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ABSTRACT
This paper presents a novel approach aimed at bolstering network resilience against traffic accidents, particularly when users
possess complete information about accident locations. Two new measures are introduced to evaluate the performance of the
network and the importance of a link within the network. In addition, an objective function is designed to quantify optimal trip
scheduling following an accident that guides investment decisions in network infrastructure. Additionally, we propose a model for
addressing the Accident Improvement Problem and put forth a heuristic algorithm to solve this model. To illustrate the feasibility
and effectiveness of the proposed methodologies, we present and analyze two illustrative examples, one at a small scale and the
other at a medium scale. The findings underscore how the occurrence of accidents can markedly alter the importance of a link
within the network during time. Unlike the prevailing trend in existing studies, which often overlook the repercussions of accidents
on traffic flow along other links, our research highlights the importance of considering the impact of newcomers on the routes of
existing travelers within the network. These findings demonstrate that such considerations can significantly influence the overall
performance of the network in the event of an accident.

Keywords: Network performance measure, Link importance, Accident improvement problem, Accident prevention.

1. Introduction

Traffic accidents leave considerable undesirable effects in terms of property losses, injuries, and deaths, as well as family
disruptions and societal economic disutility. In addition to personal costs, there are significant social damages that include those
related to Emergency medical services, hospitals and legal (Karatas and Yakıcı, 2021). An accident can make the performance
of the transportation network unsustainable and results in noticeable costs upon other users of the networks in the form of traffic
delays and congestion.

Traffic accidents exact a heavy toll, resulting in significant property damage, injuries, fatalities, and profound societal and
economic consequences. These consequences encompass personal hardships, including physical injuries and emotional trauma, as
well as broader societal burdens, such as increased demands on healthcare systems and legal processes. Moreover, traffic accidents
disrupt the normal functioning of transportation networks, leading to noticeable costs for other users, such as traffic delays and
related inconveniences (Ji et al., 2019; Zhang and Xiong, 2017).

The occurrence of traffic accidents not only reduces road capacity but also unpredictably extends travel times for network users,
resulting in a diminished level of service and increased traffic congestion. Traffic congestions as well affect the performance of the
network and its reliability and sustainability, significantly (Sharma and Chauhan, 2022). To circumvent the uncertainties associated
with accident-related delays and the anxiety of potentially missing scheduled arrivals, travelers are inclined to seek alternative
routes as soon as they become aware of an accident, irrespective of the severity of the delay (Qiao et al., 2014). Consequently,
users are willing to incur certain costs to avert uncertain delays, which they perceive concerning their origin-destination (O-D)
travel time. In cases where suitable alternative routes are unavailable, travelers are forced to endure prolonged delays caused
by the accident, resulting in traffic congestion and highly inefficient urban transportation network performance, a detriment to
both network managers and users (Mahmoudi et al., 2019). On the other hand, the absence of viable substitute routes not only
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affects those directly impacted by the accident but also causes unwarranted delays for users on the designated alternative routes.
Depending on the duration of the accident and its residual effects on traffic flow, this may create a second wave of substitute route
seekers, and so on. In this process, a portion of the O-D trips becomes unsuitable, adding to the overall disruption (Poorzahedy and
Bushehri, 2005). Therefore, it is imperative to conduct further research to comprehensively explore and analyze the ramifications
of traffic accidents on the performance of urban transportation networks.

Research on the evaluation of street network performance under uncertain future conditions can be broadly categorized into two
main groups (Chen et al., 2011; Lam, 1999). These groups address distinct aspects of network performance and disruptions. The
first group of studies focuses on recurrent congestion, which arises from random fluctuations in demand and supply (capacity)
within the network. In particular, the fluctuations in supply may, in part, result from user behavior. In recurrent congestion
scenarios, users typically experience less time pressure because they have the opportunity to employ preventive strategies, such
as selecting alternative routes or adjusting their departure times to mitigate anticipated delays (Huang et al., 2018). Conversely,
the second group of studies aims to assess network performance in the presence of non-recurrent congestions. Non-recurrent
congestions manifest as disruptions caused by events with both long-term and short-term effects. Long-term effects can stem from
events like earthquakes, floods, or network maintenance operations, while short-term effects often result from incidents such as
traffic accidents (Yu et al., 2016). In scenarios characterized by non-recurrent congestion, travelers face greater time constraints
and a higher degree of uncertainty, as these disruptions are typically unexpected. Unlike recurrent congestion, where travelers
have the opportunity to plan ahead, non-recurrent congestion events necessitate real-time decision-making and adaptation to the
immediate circumstances.

The modeling of non-recurrent congestion in transportation networks initially emerged as an endeavor to quantify the adverse
consequences stemming from capacity reductions on specific network links (Chen et al., 2002; Dhahir and Hassan, 2019). Within
the realm of urban transportation networks, various types of network disruption problems, each targeting different objectives
or outcomes, have been explored (Adelé et al., 2019). Some studies aim to pinpoint the links most in need of improvement or
protection as a resource-allocation measure (Murray-Tuite and Mahmassani, 2004; Poorzahedy and Bushehri, 2005; Sohn, 2006).
While significant work has been undertaken to evaluate and enhance network performance in non-recurrent congestion scenarios
characterized by long-term effects, the literature is relatively sparse when it comes to non-recurrent congestion with short-term
impacts, such as traffic accidents. There is a dearth of research addressing both the analysis of network performance and the
development of measures to improve it in such situations. Sansó and Soumis (1991) introduced a method for assessing network
performance under uncertain conditions, presenting a 3T model specifically designed to analyze traffic accidents in transportation
networks. This model encompasses three distinct phases: before the accident, immediately after the accident, and after users
have received information about the accident occurrence. Poorzahedy and Bushehri (2003) formulated two problems related to
accident management in urban street networks, namely Accident Prevention (AP) and Accident Mitigation (MP). AP focuses
on enhancing critical links to maximize a network performance metric, while MP seeks to optimize network connectedness by
maximizing a different performance measure. Both of these problems are grounded in the concept of link importance. Huang et
al. (2018) conducted an analysis of the impact of non-recurrent congestion on drivers’ speed choices and aggressive behaviors
using a substantial dataset of taxi floating car data.

A widely adopted approach in the literature for enhancing the resilience of transportation networks against the impacts of
accidents involves the identification of critical nodes or links within the network and allocating resources to them strategically.
In this regard, Zhou and Wang (2017) integrated a ranking method with an innovative mesoscopic model aimed at assessing the
performance of urban transportation networks and identifying critical links within these networks, considering the vulnerability
and potential of each link. The proposed model was based on the cell transmission model and was applied to real-scale networks,
demonstrating its practicality and effectiveness in improving urban transportation systems. Drawing on graph theory, transportation
network design, and urban planning principles, Psaltoglou and Calle (2018) proposed a methodology for identifying critical points
in urban transportation networks, with the goal of optimizing the allocation of city resources. They defined the criticality of a
node as the connectivity and activity density of that node over time. To evaluate the connectivity of a node, they took into account
various factors, including vehicle capacity, distance, and frequency. For assessing activity density, they relied on indicators such
as population density, land use, and urban form. Ghavami (2019) developed a multi-criteria integrated model for identifying
the most crucial between cities roads within the network to inform decision-making in disaster scenarios. The proposed method
was an integrated Geographic Information System (GIS) and Multi-Criteria Decision Making (MCDM) approach to sort data,
identify evaluation criteria and rank links using the Analytic Hierarchy Process (AHP) technique. Vodák et al. (2019) introduced a
deterministic algorithm designed to identify the most critical links within the network. The proposed algorithm was centered on the
search for the shortest cycles and introduced a measure based on standard deviation to assess the vulnerability of a link. The main
advantage of their algorithm was being rapider than algorithms that necessitate a comprehensive scan of the entire network, such as
the brute-force algorithm. Tian et al. (2019) developed an approach to identify key links within urban transportation networks. Their
method primarily relied on the temporal-spatial distribution of traffic congestion and encompassed three key phases: identifying
congestion states, computing the time distribution of congestion states, and determining critical links within the network. They
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utilized time-interval coverage as a metric to classify a link as either critical or non-critical. Lin and Lin (2022) focused on the
evaluating the vulnerability of transportation systems and proposed a novel framework to identify the most vulnerable components
in transportation networks. They developed a nonlinear programming considering equilibrium constraints and users’ route choices.
They also suggested a short-term planning and a long-term planning vulnerability measure to identify vulnerable components.
Vodák et al. (2022) investigated the problem of identifying combinations of road links that can cause severe network disruption
when blocked simultaneously. To this end, they used three modified metaheuristic algorithms, including Simulated Annealing,
Guided Local Search, and Variable Neighborhood Search, and compared their performance. Applying these algorithms to four
real world networks, they showed that Simulated Annealing outperformed other algorithms. Iliopoulou and Makridis (2023)
a multi-objective optimization was introduced for identifying critical disruption scenarios in public transport networks. They
employed a transit assignment model to gauge passenger reactions to these disruptions. The method generates combinations of
transit network link failures that maximize unsatisfied demand and additional travel time, encompassing passengers with no viable
travel alternatives and those whose optimal paths are changed. Their results indicated that optimization-based attacks can reveal
scenarios with significant passenger disconnections and elevated detour costs, outperforming single-objective and centrality-based
approaches in identifying critical disruptions.

In this paper, we introduce a novel method aimed at enhancing the performance of urban networks during instances of non-
recurrent congestion, with a particular emphasis on traffic accidents. Our approach centers on the identification of crucial network
links, and subsequently, the optimization of these links using the limited available resources to achieve the maximum improvement
in the performance of the network. In comparison to existing research, this study offers several notable contributions:

• In contrast to most existing studies, which often assume that the alteration of travelers’ routes due to accidents on their
intended paths has a negligible effect upon the level of service offered to other travelers, so that they keep on using their usual
paths and that their trips remain suitable (Ghavami, 2019; Poorzahedy and Bushehri, 2003, 2005), this paper takes a more
realistic approach. We acknowledge that in the real world, the redirection of travelers can have significant repercussions on
network performance and user experiences. As such, we address this assumption to better align our model with real-world
scenarios.

