.

6. Simulation Study
To gain a better understanding of the efficiency of the recommended estimators, we leverage R software to perform a

simulation study to validate the effectiveness of our proposed estimator as compare to the ratio and the product type estimator(s).
We generated a population of N = 8000 we take sample of size n′ = 6000 and suppose that the response rate is 40% in the
first phase. From n′ we take sample of size n = 2000 using R software for different values of k and π sequentially. A variable
X ∼ N(a,b); Z ∼ N(a,b) and variable Y which is related with X and Z is defined as Y = X +Z +N(0,1) also generated from
normal distribution where a = 0.5 and b = 1.5. The scrambling variables S∼ N(1,a) and S′ ∼ N(0,1), both taken from normal
distribution and results are averaged over 8,000 iterations.
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The unified measure ω as described by Gupta et al. [21] are represented by

ω̂
∗ =

MSE(T̂ ∗i )
ϒ

; (6.1)

where ϒ = E(–Z1−Y )2 is the privacy level of sensitive models and T ∗i = T̂ ∗r , T̂ ∗p and T̂ ∗s .

ω̂ =
MSE(T̂i)

ϒ
; (6.2)

where T ∗i = T̂r, T̂p and T̂s.

π k
Estimator(s) Unified Measure(ω̂∗)

MSE(T̂ ∗r ) MSE(T̂ ∗p ) MSE(T̂ ∗s ) ω̂∗(T̂ ∗r ) ω̂∗(T̂ ∗p ) ω̂∗(T̂ ∗s )

0.2

2 0.0747 0.0601 0.0255 0.0254 0.0205 0.0087
3 0.0963 0.0767 0.0326 0.0328 0.0261 0.0111
4 0.1189 0.0974 0.0404 0.0406 0.0332 0.0138
5 0.1403 0.1131 0.0475 0.0479 0.0385 0.0162

0.4

2 0.0755 0.0616 0.0262 0.0248 0.0202 0.0086
3 0.0977 0.0790 0.0339 0.0321 0.0260 0.0111
4 0.1210 0.1006 0.0423 0.0398 0.0331 0.0139
5 0.1429 0.1159 0.0494 0.0470 0.0381 0.0162

0.6

2 0.0757 0.0656 0.0286 0.0246 0.0213 0.0092
3 0.0983 0.0843 0.0371 0.0319 0.0274 0.0121
4 0.1220 0.1050 0.0455 0.0396 0.0343 0.0148
5 0.1440 0.1229 0.0537 0.0468 0.0399 0.0174

0.8

2 0.0764 0.0671 0.0294 0.0240 0.0210 0.0092
3 0.0995 0.0867 0.0385 0.0312 0.0272 0.0121
4 0.1230 0.1087 0.0474 0.0388 0.0341 0.0149
5 0.1464 0.1257 0.0557 0.0459 0.0395 0.0174

1

2 0.0837 0.0709 0.0298 0.0256 0.0216 0.0091
3 0.1109 0.0911 0.0386 0.0339 0.0278 0.0118
4 0.1351 0.1106 0.0464 0.0413 0.0338 0.0141
5 0.1613 0.1314 0.0557 0.0493 0.0401 0.0170

Table 2. Comparison of Mean squared error and privacy and efficiency (ω̂∗) of T̂ ∗s , T̂ ∗r and T̂ ∗p at varying values of k and π with
non-response and measurement error.

Table 1 delineates the comparison of mean squared error of the suggested estimator T̂ ∗s with other conventional estimators
i.e. T̂ ∗r and T̂ ∗p and privacy protection measure suggested by Gupta et al. [21] which is represented in (6.1) at distinct values of
k and π in the presence of non-response and measurement error at the same time under TPS technique. For increase in the
value of π from 0.2 to 1 and k from 2 to 5, the mean squared error of each estimator grows and same behaviour is observed for
the unified measure (ω̂∗).

