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ABSTRACT 

This paper deals with the car-call allocation problem in vertical transportation in buildings. We have made a wide comparison of 

different metaheuristic optimization algorithms to identify those with a better performance dealing with the problem. The tested 

approaches are Differential Evolution (DE), Simulated Annealing with Random Starts (SAR), Artificial Bee Colony (ABC), Bat 

Algorithm (BA), Bacterial Foraging Optimization Algorithm (BF), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), 

and Tabu Search (TS). Each algorithm was tested in high-rise building simulations of 10 to 24 floors, with car configurations of 2 

to 6 cars. Results proved that the ABC and TS algorithms generally result in better average journey times compared to other 

methods. It has to be noted that we introduced a new version of the Simulated Annealing, Simulated Annealing with Restarts 

(SAR), which ranked as the third best algorithm.  

Keywords : Elevator group control system, evolutionary algorithms, optimization. 

ÖZ 

Bu çalışma binalarda düşey taşımacılıkta kullanılan asansörler için çağrıların kabinlere dağıtılması problemi üzerinedir.  Geniş bir 

spektrumda farklı sezgisel optimizasyon algoritmaları problem üzerinde performans yönünden karşılaştırılmış ve başarılıları 

belirlenmiştir. Test edilen algoritmalar Çıkarımsal Evrim (Differential Evolution, DE), Rastgele Yeniden Başlatmalı Benzetimli 

Tavlama (Simulated Annealing with Random Starts, SAR), Yapay Arı Kolonisi (Artificial Bee Colony, ABC), Yarasa Algoritması 

(Bat Algoritması, BA), Bakteri Otlama Optimizasyon Algoritması (Bacterial Foraging Optimization Algorithm, BF), Parçacık Sürü 

Optimizasyonu (Particle Swarm Optimization, PSO),  Genetic Algoritma (Genetic Algorithm, GA) ve Tabu Araştırmasıdır (Tabu 

Search, TS). Her algoritma simülasyon ile 10 ila 24 katlı binalar ve 2 ila 6 kabin ile test edilmiştir. Sonuçlar ABC ve TS 

algoritmalarının daha iyi bir ortalama yolculuk zamanı verdiğini göstermiştir. Ayrıca Benzetimli Tavlama algoritmasının yeni bir 

versiyonu olan Rastgele Yeniden Başlatmalı Benzetimli Tavlama (SAR) algoritması geliştirilmiştir. SAR deney sonuçlarında en 

iyi 3. algoritma olarak çıkmaktadır. 

 

1. INTRODUCTION 

The main problem in a vertical transportation system 

operated by an elevator group control system (EGCS) 

appears when a passenger in a floor makes a call and 

waits for a car to arrive his/her floor of destination in a 

quick and safe manner [1]. Therefore, the primary task an 

EGCS needs to solve efficiently is this landing call 

assignation problem. The major difficulty arises when 

such an EGCS needs to manage multiple elevators in a 

building in order to efficiently transport all the 

passengers in the building. Obviously, high-rise 

buildings with multiple coordinated cars increase the 

complexity of the problem. The generic problem to be 

solved consists of a passenger wanting to travel from one 

floor to another and therefore pressing the landing call 

button at a floor, generating what is called a landing call. 

The duty of the EGCS is to satisfy all the demands by 

assigning an elevator to each landing call (call made at a 

floor) in a way that some criteria are optimized. The most 

usual criterion is to minimize the passengers’ waiting 

times. This so characterized problem is known to be a 

complex NP-hard problem [2,3,4], as such, an efficient 

deterministic solution is not known. 

This problem recently attracted the increasing interest of 

the scientific community and several contributions have 

been made. Contributions based on metaheuristics have 

showed an adequate performance to deal with such 

complex problem. Examples of such techniques include 

Genetic Algorithm [5,6,7], Tabu Search [8], Particle 

Swarm Optimization [9,10,11], Immune Systems [12], 

Ant Colony Optimization [13], Viral Systems [14], and 

Fuzzy Logic approaches [15,16,17,18,19]. 

In this paper we present a comparison of diverse 

metaheuristics that can provide an interesting analysis 

about their performance for allocating cars to landing 

calls in buildings managed by an EGCS. This whole 

comparison has not been done previously and allows 
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comparing different alternatives under the same basis of 

analysis. Tested techniques include Differential 

Evolution (DE), Simulated Annealing with Random 

Restarts (SAR), Artificial Bee Colony (ABC), Bat 

Algorithm (BA), Bacterial Foraging Optimization 

Algorithm (BF). All of them make use of the same 

solution encoding, which is based on a hall call allocation 

strategy to define the solution encoding (representation), 

together with a quick-to-evaluate car-call allocation 

quality estimation.  