• some prior research has focused on evaluating trip suitability based on the moment when the network state changes due to
an accident (i.e., transitioning to state). These studies have utilized the metric of "remaining time-hour" to gauge network
performance after the accident (Ghavami, 2019; Poorzahedy and Bushehri, 2005). In this study, we introduce an improved
measure, the mean total “suitable trip-hour” in the network after accident occurrence, to more accurately assess network
performance, considering the suitability of trips over time.

• Previous approaches solely measure link importance by considering the presence or absence of that link (Ghavami, 2019;
Poorzahedy and Bushehri, 2005). This study not only assess a link’s importance in facilitating suitable paths for network
users but also gauge its significance in providing alternative routes to users who have another accident-struck link on their
intended paths as well.

• Our proposed approach in this paper places a strong emphasis on network reliability in the face of incidents hampering
flows. We introduce a relevant and effective importance index for network links, with the primary objective of solving a
network design problem aimed at enhancing the network’s resilience to such incidents. While the problem we address is of
significant importance to cities worldwide, especially those grappling with congestion, to the best of the authors’ knowledge
only a limited number of studies have explored this issue to date (El-Maissi et al., 2020; Iliopoulou and Makridis, 2023; Ma
et al., 2022). This underscores the novelty and importance of our research in addressing a critical challenge faced by urban
transportation networks.

According these discussions, Table 1 presents a brief comparison between the current study and previous studies.

• Realistic Approach to Traffic Redirection: Acknowledges the significant impact of traffic redirection on network perfor-
mance and user experience, challenging the assumption that traffic alterations due to accidents are negligible.

• Advanced Network Performance Measurement: Introduces the "suitable trip-hour" metric, providing a more accurate
assessment of network performance post-accident over time.

• Comprehensive Link Importance Assessment: Evaluates link importance not only by their presence but also by their role
in providing alternative routes during accidents.

• Network Reliability and Resilience: Focuses on enhancing network resilience to incidents, introducing a novel importance
index for network links to solve network design problems related to congestion and accidents.

• Accident Improvement Model: A new model is proposed for addressing the Accident Improvement Problem.
• Heuristic Algorithm: The paper proposes a heuristic algorithm as a practical solution to the model, highlighting its efficacy

through illustrative examples.
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Main features Previous Research Current study 
Network Performance 
Measures 

Limited to standard metrics like 
travel time and delay 

Introduction of new measures considering 
full user information 

Approach to Traffic 
Accidents 

Focus on long-term effects or general 
congestion 

Specific focus on accident impact and 
immediate response 

Traffic Redirection 
Impact 

Assumes negligible impact of traffic 
redirection due to accidents 

Realistically assesses significant impacts 
of traffic redirection on network 
performance and user experience 

Link Importance 
Assessment 

Measures link importance based on 
presence or absence 

Evaluates link importance in facilitating 
suitable paths and providing alternative 
routes during accidents 

Modelling Techniques Traditional models without real-time 
data integration 

Novel model integrating real-time accident 
information 

Solution Methods Conventional algorithms Advanced heuristic algorithm for practical 
application 

Impact Analysis Overlooks the dynamic nature of 
accidents 

Detailed analysis of the temporal impact of 
accidents on links 

 

 

 
The remainder of this paper follows this structure: Section 2 introduces the relevant definitions, underlying assumptions, and

the notation employed. In Section 3, we present our proposed model. Section 4 outlines the solution procedure suggested to solve
the proposed model. To demonstrate the practicality and effectiveness of our algorithm, we solve and analyze several numerical
examples of varying scales, encompassing both small and medium sizes, in Section 5. Lastly, in Section 6, we conclude the study
and outline potential avenues for future research.

2. Notations

Suppose that accidents take place in the network links (intersections can be represented by links). The state of the network at any
given time can be represented by c=(...,𝑐𝑖 𝑗 ...), where 𝑐𝑖 𝑗 = 1/0 shows that in the meanwhile no/an accident has occurred in link
(i,j) . Therefore, c°=(1,...,1,...,1) is the state of the network with all links in no accident condition. This state is called the prevalent
state. The following notations are used in the modelling the problem in this study:

𝑉 the set of nodes
𝐴 the set of links
𝑁 (𝑉, 𝐴) the urban transportation network
𝑂 the set of origins
𝐷 the set of destinations
𝑛 the number of nodes where 𝑛 = |𝑉 |
𝑃 the set of O-D pairs
(𝑘, 𝑠) a pair of O-D nodes
𝑑𝑘𝑠 demand of (k,s)
𝑐◦ the current state of the network
𝑐 the state of the network after an accident
𝑡𝑘𝑠 shortest travel time of in prevalent state
𝑡𝑘𝑠 (𝑐) the travel time from origin k to destination s in state c (𝑡𝑘𝑠 (𝑐◦) = 𝑡𝑘𝑠)
𝑡 𝑗𝑠 (𝑐) the average travel time from node j to destination s when the network is in state c .
𝑝𝑘𝑠 the set of paths in the network from origin k to destination s
𝑥𝑘𝑠𝑝 the user equilibrium flow in path p during prevalent state where 𝑝𝜖 𝑝𝑘𝑠 and (𝑘, 𝑠)𝜖𝑃
𝑥𝑖 𝑗 the user equilibrium flow in link (i,j)
𝑡𝑖 𝑗 the average travel time on link (i,j)
𝑚𝑖 𝑗 the number of passengers on link (i,j)
𝑚𝑘𝑠

𝑝 the number of passengers travelling between origin k and destination s on path p
𝑚𝑘𝑠

𝑖 𝑗
the number of passengers on link (i,j) originating from k and heading to s

𝑚𝑠
𝑖 𝑗

the number of passengers on link (i,j) going to s , where 𝑚𝑠
𝑖 𝑗
= Σ𝑘𝜖 𝑜𝑚

𝑘𝑠
𝑖 𝑗

𝑃𝑖 𝑗 the probability of no accidents occurring in link (i,j) during a specific time period, e.g. a peak period or rush hour
𝐶◦
−𝑖 𝑗 the state of the network in which only link (i,j) has been affected by an accident
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3. The proposed model

In this section, we present a model designed to enhance network performance when accidents occur. The core concept of
our model revolves around the identification of important links in the network, and the allocation of resources to these links
within the resource constraints. Investing in the important links is expected to yield the most substantial improvements in network
performance.

3.1. Network’s Performance Measure

Assume that the probability of an accident occurring in a particular link during the analysis period is known. This probability
can be estimated based on historical data from previous periods. Additionally, we presume that all users within the network receive
accident information promptly following its occurrence, typically through channels such as radio broadcasts or variable message
signs. It is a common trend that travelers who initially planned to traverse the link affected by the accident on their routes to their
respective destinations often opt to modify their routes, irrespective of the accident’s severity. This study considers the following
assumptions:

Assumption 1. The probability of an accident occurring over a link is uniformly distributed along the length of that particular
link. If this condition is not met, the links are redefined by segmenting them into smaller links to meet this condition.

Assumption 2. Accident events are assumed to be independent of one another, both within the network as a whole and within
individual links of the network.

Assumption 3. Travelers along a given path are considered to be uniformly distributed along the entire path. Based on this
assumption, travelers are uniformly distributed along every individual link within a path. Furthermore, it can be demonstrated with
ease that the number of trip-makers on a link within a path is directly proportional to the travel time associated with that specific
link on the path. Additionally, the number of trip-makers traveling along a particular path between an O-D pair is proportional to
the travel time associated with that specific path (Detailed proofs can be found in the Appendix).

To facilitate further discussions, we classify trips into two distinct groups: suitable trip and unsuitable trips. For a predefined
standard threshold 𝜃𝑘𝑠 (𝑒.𝑔., 𝜃𝑘𝑠 = 1.2), trip from origin k to destination s in state c is suitable if 𝑡𝑘𝑠 (𝑐) < 𝜃𝑘𝑠 .𝑡𝑘𝑠 ; otherwise, it is
categorized as unsuitable. 𝑡𝑘𝑠 is shortest travel time from k to s in prevalent state. A suitable trip with a duration of 𝑡𝑘𝑠 (𝑐) has 𝑡𝑘𝑠
suitable trip-hours.

Regarding the accident occurring within a link, trip-makers within the network can be classified into three distinct groups. The
first group consists of travelers currently situated within the accident-affected link. If the accident lies ahead of these travelers,
they have no choice but to proceed through it, rendering their trips unsuitable. Conversely, if the accident is located behind them
as they travel, they continue their journeys unimpeded, ultimately reaching their destinations suitably. The second group includes
travelers who have the accident-affected link on their routes from origin to destination and receive immediate accident notifications.
Upon receiving this information, they make route decisions based on their perceptions of link travel times before the accident,
despite the possibility of these times changing due to route adjustments made by other travelers in response to the accident. The
third group consists of travelers whose routes do not include the accident-affected link. These travelers maintain their original
pre-accident routes. However, their travel times can fluctuate, either increasing or decreasing, as a result of route modifications
made by passengers who initially had the accident-affected link on their pre-accident routes. Consequently, the journeys of travelers
in this group may become unsuitable due to these alterations. Previous studies have typically overlooked the impact of newcomers
on the routes of existing travelers within the network.

To effectively gauge user satisfaction and subsequently improve network performance during traffic accidents, the development
of a robust objective or evaluation criterion is essential. The commonly used objective function in previous studies, namely the
total suitable trips in the network after an accident, lacks the required precision. This criterion fails to distinguish between short
and long trips impacted by accidents. Therefore, in this study, we introduce a new metric as our objective function, termed Total
Suitable Trip-Hours. This measure provides a more nuanced and accurate assessment of the network’s performance by considering
not only the suitability of trips but also their duration, ultimately offering a more comprehensive evaluation of user satisfaction.