Table 2 depicts the comparison of mean squared error of the suggested estimator T̂s with other existing estimators i.e. T̂r and T̂p
and privacy protection measure which is represented in (6.2) at distinct values of k and π in the absence of non-response and
measurement error. The mean squared error of each estimator increases with increase in the value of π from 0.2 to 1 and k from
2 to 5, and same performance is detected for the privacy protection (ω̂∗).

It is also visualize from Tables 1 and Table 2 that the MSEs of ratio estimators ( T̂ ∗r , T̂r) and product estimators (T̂ ∗p , T̂p) are
the highest for all analyzed values of k, whereas our recommended estimators, (T̂ ∗s , T̂s) is the lowest among the ratio and the
product type estimators. Also, the privacy measure is least for the proposed estimator (T̂ ∗s , T̂s) in the presence and absence
of non-response and measurement error simultaneously. In both the scenario‘s, (MSE(T̂ ∗s ), MSE(T̂s)), i.e. the recommended
estimator, is the most efficient amongst the alternatives. Furthermore, Table 1 and Table 2 indicates that the proposed estimator
outperformed existing estimators also in terms of the unified measure (ω̂∗ and ω̂) of privacy and efficiency.

Table 3 illustrates the comparison of mean squared error of the suggested estimator T ∗s with other existing estimators i.e. T ∗r
and T ∗p at specific values of k in the absence of non-response and measurement error entirely at the same time. When the value
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π k
Estimator(s) Unified Measure(ω̂)

MSE(T̂r) MSE(T̂p) MSE(T̂s) ω̂(T̂r) ω̂(T̂p) ω̂(T̂s)

0.2

2 0.0209 0.0269 0.0080 0.0254 0.0092 0.0027
3 0.0217 0.0274 0.0082 0.0328 0.0093 0.0028
4 0.0226 0.0279 0.0086 0.0406 0.0095 0.0029
5 0.0233 0.0283 0.0088 0.0479 0.0096 0.0030

0.4

2 0.0227 0.0285 0.0087 0.0248 0.0094 0.0028
3 0.0243 0.0294 0.0093 0.0321 0.0097 0.0030
4 0.0261 0.0306 0.0100 0.0398 0.0100 0.0033
5 0.0275 0.0313 0.0105 0.0470 0.0103 0.0034

0.6

2 0.0240 0.0311 0.0099 0.0246 0.0101 0.0032
3 0.0263 0.0325 0.0108 0.0319 0.0105 0.0035
4 0.0289 0.0341 0.0118 0.0390 0.0110 0.0038
5 0.0310 0.0354 0.0126 0.0468 0.0115 0.0040

0.8

2 0.0257 0.0328 0.0107 0.0240 0.0103 0.0033
3 0.0287 0.0347 0.0120 0.0312 0.0109 0.0037
4 0.0321 0.0368 0.0133 0.0388 0.0115 0.0041
5 0.0348 0.0384 0.0143 0.0459 0.0120 0.0044

1

2 0.0294 0.0348 0.0116 0.0256 0.0106 0.0035
3 0.0335 0.0371 0.0129 0.0339 0.0113 0.0039
4 0.0372 0.0392 0.0142 0.0413 0.0119 0.0043
5 0.0410 0.0416 0.0158 0.0493 0.0127 0.0048

Table 3. Comparison of Mean squared error and privacy and efficiency (ω̂) of T̂r, T̂p and T̂s at varying values of k and π

without non-response and measurement error.

k
Estimator(s)

MSE(T ∗r ) MSE(T ∗p ) MSE(T ∗s )
2 0.0556 0.0529 0.0205
3 0.0692 0.0659 0.0254
4 0.0849 0.0815 0.0301
5 0.0960 0.0926 0.0347

Table 4. Comparison of Mean squared error of T ∗r , T ∗p and T ∗s at varying values of k with complete non-response and
measurement error.

of k tends to increase, the mean squared error of each estimator also increases. The MSE of the suggested estimator i.e. T ∗s is
minimal as the MSEs of the conventional one viz T ∗r and T ∗p are highest.