The rest of the paper deals with the specification of this 

solution encoding (in Section 2), the procedure to 

evaluate the quality of the different solutions (in Section 

3), and the description of the different algorithms applied 

to the problem (in Section 4). The experimental results 

are described in Section 5. 

2. REPRESENTATION 

We start by the approach that was first proposed by [5]: 

Let 𝑙 be number of elevators in an elevator system 

installed in a building with 𝒏 floors. For the sake of 

giving an example let us assume 𝒍 = 𝟓 and 𝒏 = 𝟏𝟎. The 

requests for going to an upper floor can be represented by 

a 𝒏 − 𝟏 element binary vector as in (1), where a 𝟏 

represents a request (e.g. a push to the “up” button), and 

0 represents no request. Notice there cannot be an up 

request in the highest floor. 

𝑩𝒖 = < 𝟎, 𝟎, 𝟏, 𝟏, 𝟎, 𝟏, 𝟏, 𝟏, 𝟏, > (1) 

Down requests can also be represented with a similar 𝑛 −
1 element (there cannot be a down request in the lowest 

floor) binary vector 𝐵𝑑 . 

We then convert the representation of up requests to a 

more compact representation than proposed by [5], using 

an ordered set of integers where each element of the set 

represents a floor with an up request as in (2), where floor 

indices start from 𝟎. 

𝑹𝒖 = {𝟐, 𝟑, 𝟓, 𝟔, 𝟕, 𝟖} (2) 

Down requests can be represented with a similar set of 

integers 𝑅𝑑. Then a solution 𝑥 can be represented by a 

vector of elevator assignments to the requests in 𝑅𝑢 and 

𝑅𝑑 as in (3), where the first 6 assignments are for 𝑅𝑢, and 

the rest are for 𝑅𝑑. 

𝑋 = < 𝟑, 𝟐, 𝟐, 𝟏, 𝟎, 𝟐, 𝟏, 𝟏, 𝟑, 𝟑 > (3) 

Let 𝑠(𝐴) be the number of elements in collection𝐴. Then 

𝑠(𝑋) = 𝑠(𝑅𝑢) + 𝑠(𝑅𝑑). 

Elevator indices start from 𝟎 and go to 𝒍 − 𝟏, hence upper 

bounds for each dimension can be shown in a vector 𝑼 as 

in (4), and lower bounds for each dimension can be 

shown in a vector 𝑳 as in (5). In this representation 

changing the value of an element of 𝑿 corresponds to 

changing the assigned elevator for that request. 

𝑈 = < 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒 > (4) 

𝐿 = < 𝟎, 𝟎, 0, 0, 0, 0, 0, 0, 0, 0 > (5) 

3. COST EVALUATION 

To calculate the cost of the whole elevator system 𝑠, we 

start by calculating the personal cost 𝑐 for each elevator 

as in [9], where Case I is when there are no requests, Case 

II is when there are only down requests, Case III is when 

there are only up requests, Case IV is when there are both 

up and down requests, 𝜓1 is the ground floor level, 𝜓2 is 

the highest down request level, 𝜓3 is the number of down 

requests between 𝜓1 and 𝜓2, 𝜓4 is the highest up request, 

𝜓5 is the number of up requests between 𝜓1 and 𝜓4, 𝜓6 

is the lowest down request, 𝑡 is the door opening and 

closing time, and 𝑡𝑝 is the passenger transfer time. 

After we calculate personal cost 𝑐𝑖  for each elevator 𝑖, we 

get the average group cost 𝑔 as in (7), where 𝑙 is the 

number of elevators. 

𝑔 =
𝟏

𝐥
∑𝒇𝒊
𝒊

 (7) 

Finally, we get the solution cost value 𝑐 for solutions 𝑠 as 

in (8), where 𝑡+ is the highest elevator trip time, 𝑡− is the 

lowest elevator trip time, and 𝑘1 and 𝑘2 are constant 

weights. 

𝑐 = 𝒌𝟏 𝒈 + 𝒌𝟐(𝒕
+ − 𝒕−) (8) 

See [9] for a more in depth analysis of this cost function. 

We define cost mapper function 𝑓(𝑆) that takes a list of 

elevator systems 𝑆 and return a list of cost values for each 

elevator system in 𝑆. 