Let 𝐸 (𝑐) and 𝐸 (𝑐◦) represent the mean total suitable trip-hours in the network in states c and 𝑐◦ , respectively, where c denotes
the current state of the network and 𝑐◦ is the state of the network without any accidents across the entire network. The Performance
Index (PI) of the network in state c can be defined as follows:

𝑃𝐼 (𝑐) = 𝐸 (𝑐)/𝐸 (𝑐◦) (1)
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Based on the assumptions, the mean total suitable trip-hours of the travelers on link (i,j) heading to destination 𝑠 in state 𝑐 of
the network, 𝐸 𝑠

𝑖 𝑗
(𝑐), can be determined as follows:

𝐸 𝑠
𝑖 𝑗 (𝑐) =

∑︁
𝑘𝜖𝑂

[
𝑚𝑘𝑠

𝑖 𝑗 𝑡
𝑘𝑠 − 𝑚𝑘𝑠

𝑖 𝑗

(
𝑡𝑘𝑠/2

)
�̄�𝑖 𝑗 (𝑐)

]
𝑍 𝑗𝑘𝑠 (𝑐) (2)

where �̄�𝑖 𝑗 (c) is a binary variable, taking the value of 1 if an accident occurs in link (i,j) in state c, and 0 otherwise. 𝑍 𝑗𝑘𝑠 (c) is a
binary variable equal to 1 if a trip from k to s passing through node j remains suitable in state c, and 0 otherwise. Eqs. (1) and (2)
result the following formulation to obtain PI(c) :

𝑃𝐼 (𝑐) =
∑︁
𝑗 𝜖 𝑉

∑︁
𝑠𝜖 𝐷

∑︁
𝑘𝜖𝑂

(
Φ 𝑗𝑘𝑠 − 𝜓 𝑗𝑘𝑠 (𝑐)

)
.𝑍 𝑗𝑘𝑠 (𝑐) (3)

where:

Φ 𝑗𝑘𝑠 (𝑐) =
∑︁

𝜌𝜖 𝜌𝑘𝑠

∑︁
(𝑖, 𝑗 ) 𝜖 𝐵 𝑗

𝑋 𝑘𝑠
𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗 , 𝜌.𝑡

𝑘𝑠/
∑︁

(𝑘,𝑠) 𝜖 𝑃
𝑑𝑘𝑠 .

(
𝑡𝑘𝑠

)2
(4)

𝜓 𝑗𝑘𝑠 (𝑐) =
∑︁

𝜌𝜖 𝜌𝑘𝑠

∑︁
(𝑖, 𝑗 ) 𝜖 𝐵( 𝑗 )

𝑋 𝑘𝑠
𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗 , 𝜌.

(
𝑡𝑘𝑠/2

)
.�̄�𝑖 𝑗 (𝑐)/

∑︁
(𝑘,𝑠) 𝜖 𝑃

𝑑𝑘𝑠 .

(
𝑡𝑘𝑠

)2
(5)

additionally, B(j) is the set of links with their head node j . 𝛿𝑘𝑠
𝑖 𝑗, 𝑝

is a binary variable, equal to 1 if link (i,j) belongs to path 𝜌

from origin k to destination s, and 0 otherwise. Please refer to the Appendix for a comprehensive explanation and detailed proofs
of eqs. (2) and (3).

With these considerations in place, we define the Expected Performance Measure (EPM) of a network under the effects of traffic
accidents as follows:

𝐸𝑃𝑀 = 𝐸 [𝑃𝐼] =
∑︁
𝑐𝜖𝐶

𝑝(𝑐).𝑃𝐼 (𝑐) (6)

where p(c) is the probability of state c of the network, and C is the set of the states that may happen to the network.

3.2. Link Importance Measure

In order to effectively enhance the performance of an urban transportation network in its ability to withstand the impacts of
traffic accidents while operating under full user information, it is crucial to possess a guiding measure for identifying the weak
links of the network. Improving these vulnerable links can lead to a substantial upgrade in the overall network performance. The
importance of link (m,n) in the network, 𝐼𝑚𝑛 , can be defined as the rate of change of EPM with respect to the change in the
probability of non-failure o the prevalent situation on this link as follows:

𝐼𝑚𝑛 = 𝜕 (𝐸𝑃𝑀)/𝜕 (𝑃𝑚𝑛) (7)

Based on this definition, the following approximation can be employed to quantify the importance of a link within the network:

𝐼𝑚𝑛 ≈ (𝑝(𝑐◦)/𝑝𝑚𝑛)
{[

1 − 𝑃𝐼 (𝑐◦−𝑚𝑛)
]
+ Σ(𝑢,𝑣) 𝜖 𝐴

[(
1 − 𝑃𝑢𝑣

)
/𝑃𝑢𝑣

] [
𝑃𝐼

(
𝑐◦−𝑢𝑣

)
− 𝑃𝐼

(
𝑐◦−𝑢𝑣,−𝑚𝑛

)]}
(8)

where (𝑝(𝑐◦)/𝑝𝑚𝑛)
[
1 − 𝑃𝐼 (𝑐◦−𝑚𝑛)

]
measures the reduction in the network performance when only link (m,n) experiences

6
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failure due to traffic accidents. This term, indeed, represents the importance of link (m,n) in providing suitable paths for network

users. However, (𝑝(𝑐◦)/𝑝𝑚𝑛)Σ(𝑢,𝑣) 𝜖 𝐴

[(
1 − 𝑃𝑢𝑣

)
/𝑃𝑢𝑣

] [
𝑃𝐼

(
𝑐◦−𝑢𝑣

)
− 𝑃𝐼

(
𝑐◦−𝑢𝑣,−𝑚𝑛

)]
signifies the pair-wise importance of link

(m,n) in combination with the other links in the network. Hence, this term shows the importance of link in providing alternative
paths to the destinations of the users deprived of access to another accident-struck link. Essentially, it indicates whether link (m,n)
belongs to one or more effective alternative paths. Detailed proofs for eq. (8) can be found in the Appendix.

Substituting eq. (3) in will result:

(
p(c◦)/𝑃𝑚𝑛

) [
1 − 𝑃𝐼 (𝑐◦−𝑚𝑛)

]
=

(
p(c◦/𝑃𝑚𝑛)

) [
1 − ∑

𝑗 𝜖 𝑉

∑
𝑠𝜖 𝐷

∑
𝑘𝜖𝑂 Φ 𝑗𝑘𝑠 .𝑍 𝑗𝑘𝑠 (𝑐◦𝑚𝑛)

]
+

(
p(c◦/𝑃𝑚𝑛)

) [ ∑
𝑗 𝜖 𝑉

∑
𝑠𝜖 𝐷

∑
𝑘𝜖𝑂 𝜓 𝑗𝑘𝑠 (𝑐◦−𝑚𝑛).𝑍 𝑗𝑘𝑠 (𝑐◦𝑚𝑛)

] (9)

where in eq. (9), the first term measures the importance of link (m,n) in providing suitable paths for network users, while the
second term reflects the importance of link (m,n) in facilitating suitable trips for passengers using this link. In addition, based
on eqs. (6) and (7), the changes in the EPM over a specific alternative improvement action of w for any link can be obtained as
follows:

𝑑 (𝐸𝑃𝑀) =
∑︁
(𝑚,𝑛)

𝜕 (𝐸𝑃𝑀)
𝜕 (𝑃𝑚𝑛)

𝑑 (𝑃𝑚,𝑛)𝑑 (𝑝𝑚𝑛) = 𝑃𝑚𝑛𝛼
𝑤
𝑚,𝑛,∀𝑤

∑︁
(𝑚,𝑛)

𝜕 (𝐸𝑃𝑀)
𝜕 (𝑃𝑚𝑛)

𝑃𝑚,𝑛𝛼
𝑤
𝑚𝑛 =

∑︁
(𝑚,𝑛)

𝐼𝑚𝑛𝑃𝑚𝑛𝛼
𝑤
𝑚𝑛 (10)

where an alternative improvement action refers to a candidate action to reduce the likelihood of a traffic accident occurring
on a specific link, consequently enhance its probability of survival.𝛼𝑊

𝑚𝑛 is a ratio that quantifies the extent to which the survival
probability of link (m,n) is augmented through the implementation of the alternative action w.

3.3. The Proposed Model for Accident Improvement Problem

In this section, building upon the measures introduced in the previous sections, we formulate a mathematical programming,
named Accident Improvement Problem (AIP), to improve the network’s performance in mitigating the adverse effects of traffic
accidents as follows:

𝐴𝐼𝑃 :

𝑀𝑎𝑥
∑︁

(𝑚,𝑛) 𝜖 𝐴

𝑊𝑚𝑛∑︁
𝑤=1

[
𝐼𝑚𝑛𝑃𝑚𝑛𝛼

𝑤
𝑚𝑛

]
𝑍𝑤
𝑚𝑛

𝑠.𝑡.

Σ
𝑊𝑚𝑛

𝑊=1 𝑍
𝑤
𝑚𝑛 ≤ 1 ∀(𝑚, 𝑛)𝜖 𝐴

Σ(𝑚,𝑛)Σ
𝑤𝑚𝑛

𝑤=1 𝑐
𝑤𝑙
𝑚 𝑛𝑍𝑤

𝑚𝑛 ≤ 𝐵1 ∀𝑙 = 1, ..., 𝐿
𝑍𝑤
𝑚𝑛𝜖{0, 1} ∀(𝑚, 𝑛)𝜖 𝐴𝑤𝜖{1, ...,𝑊𝑚𝑛}

(11)

where 𝑍𝑤
𝑚𝑛 is a binary variable, which is 1 if action w is selected for link (m,n), 0 otherwise.𝑊𝑚𝑛 is the total number of alternative

improvement actions to reduce the likelihood of traffic accidents on link (m,n). L denotes the number of distinct resource types
available for the implementation of improvement actions.𝐵𝑙 represents the available quantity of recourse type l, and 𝑐𝑤𝑙

𝑚𝑛 is the
resource requirement of resource type l necessary for the execution of alternative action w on link (m,n) . In the context of the
AIP, decision-makers must determine which alternative actions should be applied to each link in order to achieve the maximum
improvement in the network’s performance against the impact of traffic accidents. Hence, the objective function in model (11)
maximizes the cumulative enhancement in the survival probabilities of the candidate links within the network, with weights
assigned based on their importance in the network. The first set of constraints in this model ensures that, for each candidate link,
at most one action can be chosen. The second set of constraints represents the resource constraints, ensuring that the utilization of
resources does not surpass the available quantities.
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4. A solution procedure

Most of the problems related to transportation planning and network design at the network level are highly complex, making it
impossible to solve any proposed mathematical model for real-world networks (Mahmoudi et al., 2022; Mahmoudi, 2019). Various
algorithms have been employed within the transportation science literature to address the inherent complexity of the proposed
mathematical programming model (Agrawal et al., 2022; Vodák et al., 2022). In this section, a solution algorithm is developed to
solve the suggested AIP model. This algorithm requires the flow levels on each link of the network subsequent to the occurrence of
the accident(s). These post-accident flow volumes are then utilized to calculate the travel times experienced by passengers in the
aftermath of the accident state of the network, c. Then, the obtained travel times must be compared with the corresponding values
of the travel times in the prevalent state, 𝑐◦, to determine whether the travel times for these passengers have become unsuitable or
not.