6.1 Natural population data set
The natural population dataset is based on abortion rates form Statistical Abstract of the United States: 2011 to elucidate

the efficacious performance of our proposed estimator. The data is of N = 51 states and union territories of United States then a
random sample is drawn from the population i.e., n′ = 20. From n′ we take sample of size n = 12. Let y, x, z be the number of
abortions reported in the state of US during the years 2000, 2004, and 2005 respectively. The results are shown in Table 5 for
different probability levels of sensitive variables, i.e. π = 0.2,0.4,0.6,0.8,1 when k = 2.
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Estimator(s) π

(Unified Measure) 0.2 0.4 0.6 0.8 1
MSE(T̂ ∗r ) 0.1500161 0.1500946 0.1501633 0.1502234 0.1502760
(ω̂∗(T̂ ∗r )) (0.0002191) (0.0002192) (0.0002193) (0.0002194) (0.0002195)
MSE(T̂ ∗p ) 0.1550136 0.1551421 0.1552544 0.1553527 0.1554388
(ω̂∗(T̂ ∗p )) (0.0002264) (0.0002266) (0.0002267) (0.0002269) (0.0002270)
MSE(T̂ ∗s ) 0.0346015 0.0345727 0.0345476 0.0345256 0.03450639
(ω̂∗(T̂ ∗p )) (0.0000505) (0.0000505) (0.0000504) (0.0000505) (0.0000504)
MSE(T̂r) 0.1492835 0.1493620 0.1494306 0.1494907 0.1495434
(ω̂(T̂r)) (0.0002180) (0.0002181) (0.0002182) (0.0002183) (0.0002184)
MSE(T̂p) 0.1540969 0.1542253 0.1543376 0.1544359 0.1545220
(ω̂(T̂p)) (0.0002251) (0.0002252) (0.0002254) (0.0002256) (0.0002257)
MSE(T̂s) 0.0348155 0.0347863 0.0347609 0.0347386 0.0347191
(ω̂(T̂s)) (0.0005085) (0.0005081) (0.0005077) (0.0005074) (0.0005071)

Table 5. Comparison of Mean squared error and unified measure at varying values of π when k = 2 and
(MSE(T ∗r ) = 0.081953, MSE(T ∗p ) = 0.088362 & MSE(T ∗s ) = 0.057562)

Table 5 represents the comparison of mean squared error and unified measure of the proposed estimator i.e., (T̂ ∗s , T̂s and
T ∗s ) with other existing estimators i.e. (T̂ ∗r , T̂r and T ∗r ) and (T̂ ∗p , T̂p and T ∗p ) at specific values of π in the presence and absence
of non-response and measurement error simultaneously. When the value of π increases, the mean squared error and unified
measure of existing estimators also increases but the mean squared error and unified measure of proposed estimator decreases.
The MSE of proposed estimator is lowest and unified measure is highest which finds that the proposed estimator is better and
each respondent privacy is protected as compared to the other existing estimators.

7. Conclusion
This study demonstrates a new chain ratio type estimator for estimating the population mean of the sensitive study as well

as auxiliary variables in the presence of non-response and measurement error under two-phase sampling technique by utilizing
ORRT models. The bias and mean squared errors of the proposed estimator are assessed up to the first order approximation.
The efficiency of the proposed chain ratio type estimator has been compared with that of the existing one under TPS using two
auxiliary variables. The condition by which the proposed estimator T̂ ∗s proven to be more efficient than other existing estimators,
notably T̂ ∗r and T̂ ∗p are also formed. The theoretical facts have been supported by conducting an empirical study. We executed a
model-based simulation and a real dataset in R software to verify the theoretical results, and from the simulation results i.e.,
both hypothetical and real population shows that the suggested estimator outperform the other conventional estimators. As a
result, if the requirements in Section 5 are satisfied, then the suggested estimators are encouraged for use in practice.
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