4. ALGORITHMS 

This section presents the different approaches we have 

tested to deal with the car-call allocation problem in 

buildings managed by EGCS. All of them make use of 

the same representation described in Section 2, and 

evaluates the quality of the solutions by the procedure 

described in Section 3. 

4.1. Global Best and Fixing Solutions 

In all the algorithms it makes sense to keep a best solution 

found so far (e.g. global best) 𝑥∗. Hence we augment the 

objective function 𝑓 to also update the global best when 

necessary as seen in Algorithm 1. In addition 𝑓 checks 

for the validity of the input solution, and fixes it using the 

fix_solution function supplied by the user. 𝑓 also takes 

care to return costs of all solution when there are more 

than one solutions.  

Algorithm 1 In addition to returning the cost, objective 

function 𝑓 also a) updates the global best 𝑥∗ if necessary, 

𝑐 =

{
 
 

 
 0, Case I

t(𝜓2 − 𝜓1) + 𝑡p(𝜓3 − 𝜓1), Case II

t(𝜓4 − 𝜓1) + 𝑡p(𝜓5 − 𝜓1), Case III

t(𝜓4 − 𝜓1) + 𝑡|𝜓2 − 𝜓4| + 𝑡|𝜓2 − 𝜓6| + 𝑡p|𝜓3 + 𝜓5 –𝜓1|, Case IV

 (6) 
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b) fixes out of range and similar problems with the 

solution (Line 6), c) works for single or multiple 

dimensions. 

 

1: function 

𝑓 
Inputs: 

2: 𝑋 ←<
𝑥1, … , 𝑥𝑛 > // 

solution list 

3: 𝑐 ← cost 

function 

4: 𝑠 ← 

function for 

fixing invalid 

solutions 

Body: 

5: if 𝑋 is a 

single solution 

then 

6: 𝑥𝑓 ←

𝑠(𝑋) 
7: 𝑣 ←
𝑐(𝑥𝑓) 

8: if 

isbetter(𝑣, 𝑣∗) 
then 

9: 𝑥∗ ← 𝑥𝑓 

10: 𝑣∗ ← 𝑣 

11: end if 

12: return 

𝑥𝑓 , 𝑣 

13:  else 

14: 𝑇 ←< 𝑡1, … , 𝑡𝑛 > 

15: 𝑣 ←< 𝑣1, … , 𝑣𝑛 > 

16: for each 𝑖 ∈ indices(𝑋) do 

17: 𝑡𝑖, 𝑣𝑖 ← 𝑓(𝑥𝑖) 
18: end for 

19: return 𝑇, 𝑣 

20: end if 

21: end function 

All algorithms described in this section use the objective 

function 𝑓 described in Algorithm 1. 

4.2. Particle Swarm Optimization 

Particle Swarm Optimization is a population based 

stochastic optimization method developed by Eberthart 

and Kennedy [20] in 1995. The algorithm, which is based 

on a metaphor of social interaction, searches a space by 

adjusting the trajectories of individual vectors. These 

vectors are called particles, as they are conceptualized as 

moving points in multidimensional space. The individual 

particles are drawn stochastically toward the positions of 

their own previous best performance and the best 

previous performance of their neighbors [21]. 

PSO algorithm is depicted in Figure 1. The algorithm 

starts with Node 1. In Node 2, we randomly initialize 

particle positions 𝑥𝑖 and particle velocities 𝑣𝑖. In addition 

particle “personal best positions” 𝑝𝑖  are initialized as 

starting positions 𝑥𝑖  and the global best position 𝑥∗ is 

initialized as the best of personal bests. In Node 3 if we 

decide to continue, because e.g. we have more time, we 

start processing each particle 𝑖 in the next generation 𝑡 
one by one. While we have unprocessed particles (Node 

4), we get a new solution (Node5) using (9) and (10). 

𝒗𝒊(𝒕 + 𝟏) = 𝒘𝒗𝒊(𝒕)

+ 𝒄𝟏𝒓𝟏(𝒑𝒊 − 𝒙𝒊(𝒕))

+ 𝒄𝟐𝒓𝟐(𝒙
∗ − 𝒙𝒊(𝒕)) 

(9) 

𝒙𝒊 (𝒕 + 𝟏) = 𝒙𝒊 (𝒕) + 𝒗𝒊(𝒕 + 𝟏) (10) 

Where 𝑤, 𝑐1, and 𝑐2 are constants and 𝑟1 and 𝑟2 are 

random values between [0,1] drawn from the uniform 

distribution. If the new solution is better than personal 

best (𝑓(𝑥𝑖(𝑡 + 1)) > 𝑓(𝑝𝑖)) as in Node 6, we update 

personal best in Node 7: 𝑝𝑖 = 𝑥𝑖(𝑡 + 1). When we have 

no more particles to process (Node 4), we get out of 

particle loop. When the termination criteria is met (e.g. 