During this process, it becomes imperative to determine new routes for passengers who initially intended to travel via the
accident-affected link(s) but can no longer do so due to the accidents. Moreover, the solution procedure must estimate the increase
or decrease in flow volumes on the links of the new and previous paths, stemming from the redirection of these passengers to
the new paths. To this end, the algorithm must estimate the O-D demand for the impacted passengers after the occurrence of the
accidents. Given that these passengers opt for alternative paths after the accidents, their trip origins no longer align with their
original trip origins. In such cases, the new trip origins can be established as the first nodes at which passengers arrive immediately
following the accidents. As a result, the proposed solution algorithm necessitates the following pieces of information:

𝑇
𝑗𝑠
𝑚𝑛,𝑢𝑣 the demand for destination s, reaching node j as the first node immediately following the accident incidents in

link (m,n) and (u,v) 𝜖 𝐴, (j,s)𝜖𝑉 × 𝐷

𝑋
+𝑚𝑛,+𝑢𝑣
𝑖 𝑗

additional flow on link (i,j), due to failures of links (m,n) and (u,v)

𝑋
𝑚𝑛,𝑢𝑣
𝑖 𝑗

the portion of the trip volume on link (i,j) that was initially intended to pass through links (m,n) or (u,v) before
the accident occurrence on these links, but the accidents prevented this from happening

Taking into account that 𝑥𝑘𝑠𝜌
(
𝑡𝑖 𝑗

𝑡𝑘𝑠

)
and 1

2𝑥
𝑘𝑠
𝜌 are the demand and expected demand, for destination s reaching node j in link (i,j),

in state 𝑐◦−𝑚𝑛,−𝑢𝑣

(
�̄�𝑖 𝑗 (.) = 0

)
, and is hit by an accident , respectively, 𝑇 𝑗𝑠

𝑚𝑛,𝑢𝑣 is estimated as follows:

𝑇
𝑗𝑠
𝑚𝑛,𝑢𝑣 =

∑︁
𝑖 𝜖 𝐵( 𝑗 )

∑︁
𝑘𝜖𝑂

∑︁
𝜌𝜖 𝜌𝑘𝑠

𝑥𝑘𝑠𝜌 𝑡𝑖 𝑗

𝑡𝑘𝑠

[
1 −

�̄�𝑖 𝑗
(
𝑐◦−𝑚𝑛−𝑢𝑣

)
2

]
𝛿𝑘𝑠𝑖 𝑗,𝜌 .𝛿

𝑘𝑠
𝑚𝑛,𝑢𝑣,𝜌 (12)

where 𝛿𝑘𝑠𝑚𝑛,𝑢𝑣,𝑝 is equal to 1 if links (m,n) or (u,v) belong to path 𝜌 from origin k to destination s, and 0 otherwise. 𝑥+𝑚𝑛,+𝑢𝑣
𝑖 𝑗

will be estimated as the algorithm outputs. Finally, 𝑥𝑚𝑛,𝑢𝑣
𝑖 𝑗

is estimated using the following equation:

𝑋
𝑚𝑛,𝑢𝑣
𝑖 𝑗

=
∑︁

(𝑘,𝑠) 𝜖 𝑃

∑︁
𝜌𝜖 𝜌𝑘𝑠

𝑥𝑘𝑠𝜌 𝛿𝑘𝑠𝑖 𝑗,𝜌𝛿
𝑘𝑠
𝑚𝑛,𝑢𝑣,𝜌 (13)

The proposed algorithm is a heuristic procedure to compute the importance of the links and select the appropriate actions to
improve their performances, all while adhering to resource constraints. The algorithm can be broken down into the following steps:

Step 0. Preparation. Define N(V,A) by specifying V and A. Input the survival probabilities, 𝑃𝑢𝑣 , link cost functions, 𝑡𝑢𝑣∀(𝑢, 𝑣)𝜖 𝐴
, and the O-D demands, 𝑑𝑘𝑠 , and travel time suitability standards, 𝜃𝑘𝑠 ,∀(𝑘, 𝑠)𝜖𝑃.

Step 1. Equilibrium flow computation before accident occurrence. Solve the user equilibrium flow problem for the provided
demand 𝑑𝑘𝑠, and compute the path flows

(
𝑥𝑘𝑠𝜌 ,∀𝜌𝜖𝜌𝑘𝑠,∀(𝑘, 𝑠)𝜖𝑃

)
, and the corresponding equilibrium link flows and travel times(

𝑥𝑢𝑣 , 𝑡𝑢𝑣 ,∀(𝑢, 𝑣)𝜖 𝐴
)

Step 2. Specification of the trip condition after the accident. For each link (𝑚, 𝑛)𝜖 𝐴 , follow these steps to determine the
network’s condition in a state where two links have failed due to accident occurrences, with one of these links being link (m,n):

(a) Obtain Φ 𝑗𝑘𝑠 for each 𝑘𝜖𝑂, 𝜓 𝑗𝑘𝑠 (𝑐◦−𝑚𝑛) for each 𝑘𝜖𝑂,𝑇
𝑗𝑠
𝑚𝑛,𝑢𝑣 for each (𝑢, 𝑣)𝜖 𝐴 and 𝑥

𝑚𝑛,𝑢𝑣
𝑖 𝑗

for each (ĳ) and (𝑢, 𝑣)𝜖, 𝐴 for all
( 𝑗 , 𝑠)𝜖𝑉 × 𝐷 , by using eqs. (4)-(5), (12) and (13), respectively.

(b) For each link (𝑢, 𝑣)𝜖 𝐴 , using the equilibrium link travel times 𝑡𝑢𝑣 in Step 1, for all ( 𝑗 , 𝑠)𝜖𝑉 × 𝐷 , assign 𝑇
𝑗𝑠
𝑚𝑛,𝑢𝑣 to the

8
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network (𝑉, 𝐴−𝑚𝑛,−𝑢𝑣) , excluding links (m,n) and (u,v) , by using employing all-or-nothing procedure. Compute the additional
flow resulting from the failures of links (m,n) and (𝑢, 𝑣), 𝑥+𝑚𝑛,+𝑢𝑣

𝑖 𝑗
, for all links (𝑖, 𝑗)𝜖 𝐴−𝑚𝑛,−𝑢𝑣 . Determine the link flows and

travel times after the accidents in links (m,n) and (u,v) , for each link (𝑖, 𝑗)𝜖 𝐴−𝑚𝑛,−𝑢𝑣 :

𝑥𝑛𝑒𝑤𝑖 𝑗 = 𝑥𝑖 𝑗 − 𝑥
𝑚𝑛,𝑢𝑣
𝑖 𝑗

+ 𝑥
𝑚𝑛,+𝑢𝑣
𝑖 𝑗

(14)

𝑡𝑛𝑒𝑤𝑖 𝑗 = 𝑡𝑖 𝑗 −
(
𝑥𝑛𝑒𝑤𝑖 𝑗

)
(15)

(c) For each ( 𝑗 , 𝑠)𝜖𝑉 × 𝐷 compute the shortest (j,s) path travel time before and after the accident occurrences, 𝑡 𝑗𝑠 (𝑐◦) and
𝑡 𝑗𝑠 (𝑐◦−𝑚𝑛,−𝑢𝑣), using 𝑡𝑖 𝑗 (from Step 1) and 𝑡𝑛𝑒𝑤

𝑡 𝑗
(from Eq. (15)), respectively.

(d) If
(
𝑡 𝑗𝑠 (𝑐◦−𝑚𝑛,−𝑢𝑣) − 𝑡 𝑗𝑠 (𝑐◦)

)
≤

(
𝜃𝑘𝑠 − 1

)
𝑡𝑘𝑠 , where the right-hand-side is the maximum allowable delay tolerance for (k,s)

pair, set 𝑍 𝑗𝑘𝑠 (𝑐◦−𝑚𝑛,−𝑢𝑣) (i.e., declare the trips of the passengers from k to s , who visit node j as the first node on their path right
after the simultaneous accident occurrences in links (m,n) and (u,v) , are suitable), otherwise, set 𝑍 𝑗𝑘𝑠 (𝑐◦−𝑚𝑛,−𝑢𝑣) (that is, these
trips end unsuitable).

Step 3. Compute the importance of link(m,n) . Compute the importance of link (m,n) in mitigating the impacts of accidents
in the network, 𝐼𝑚𝑛 , by using Eq. (8) and the information obtained in Step 2.

Step 4. Compute link importance for all links. Repeat Steps 2 and 3 for all links in the network to calculate their respective
importance values.

Step 5. Solve AIP model. Solve AIP model using 𝐼𝑚𝑛,∀(𝑚.𝑛)𝜖 𝐴 and an appropriate integer programming solution method.

Figure 1. The flowchart of the proposed algorithm
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5. Illustrative examples

In this section, we demonstrate the practicality of the proposed approach and examine its outcomes through the solution of two
numerical examples in small and medium sizes. The provided algorithm has been implemented in Gauss software and executed
on a PC with a 2.26 gigahertz Core i7 CPU and Windows Seven, utilizing 4 GB of RAM.

5.1. A small Scale Example: Improving Network Performance by Preventive Actions

Figure 2 shows an example network with 10 nodes and 18 links. Table 2 presents the parameters of the link travel time functions
in the form of 𝑡𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝑏𝑖 𝑗𝑥

4
𝑖 𝑗

. The link survival probabilities (representing the likelihood of no accidents occurring in a specific
time period) are assumed to be 0.98 for all links within the network. The demand from the two origins 1 and 2, heading to the two
destinations 6 and 7 is identical and amounts to 3500 trips per hour. In this example, we consider an average vehicle occupancy of
1 person, and 𝜃𝑘𝑠 = 1.1,∀(𝑘, 𝑠)𝜖𝑃, meaning that a passenger’s travel time is deemed unsuitable if it increases by more than 10%
due to an accident in the network.

Figure 2. Example network 1

Table 2. The network specification of Example1.
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Table 2. The network specification of Example1. 
 

Link ( , )i j  2( 10 )ija hr  4 4( 10 / (1000 / ) )ijb hr veh hr  Link ( , )i j  2( 10 )ija hr  4 4( 10 / (1000 / ) )ijb hr veh hr  

(1,4) 5 0.030 (5,4) 3 0.030 
(1,5) 3 0.030 (8,7) 5 0.030 
(2,3) 5 0.030 (8,9) 3 0.030 
(2,5) 3 0.030 (8,10) 3 0.030 
(3,4) 3 0.030 (9,6) 5 0.030 
(3,8) 3 0.030 (9,8) 3 0.030 
(4,3) 3 0.030 (9,10) 3 0.030 
(4,9) 3 0.010 (10,6) 3 0.030 
(5,3) 3 0.030 (10,7) 3 0.030 

 

 

 

 

 

 

 

 

 

Table 3. Results of the proposed algorithm for Example1. 

Link ( , )m n  ( )mn hrt  (1000 / )mn veh hrx  a
mnI  b

mnI  c
mnI  mnI  *

mnZ  

(1,4) 0.0529 5.5930 0.0522 0.0000 0.0179 0.0701 - 
(1,5) 0.0300 1.4070 0.0080 0.0000 0.0025 0.0105 - 
(2,3) 0.0517 4.9105 0.0452 0.0000 0.0133 0.0585 - 
(2,5) 0.0301 2.0895 0.0119 0.0000 0.0039 0.0158 - 
(3,4) 0.0300 0.0000 0.0000 0.0000 -0.0003 -0.0003 - 
(3,8) 0.0348 6.3175 0.0361 0.1225 0.0558 0.2143 3 
(4,3) 0.0300 0.0000 0.0000 0.0000 -0.0030 -0.0030 - 
(4,9) 0.0335 7.6825 0.0439 0.2747 0.0963 0.4149 3 
(5,3) 0.0300 1.4070 0.0080 0.0000 0.0039 0.0120 - 
(5,4) 0.0301 2.0895 0.0119 0.0000 0.0062 0.0181 - 
(8,7) 0.0517 4.9070 0.0451 0.0000 0.0235 0.0687 - 
(8,9) 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000 - 
(8,10) 0.0300 1.4105 0.0081 0.0437 0.0183 0.0700 - 
(9,6) 0.0529 5.5895 0.0522 0.0000 0.0296 0.0818 - 
(9,8) 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000 - 
(9,10) 0.0301 2.0930 0.0120 0.0648 0.0281 0.1049 1 
(10,6) 0.0300 1.4105 0.0081 0.0598 0.0237 0.0915 - 
(10,7) 0.0301 2.0930 0.0120 0.0887 0.0358 0.1365 2 

Note. 
*

mn
Z  represents choice of alternative action w to upgrade link (m,n) survival probability. 

 

Three alternative actions are available to mitigate accident levels in a link. The first action involves the deployment of patrol
police, where the presence of 1 unit of patrol police on a street increases its "survival" probability (the likelihood of no accidents
occurring) by 1% of its prevalent state. The second alternative includes investing in the enhancement of street infrastructure, such
as signs, signals, markings, geometric design, and maintenance, in addition to choosing the first alternative. In this case, when
1 unit of patrol police is present, 1 unit of investment boosts the survival probability by 1.5% of the prevalent state. Lastly, the
third alternative is the utilization of an "immediate response system," which is implemented in conjunction with the previous two
alternatives. This system rapidly detects accidents and promptly clears the accident scene, effectively making the accident almost
unnoticeable or bearable to other passengers. This results in a near 100% survival probability. In addition, it is assumed that 𝐵1 = 4
units of patrol police, 𝐵2 = 3 units of money to invest for the street condition enhancement, and 𝐵3 = 2 units of the immediate
response system are available resources for implementing these actions.

The results of the proposed algorithm for this problem are reported in Table 3. In this table, 𝐼𝑎𝑚𝑛 shows the importance of link
(m,n) in providing suitable trips for passengers within this link, 𝐼𝑏𝑚𝑛 indicates the importance of link (m,n) in providing suitable
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trips to travelers in the network, and 𝐼𝑐𝑚𝑛 represents the importance of link (m,n) in providing alternative routes to the passengers
whose original routes have been disrupted by traffic accidents. The heuristic Effective Gradient procedure proposed by Ahmed
(1983) is applied to solve the AIP model. This procedure determines a set of links for investment and the best action for each
selected link, in order to maximize the enhancement in the survival probabilities of vulnerable links within the network.

Table 3. Results of the proposed algorithm for Example1.

27 
 

 

 

Table 2. The network specification of Example1. 
 

Link ( , )i j  2( 10 )ija hr  4 4( 10 / (1000 / ) )ijb hr veh hr  Link ( , )i j  2( 10 )ija hr  4 4( 10 / (1000 / ) )ijb hr veh hr  

(1,4) 5 0.030 (5,4) 3 0.030 
(1,5) 3 0.030 (8,7) 5 0.030 
(2,3) 5 0.030 (8,9) 3 0.030 
(2,5) 3 0.030 (8,10) 3 0.030 
(3,4) 3 0.030 (9,6) 5 0.030 
(3,8) 3 0.030 (9,8) 3 0.030 
(4,3) 3 0.030 (9,10) 3 0.030 
(4,9) 3 0.010 (10,6) 3 0.030 
(5,3) 3 0.030 (10,7) 3 0.030 

 

 

 

 

 

 

 

 

 

Table 3. Results of the proposed algorithm for Example1. 
 

Link ( , )m n  ( )mn hrt  (1000 / )mn veh hrx  a
mnI  b

mnI  c
mnI  mnI  *

mnZ  

(1,4) 0.0529 5.5930 0.0522 0.0000 0.0179 0.0701 - 
(1,5) 0.0300 1.4070 0.0080 0.0000 0.0025 0.0105 - 
(2,3) 0.0517 4.9105 0.0452 0.0000 0.0133 0.0585 - 
(2,5) 0.0301 2.0895 0.0119 0.0000 0.0039 0.0158 - 
(3,4) 0.0300 0.0000 0.0000 0.0000 -0.0003 -0.0003 - 
(3,8) 0.0348 6.3175 0.0361 0.1225 0.0558 0.2143 3 
(4,3) 0.0300 0.0000 0.0000 0.0000 -0.0030 -0.0030 - 
(4,9) 0.0335 7.6825 0.0439 0.2747 0.0963 0.4149 3 
(5,3) 0.0300 1.4070 0.0080 0.0000 0.0039 0.0120 - 
(5,4) 0.0301 2.0895 0.0119 0.0000 0.0062 0.0181 - 
(8,7) 0.0517 4.9070 0.0451 0.0000 0.0235 0.0687 - 
(8,9) 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000 - 
(8,10) 0.0300 1.4105 0.0081 0.0437 0.0183 0.0700 - 
(9,6) 0.0529 5.5895 0.0522 0.0000 0.0296 0.0818 - 
(9,8) 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000 - 
(9,10) 0.0301 2.0930 0.0120 0.0648 0.0281 0.1049 1 
(10,6) 0.0300 1.4105 0.0081 0.0598 0.0237 0.0915 - 
(10,7) 0.0301 2.0930 0.0120 0.0887 0.0358 0.1365 2 

     Note. 
*

mn
Z  represents choice of alternative action w to upgrade link (m,n) survival probability. 

Here are some key findings from the analysis:

a. As it is clear from Table 3, in Example Network 1, links (3,8) and (4,9) in Figure 2 have the highest importance. This is
because passengers traveling from origins 1 and 2 to destinations 6 and 7 must pass through either of these two links. These links
play a critical role in providing suitable and alternative routes to connect O-D pairs in the network. Link (4,9) (with 𝑏49 ) has a
higher importance index than link (3,8) (with 𝑏38) due to its higher capacity.

b. Links (1,4), (1,5), (2,3), and (2,5), which connect origins 1 and 2 to the network, have low importance values. This is partly
because travelers who have not yet started their trips after the accident will only do so if their trips become suitable. For these
links, 𝐼𝑏𝑚𝑛, which is the importance of link (m,n) for providing suitable routes to the trip-makers in the network, is zero. This is
another reason for their low importance levels.

c. Links leading to destinations 6 and 7, such as links (8,7), (10,7), (10,6), and (9,6), have higher importance than links starting
at origins 1 and 2. This is because a larger number of passengers in the network rely on these links at the time of the accident to
end their trips suitably, compared to the links starting at origins. Recall that only passengers who are certain of completing their
trips suitably will begin their trips.

d. Links (3,4), (4,3), (8,9), and (9,8), have zero equilibrium flow in the prevalent state, as shown in Table 3. Hence, the respective
values of 𝐼𝑎𝑚𝑛 (for within the link passengers) and 𝐼𝑏𝑚𝑛 (for the network passengers) are zero. Moreover, the corresponding values
of 𝐼𝑐𝑚𝑛 for links (3,4) and (4,3) are negative. This indicates that these two links not only fail to contribute to forming alternative
routes for passengers when accidents occur in other links in the network but, by redirecting new flow to other congested links, they
turn some previously suitable routes into unsuitable ones.

e. The congestion resulting from the redirection of passengers due to traffic accidents can either increase or decrease the
importance of certain links in the network. This is because new route choices can lead to increased congestion on some links
while reducing it on others, thereby making previously suitable paths unsuitable or vice versa. Table 4 shows the importance
values of the links in example 1 when the congestion effects of redirected flows over the links, whether positive or negative, are
not considered. To compute the importance of all links in this case, 𝑥𝑛𝑒𝑤

𝑖 𝑗
in eq.(30) is replaced by 𝑥𝑖 𝑗 . Links (3,8) and (4,9) are

two most important links in the network that together carry all demand in the network. Comparing the respective link importance
values for these two links in Table 3 and 4 shows that the importance values with due considerations of the congestion effects of
redirected flows over the links in Table 3 are higher than the respective values without these effects, shown in Table 4. This is
because when either of these links is involved in an accident, its flow diverts to other link, increasing congestion and the likelihood
of more trips becoming unsuitable in the network. This phenomenon does not happen when the algorithm does not consider this
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diversion in Table 4. As another example, consider links (3,4) and (4,3), which have lower importance values with the diversion
of flow in Table 4 (negative values) than without this diversion in Table 4. The reason is that when traffic diversion occurs, some
passengers choose these links in alternative paths, causing congestion on other paths and rendering their trips unsuitable.

f. Table 3 reveals that model recommends action 3 for the most important links, (3,8) and (4,9), and actions 2 and 1 for the next
most important links, (10,7) and (9,10), respectively.

Table 4. The importance of links in example 1 when the congestion effect of the redirected flows in the network is not considered.
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Table 4. The importance of links in example 1 when the congestion effect of the redirected 
flows in the network is not considered. 
 

Link ( , )m n  a
mnI  b

mnI  c
mnI  mnI  Link ( , )m n  a

mnI  b
mnI  c

mnI  mnI  

(1,4) 0.052 0.000 0.016 0.068 (5,4) 0.012 0.000 0.006 0.018 
(1,5) 0.008 0.000 0.003 0.011 (8,7) 0.045 0.000 0.021 0.067 
(2,3) 0.045 0.000 0.014 0.059 (8,9) 0.000 0.000 0.000 0.000 
(2,5) 0.012 0.000 0.004 0.016 (8,10) 0.008 0.044 0.02 0.071 
(3,4) 0.000 0.000 0.000 0.000 (9,6) 0.052 0.000 0.025 0.077 
(3,8) 0.036 0.106 0.049 0.192 (9,8) 0.000 0.000 0.000 0.000 
(4,3) 0.000 0.000 0.000 0.000 (9,10) 0.012 0.065 0.027 0.104 
(4,9) 0.044 0.128 0.059 0.231 (10,6) 0.008 0.06 0.026 0.094 
(5,3) 0.008 0.000 0.005 0.013 (10,7) 0.012 0.089 0.036 0.136 

 

 

 

 

 

 

5.2. A Medium Scale Example: Sioux Falls Network

The purpose of solving this example problem is to demonstrate the effectiveness of the proposed solution algorithm in solving
the AIP problem in larger networks. Figure 3 shows the Sioux Falls network, with 24 nodes and 76 links, which is a widely
recognized test network in transportation studies. The network specifications, the O-D demands, and the link survival probabilities
are taken from Poorzahedy and Bushehri (2003). For this example it is assumed that the average car occupancy in the network is
1, 𝜃𝑘𝑠 = 1.1,∀(𝑘, 𝑠)𝜖𝑃, 𝐵1 = 30, 𝐵2 = 15 and 𝐵3 = 5.

Figure 3. The urban street network of Sioux Falls
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When the proposed solution algorithm is applied to this problem, taking into account the available resources, it yields the link
importance values as presented in Table 5. This table also shows the selected actions for the chosen links. These actions aim to
maximize link survival, ensuring that passenger trips remain suitable to the greatest extent possible by strengthening the links to
prevent accidents or mitigate the impacts of accidents that have occurred, thereby maintaining the network’s performance close to
the prevalent state.

Table 5. Results of the proposed solution algorithm for AIP problem in Sioux Falls.

30 
 

Link ( , )m n  mnI  *
mnz  Link ( , )m n  mnI  *

mnz  

(1,2) 0.0056 0 (2,1) 0.0097 0 
(1,3) 0.0034 0 (3,1) 0.0192 0 
(2,6) 0.0086 0 (6,2) 0.0111 0 
(3,4) 0.0127 0 (4,3) 0.0309 2 
(3,12) 0.0220 1 (12,3) 0.0091 0 
(4,5) 0.0255 1 (5,4) 0.0481 3 
(4,11) 0.0039 0 (11,4) 0.0066 0 
(5,6) 0.0156 0 (6,5) 0.0072 0 
(5,9) 0.0219 1 (9,5) 0.0362 2 
(6,8) 0.0182 0 (8,6) 0.0282 2 
(7,8) 0.0123 0 (8,7) 0.0172 0 
(7,18) 0.0112 0 (18,7) 0.0085 0 
(8,9) 0.0307 2 (9,8) 0.0220 1 
(8,16) 0.0328 2 (16,8) 0.0303 2 
(9,10) 0.0116 0 (10,9) 0.0023 0 

(10,11) 0.0073 0 (11,10) 0.0034 0 
(10,15) 0.0164 0 (15,10) 0.0182 0 
(10,16) 0.0319 2 (16,10) 0.0196 0 
(10,17) 0.0089 0 (17,10) 0.0219 1 

Link ( , )m n  mnI  *
mnz  Link ( , )m n  mnI  *

mnz  

(11,12) 0.034 2 (12,11) 0.0231 1 
(11,14) 0.0363 2 (14,11) 0.0169 0 
(12,13) 0.0121 0 (13,12) 0.0069 0 
(13,24) 0.0197 1 (24,13) 0.0282 1 
(14,15) 0.0045 0 (15,14) 0.0234 3 
(14,23) 0.0244 1 (23,14) 0.0252 1 
(15,19) 0.0176 0 (19,15) 0.0094 0 
(15,22) 0.0106 0 (22,15) 0.0069 0 
(16,17) 0.0073 0 (17,16) 0.0036 0 
(16,18) 0.0058 0 (18,16) 0.0131 0 
(17,19) 0.0201 1 (19,17) 0.0165 0 
(18,20) 0.0216 1 (20,18) 0.0113 0 
(19,20) 0.0244 1 (20,19) 0.0118 0 
(20,21) 0.0176 0 (21,20) 0.0182 0 
(20,22) 0.0345 2 (22,20) 0.0267 1 
(21,22) 0.0265 3 (22,21) 0.0246 3 
(21,24) 0.0169 0 (24,21) 0.0269 3 
(22,23) 0.0163 0 (24,22) 0.0196 1 
(23,24) 0.0107 0 (24,23) 0.0094 0 

 

 

 

 

 

 

 

 

 

 
 

6. Conclusions and future research directions

Advancements in information technology have paved the way toward the availability of online information and even navigation
aids to circumvent congestion and flow obstacles. Many modern vehicles, both private and public, now come equipped with a range
of audio-visual technologies as standard features. These include safety essentials like seat belts and airbags, as well as advanced
systems like automatic braking, global positioning system, and connectivity to online apps via vehicle infotainment systems and
mobile phones. These technological leaps support a scenario where network users can receive immediate updates about accidents.
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This paper first introduces measures to quantify the network’s performance and the importance of a specific link. Then, a mathe-
matical programming and a heuristic algorithm are proposed to improve network performance to withstand traffic accident impacts
under users’ full information. It introduces an objective function that measures suitable trip-hours after accident occurrences in
the network. This measure is a more suitable and efficient objective for the network design problem than the total vehicle hours in
the conventional network design problem or the total suitable trips in the previous studies. Moreover, the “suitability” of trips is a
well-known concept in network reliability, and trip-hour is related to consumer surplus, which is a measure of consumer welfare
(Poorzahedy and Bushehri, 2005).

In the AIP, the managers of an urban transportation network mainly try to prevent accident occurrence in the important links of
the network under resource constraints. The new link importance measure introduced in this study is applicable to determining the
importance of the link in providing suitable trips to the passengers within the link, the passengers in the network as a whole, and
the passengers who are confronted by accidents in other links of the network. To show the mechanism of the suggested solution
algorithm in solving the developed mathematical programming for AIP, as well as the properties of the measures used by the
algorithm, AIP is solved for a small-scale example network and a medium-sized network, and the results are analyzed. Results
showed how the importance of a link can be increased or decreased after an accident occurs in the network. Also, results showed
how the impacts of newcomers on the routes of existing travelers within the network can affect the performance of the network
when an accident occurs.

Future research in this area could explore several promising directions. To begin with, the approach presented in this study
could be applied to real-world case studies. While the current study mainly assumes deterministic parameters and variables, actual
urban transportation networks typically involve vast datasets with some elements in probabilistic, stochastic, or missing form.
Therefore, a valuable avenue for future research would involve devising suitable models that account for these probabilistic or
stochastic variables/parameters and handle missing data effectively. Furthermore, in this study, a heuristic algorithm was developed
to address the proposed model problem. Future research efforts could focus on developing alternative heuristic and metaheuristic
algorithms that are not only different but also more efficient in solving the model. Comparative studies between these various
solution approaches could provide valuable insights into their relative merits and performance characteristics.
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Appendix

Lemma A.1. Based on assumption 3, travelers are uniformly distributed over each link of a path 𝜌.

Proof. It can be claimed that 𝑥𝑖 𝑗 = Σ(𝑘,𝑠) 𝜖 𝜌Σ𝜌𝜖 𝜌𝑘𝑠𝑥𝑘𝑠𝑝 .𝛿𝑘𝑠
𝑖 𝑗,𝜌

, where 𝛿𝑘𝑠
𝑖 𝑗,𝜌

= 1 if (𝑖, 𝑗)𝜖 𝜌𝜖 𝜌𝑘𝑠 , and 0 otherwise. Since 𝑥𝑘𝑠𝜌 is
uniformly distributed over link (i,j) for all 𝜌𝜖𝜌𝑘𝑠 and all (𝑘, 𝑠)𝜖𝑃 , such that 𝜎𝑘,𝑠

𝑖 𝑗,𝜌
= 1. So, 𝑥𝑖 𝑗 is, also, uniformly distributed, by

flow additivity over link (i,j).

Lemma A.2. The number of trip-makers on a link (i,j) of path 𝜌 is proportional to the travel time of that link of the path:
𝑚𝑖 𝑗 = 𝑥𝑖 𝑗 .𝑡𝑖 𝑗 . Furthermore, the number of trip-makers on a path 𝜌 from 𝑘 to 𝑠 is proportional to the travel time of the path:
𝑚𝑘𝑠

𝜌 = 𝑥𝑘𝑠𝜌 .𝑡𝑘𝑠𝜌 .

Proof. Assuming constant flow speed 𝑣𝑖 𝑗 in link (i,j) with length (𝑙𝑖 𝑗 ) and flow 𝑥𝑖 𝑗 , based on Lemma A.1, link (i,j) has a
uniform passenger (trip) density 𝑑𝑖 𝑗 over its length. Using the speed-density-flow relationship, , 𝑥𝑖 𝑗 = 𝑑𝑖 𝑗 .𝑣𝑖 𝑗 , 𝑥𝑖 𝑗 can be calculated

by 𝑥𝑖 𝑗 =
(
𝑚𝑖 𝑗/𝑙𝑖 𝑗

)
.

(
𝑙𝑖 𝑗/𝑡𝑖 𝑗

)
, where 𝑚𝑖 𝑗 = Σ(𝑘, 𝑠)𝜖𝑃𝑚𝑘𝑠

𝑖 𝑗 is the number of passengers (trips) on link (i,j), which are uniformly

distributed over 𝑙𝑖 𝑗 . This results 𝑚𝑖 𝑗 = 𝑥𝑖 𝑗 .𝑡𝑖 𝑗 , which proves the first statement. Now, let 𝑚𝑘𝑠
𝑖 𝑗
, 𝜌 be the number of passengers on

link (i,j) on path 𝜌 from k to s. Since the flow is additive, therefore 𝑚𝑘𝑠
𝑖 𝑗
, 𝜌 =

(
𝑥𝑘𝑠𝜌 .𝑡𝑖 𝑗

)
.𝛿𝑘𝑠

𝑖 𝑗,𝜌
, where 𝛿𝑘𝑠

𝑖 𝑗,𝜌
= 1 if (𝑖, 𝑗)𝜖 𝜌𝜖 𝜌𝑘𝑠

, and 0 otherwise. Hence, the number of passengers on path 𝜌 from k to s may be computed as 𝑚𝑘𝑠
𝜌 = Σ(𝑖, 𝑗 ) 𝜖 𝜌𝑥

𝑘𝑠
𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗,𝜌

=

𝑥𝑘𝑠𝜌 Σ(𝑖, 𝑗 ) 𝜖 𝜌𝑡𝑖 𝑗 .𝛿
𝑘𝑠
𝑖 𝑗,𝜌

= 𝑥𝑘𝑠𝜌 .𝑡𝑘𝑠𝜌 , which proves the second statement.

Lemma A.3. can be determined as follows:

𝐸 𝑠
𝑖 𝑗 (𝑐)

∑︁
𝑘𝜖𝑂

⌊𝑚𝑘𝑠
𝑖 𝑗 𝑡

𝑘𝑠 − 𝑚𝑘𝑠
𝑖 𝑗

(
𝑡𝑘𝑠/2

)
�̄�𝑖 𝑗 ( 𝑗 𝑘𝑠) (𝑐)⌋𝑍 𝑗𝑘𝑠 (𝑐) (A.1)

Proof. Consider link (i,j) in Figure A1, where an accident has occurred at point e on this link.

Figure 4. Accident occurrence in a link of network on the way to destination s

For a constant average speed in link (i,j) , according to Assumption 3, Σ𝑘𝜖𝑂

(
𝑚𝑘𝑠

𝑖 𝑗
/𝑡𝑖 𝑗

)
dt number of travelers are traveling to

destination s in a equivalent length of the link, forming Σ𝑘𝜖𝑂

(
𝑚𝑘𝑠

𝑖 𝑗
/𝑡𝑖 𝑗

)
𝑡𝑘𝑠 .𝑑𝑡 trip-hours (passenger-hours) of the network. By

Assumption 1, for �̄�𝑖 𝑗 (c)=1 , there is a probability of 𝑡/𝑡𝑖 𝑗 and 1 − 𝑡/𝑡𝑖 𝑗 for the accident to take place in e to j and i to e portions
of link (i,j), respectively, where 0 ≤ 𝑡 ≤ 𝑡𝑖 𝑗 . Thus, the probability of non-occurrence of an accident on e to j portion of link (i,j)
is 1 −

(
𝑡/𝑡𝑖 𝑗

)
.�̄�𝑖 𝑗 (𝑐), and the mean suitable trip-hours of the passengers in link (i,j) , in state c of the network when an accident

happens at point e, is equal to:

Σ𝑘𝜖𝑂

(
𝑚𝑘𝑠

𝑖 𝑗 /𝑡𝑖 𝑗
)
𝑡𝑘𝑠 .𝑑𝑡.

[
1 −

(
𝑡/𝑡𝑖 𝑗

)
.�̄�𝑖 𝑗 (𝑐)

]
.𝑍 𝑗𝑘𝑠 (𝑐) (A.2)

𝐸 𝑠
𝑖 𝑗
(𝑐) can be obtained by integrating over t to consider all possible locations:
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𝐸 𝑠
𝑖 𝑗 (𝑐) =

∫ 𝑡𝑖 𝑗

0
Σ𝑘𝜖𝑂

(
𝑚𝑘𝑠

𝑖 𝑗 /𝑡𝑖 𝑗
)
𝑡𝑘𝑠

[
1 −

(
𝑡/𝑡𝑖 𝑗

)
.�̄�𝑖 𝑗 (𝑐)

]
.𝑍 𝑗𝑘𝑠 (𝑐)𝑑𝑡 (A.3)

Lemma A4. To obtain PI the following equation can be used:

𝑃𝐼 (𝑐) = 𝐸 (𝑐)/𝐸 (𝑐◦) =
∑︁
𝑗 𝜖 𝑉

∑︁
𝑠𝜖 𝐷

∑︁
𝑘𝜖𝑂

(
Φ 𝑗𝑘𝑠 − 𝜓 𝑗𝑘𝑠 (𝑐)

)
.𝑍 𝑗𝑘𝑠 (𝑐) (A.4)

where:

Φ 𝑗𝑘𝑠 =
∑︁

𝜌𝜖 𝜌𝑘𝑠

∑︁
(𝑖, 𝑗 ) 𝜖 𝐵( 𝑗 )

𝑥𝑘𝑠𝜌 .𝑡𝑖 𝑗 .𝛿
𝑘𝑠
𝑖 𝑗,𝜌 .𝑡

𝑘𝑠/
∑︁

(𝑘,𝑠) 𝜖 𝑃
𝑑𝑘𝑠 .

(
𝑡𝑘𝑠

)2
(A.5)

𝜓 𝑗𝑘𝑠 (𝑐)
∑︁

𝜌𝜖 𝜌𝑘𝑠

∑︁
(𝑖, 𝑗 ) 𝜖 𝐵( 𝑗 )

𝑥𝑘𝑠𝜌 .𝑡𝑖 𝑗 .𝛿
𝑘𝑠
𝑖 𝑗,𝜌 .

(
𝑡𝑘𝑠/2

)
�̄�𝑖 𝑗 (𝑐)/

∑︁
(𝑘,𝑠) 𝜖 𝑃

𝑑𝑘𝑠 .

(
𝑡𝑘𝑠

)2
(A.6)

Proof. Based on Lemma A2, 𝑚𝑘𝑠
𝑟ℎ𝑜

= 𝑥𝑘𝑠𝜌 𝑡𝑘𝑠𝜌 is the number of passengers on path 𝜌 from k to s, at any point in time, and this
quantity for link (i,j) due to path 𝜌 from k to s is 𝑚𝑘𝑠

𝑖 𝑗,𝑟ℎ𝑜
= 𝑥𝑘𝑠𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗,𝜌

.. Then, the number of passengers on link (i,j) who are
destined to s can be calculated as 𝑚𝑠

𝑖
𝑗 = Σ𝑘𝜖𝑂Σ𝜌𝜖 𝜌𝑥

𝑘𝑠
𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗,𝜌

. According to Lemma A3 and substituting 𝑚𝑘𝑠
𝑖 𝑗
Σ𝜌𝜖 𝜌𝑘𝑠𝑥𝑘𝑠𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗,𝜌

, the mean suitable trip-hours of the users in link (i,j) in state c, can be computed as follows,

𝐸 𝑠
𝑖 𝑗 (𝑐) = Σ𝑘𝜖𝑂Σ𝜌𝜖 𝜌𝑘𝑠

{(
𝑥𝑘𝑠𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗,𝜌 .𝑡

𝑘𝑠

)
𝑍 𝑗𝑘𝑠 (𝑐)

(
𝑥𝑘𝑠𝜌 .𝑡𝑖 𝑗 .𝛿

𝑘𝑠
𝑖 𝑗,𝜌

) (
𝑡𝑘𝑠/2

)
�̄�𝑖 𝑗 (𝑐)𝑍 𝑗𝑘𝑠 (𝑐)

}
(A.7)

Then, the mean suitable trip-hours to destination s that meet j as the first node on their paths after state c occurrence, 𝐸 𝑗𝑠(c),
can be calculated as:

𝐸 𝑗𝑠 (𝑐) = Σ(𝑖, 𝑗 ) 𝜖 𝐵( 𝑗 )𝐸
𝑠
𝑖 𝑗 (𝑐) (A.8)

For the whole network, therefore, we have:

𝐸 (𝑐) =
∑︁
𝑗 𝜖 𝑉

∑︁
𝑠𝜖 𝐷

𝐸 𝑗𝑠 (𝑐) (A.9)

When the state of the network is 𝑐◦ and x is the user equilibrium flow, 𝑡𝑘𝑠 is the minimum travel time,∀(𝑘, 𝑠)𝜖𝑃 . By Kuhn-Tucker
optimality conditions for user equilibrium (Sheffi, 1985), all used paths for a given O-D pair have equal travel times, and this time
is less than the time for an unused path. According to Lemma A2, 𝑚𝑘𝑠

𝜌 = 𝑥𝑘𝑠𝜌 .𝑡𝑘𝑠𝜌 is the number of passengers on the path 𝜌 from k
to s . Each passenger spends 𝑡𝑘𝑠 units of time to reach s from k. This trip time is a suitable trip time. Hence, based on the above
statements, the suitable trip-hours for the passenger traveling in path 𝜌 from k to s in state 𝑐◦, 𝐸 𝑘𝑠

𝜌 (𝑐◦), is:

𝐸 𝑘𝑠
𝜌 (𝑐◦) = 𝑥𝑘𝑠𝜌 .𝑡𝑘𝑠𝜌 .𝑡𝑘𝑠 = 𝑥𝑘𝑠𝜌

(
𝑡𝑘𝑠

)2 (A.10)

The value of this measure for a specific O-D pair, , can be determined as:

𝐸 𝑘𝑠 (𝑐◦) =
∑︁

𝜌𝜖 𝜌𝑘𝑠

𝑥𝑘𝑠𝜌
(
𝑡𝑘𝑠

)2
=

(
𝑡𝑘𝑠

)2
∑︁

𝜌𝜖 𝜌𝑘𝑠

𝑥𝑘𝑠𝜌 = 𝑑𝑘𝑠 .
(
𝑡𝑘𝑠

)2 (A.11)
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and for the whole network:

𝐸 (𝑐◦) =
∑︁

(𝑘,𝑠) 𝜖 𝑃
𝐷𝑘𝑠 .

(
𝑡𝑘𝑠

)2 (A.12)

Eqs. (A.9) and (A.12) results:

𝑃𝐼 (𝑐) = 𝐸 (𝑐)/𝐸 (𝑐◦) = Σ 𝑗 𝜖 𝑉Σ𝑆𝜖 𝐷𝐸
𝑗𝑠 (𝑐)/Σ(𝑘,𝑠) 𝜖 𝑃𝑑

𝑘𝑠 .
(
𝑡𝑘𝑠

)2 (A.13)

Substituting eq. (A.7) in eq. (A.8), and substituting the results in eq. (13), would complete the proof. □

Lemma A5. The following expression is an approximate measure of link importance measure:

𝐼𝑚𝑛 ≈
(
𝑝(𝑐◦)/𝑃𝑚𝑛

) { [
1 − 𝑃𝐼

(
𝑐◦𝑚𝑛

) ]
+ Σ(𝑢,𝑣) 𝜖 𝐴

[ (
1 − 𝑃𝑢𝑣

)
/𝑃𝑢𝑣

] [
𝑃𝐼

(
𝑐◦𝑢𝑣

)
− 𝑃𝐼

(
𝑐◦𝑢𝑣,−𝑚𝑛

) ]}
(A.14)

Proof. First, it should be noted that:

𝐸𝑃𝑀 = 𝐸 [𝑃𝐼] = 𝐸 [𝑃𝐼 (𝑚, 𝑛)𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑠] .𝑝𝑚𝑛 + 𝐸 [𝑃𝐼 (𝑚, 𝑛) 𝑓 𝑎𝑖𝑙𝑠] .(1 − 𝑃𝑚𝑛) (A.15)

Taking derivative of both sides of eq. (A.15) with respect to 𝑝𝑚𝑛 would result:

𝜕 (𝐸𝑃𝑀)/𝜕 (𝑝𝑚𝑛) = 𝐸 [𝑃𝐼 (𝑚, 𝑛)𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑠] − 𝐸 [𝑃𝐼 (𝑚, 𝑛) 𝑓 𝑎𝑖𝑙𝑠] (A.16)

If the probability of a link failure during a period of time, such as rush hour, is low, based on Assumption 2, the probability of
concurrent traffic accidents in two or more links becomes very low. Thus, as an approximate computation of 𝐼𝑚𝑛 for a link (m,n) ,
the state of the network in which more than one link is subject to failure simultaneously is ignored.

𝑝(𝑐◦), 𝐸 [𝑃𝐼 (𝑚, 𝑛)𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑠] and 𝐸 [𝑃𝐼 (𝑚, 𝑛) 𝑓 𝑎𝑖𝑙𝑠] can be obtained as follows:

𝑝(𝑐◦) = Π(𝑖, 𝑗 ) 𝜖 𝐴𝑃𝑖 𝑗 (A.17)

𝐸 [𝑃𝐼 (𝑚, 𝑛)𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑠] = 𝑝(𝑐◦)
𝑝𝑚𝑛

.𝑃𝐼 (𝑐◦)

+
∑︁

(𝑢, 𝑣)𝜖 𝐴
(𝑢, 𝑣) ≠ (𝑚, 𝑛)

𝑝(𝑐◦) (1 − 𝑝𝑢𝑣)
𝑃𝑚𝑛𝑃𝑢𝑣

.𝑃𝐼 (𝑐◦)−𝑢𝑣) +
∑︁

(𝑢, 𝑣), (𝑔, 𝑟)𝜖 𝐴
(𝑢, 𝑣) ≠ (𝑚, 𝑛)
(𝑔, 𝑟) ≠ (𝑚, 𝑛)
(𝑢, 𝑣) ≠ (𝑔, 𝑟)

𝑝(𝑐◦) (1 − 𝑃𝑢𝑣) (1 − 𝑃𝑔𝑟 )
𝑃𝑚𝑛𝑃𝑢𝑣𝑃𝑔𝑟

.𝑃𝐼 (𝑐◦−𝑢𝑣,−𝑔𝑟 ) + ... (A.18)

𝐸 [𝑃𝐼 (𝑚, 𝑛) 𝑓 𝑎𝑖𝑙𝑠] = 𝑃(𝑐◦)
𝑃𝑚𝑛

.𝑃𝐼 (𝑐◦𝑚𝑛)

+
∑︁

(𝑢, 𝑣)𝜖 𝐴
(𝑢, 𝑣) ≠ (𝑚, 𝑛)

𝑃(𝑐◦) (1 − 𝑃𝑢𝑣)
𝑃𝑚𝑛𝑃𝑢𝑣

.𝑃𝐼 (𝑐◦−𝑚𝑛,−𝑢𝑣) +
∑︁

(𝑢, 𝑣), (𝑔, 𝑟)𝜖 𝐴
(𝑢, 𝑣) ≠ (𝑚, 𝑛)
(𝑔, 𝑟) ≠ (𝑚, 𝑛)
(𝑢, 𝑣) ≠ (𝑔, 𝑟)

𝑃(𝑐◦) (1 − 𝑃𝑢𝑣) (1 − 𝑃𝑔𝑟 )
𝑃𝑚𝑛𝑃𝑢𝑣𝑃𝑔𝑟

.𝑃𝐼 (𝑐◦−𝑚𝑛,−𝑢𝑣,−𝑔𝑟 ) + ...

(A.19)
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Substituting eqs. (A.18) and (A.19) in eq. (A.16), noting that , results:

𝐸 [𝑃𝐼] = 𝑝(𝑐◦)
𝑝𝑚𝑛

.

[
1 − 𝑃𝐼 (𝑐◦𝑚𝑛)

]
+

∑︁
(𝑢, 𝑣)𝜖 𝐴

(𝑢, 𝑣) ≠ (𝑚, 𝑛)

𝑝(𝑐◦) (1 − 𝑝𝑢𝑣)
𝑝𝑚𝑛𝑝𝑢𝑣

.

[
𝑃𝐼 (𝑐◦𝑢𝑣) − 𝑃𝐼 (𝑐◦−𝑚𝑛,−𝑢𝑣)

]

+
∑︁

(𝑢, 𝑣), (𝑔, 𝑟)𝜖 𝐴
(𝑢, 𝑣) ≠ (𝑚, 𝑛)
(𝑔, 𝑟) ≠ (𝑚, 𝑛)
(𝑢, 𝑣) ≠ (𝑔, 𝑟)

𝑝(𝑐◦) (1 − 𝑝𝑢𝑣) (1 − 𝑝𝑔𝑟 )
𝑝𝑚𝑛𝑝𝑢𝑣 𝑝𝑔𝑟

.

[
𝑃𝐼 (𝑐◦−𝑢𝑣,−𝑔𝑟 − 𝑃𝐼 (𝑐◦−𝑚𝑛,−𝑢𝑣,−𝑔𝑟 )

]
+ ...

(A.20)

The probability of an accident occurrence in a link is low, therefore the probability of the concurrent occurrences of accidents
in two links(

∑︁
(𝑢, 𝑣), (𝑔, 𝑟)𝜖 𝐴
(𝑢, 𝑣) ≠ (𝑔, 𝑟)

𝑝(𝑐◦) (1 − 𝑝𝑢𝑣) (1 − 𝑝𝑔𝑟 )
𝑝𝑢𝑣 𝑝𝑔𝑟

× [𝑃𝐼 (𝑐◦−𝑢𝑣,−𝑔𝑟 − 𝑃𝐼 (𝑐◦−𝑚𝑛,𝑢𝑣,−𝑔𝑟 )]

)becomes negligible. It should be noted that [𝑃𝐼 (𝑐◦−𝑢𝑣,−𝑔𝑟 − 𝑃𝐼 (𝑐◦−𝑚𝑛,𝑢𝑣,−𝑔𝑟 )] is a very small value, especially in large scale
real networks. Therefore, by a similar reasoning, it can be claimed that the third term and the higher-order terms, in eq. (A.20) are
negligible. □
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