“No” edge in Node 3) the algorithm ends. 

 

4.3. Artificial Bee Colony 

Artificial Bee Colony (ABC) [22,23], simulates behavior 

of bees in a bee hive in search of food sources. As 

depicted in Figure 2, the algorithm starts with initializing 

random initial solutions 𝑥 (Node 2). Note that in ABC 

metaphor each solution is a food source. 

 

 
Figure 1. PSO algorithm flowchart. 
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If there is enough time (Node 3), the algorithm moves to 

updating food sources. In each iteration, each food source 

is “visited” once (Node4). Visiting a solution 𝑥𝑖 entails 

making a recombination of it with a random other 

solution 𝑥𝑗  as in (11), where 𝑑 is a random dimension 

and 𝑟 is a uniform random number in the range [−1,1]. 

𝑥𝑖 [𝑑] ← 𝑥𝑖[𝑑] + 𝑟(𝑥𝑖[𝑑]
− 𝑥𝑗[𝑑]) 

(11) 

In Node 5 each food source is assigned a probability of 

being re-visited, e.g. “luck”, in the same iteration, based 

on the value of 𝑓. The food source with better 𝑓 value has 

a higher probability 𝑝 of being re-visited [15]. 

 
Figure 2. ABC algorithm flowchart. 

 

𝑝𝑖 = {

𝑓(𝑥𝑖) + 1, 𝑓(𝑥𝑖) ≥ 0
1

(1 − 𝑓(𝑥𝑖)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

In Node 6 if the food source is lucky, e.g. if 𝑝𝑖 >
𝑟𝑎𝑛𝑑 (0,1), where 𝑟𝑎𝑛𝑑(0,1) is a random number in the 

range [0,1] from the uniform distribution, the food source 

is re-visited according to probability determined in (12). 

This ensures that the neighborhoods of better solutions 

are visited more, hence makes the algorithm more elitist. 

In Node 7 the algorithm checks whether any of the 

current solution neighborhoods failed to produce any 

improvement for the last limit iterations. Such 

neighborhoods are abandoned for a random new 

neighborhood. 

4.4. Genetic Algorithm 

Genetic Algorithm (GA) [24], simulates evolution of 

solutions. As seen in Figure 3, GA starts with 

initialization of population 𝑥 (Node2) randomly. If there 

is time to generate another generation of solutions (Node 

3), the algorithm proceeds to produce a new generation. 

If still a new child is needed to complete the new 

generation (Node 4), two new children are generated in 

Node 5. In this step (Node 5), first two new parents are 

selected. From the two parents, two children are 

populated by crossover. Each child is mutated, and then 

added to the list of new generation solutions. In Node 6, 

the old generation is completely overwritten with the new 

generation. If no new generation is needed, the algorithm 

ends (Node 7). 

 

 
Figure 3. Genetic Algorithm flowchart. 

 

4.5. Differential Evolution 

Differential Evolution [24] is another algorithm that 

simulates the evolutionary behavior. As seen in Figure 4, 

the algorithm starts with initializing the populations of 

individuals 𝑋 randomly. While we have time to work on 

another generation (Node 3), the algorithm takes a copy 

of the current population into parents 𝑄 (Node4), and 

iterates through each parent 𝑞 (Node 5). In each iteration 

a new child 𝑒 is made through (13) and (14), where 𝑎, 𝑏, 

and 𝑐 are random parents that are different from 𝑞 and 

each other, 𝑚 is the constant mutation rate, and  

represents the genetic crossover operator. 

 

 

𝒅 = 𝒂 +𝒎(𝒃 − 𝒄)  (13) 

𝑒 = 𝒒  𝒅    (14) 

 

If the child 𝑒 is better than the parent 𝑞, 𝑒 replaces 

corresponding element in X. 
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Figure 4. Differential Evolution flowchart 

 

4.6. Tabu Search 

Tabu Search [24] algorithm keeps a list of solutions that 

are already evaluated (tabu), and avoids re-evaluating 

those solutions. As depicted in Figure 5 the algorithm 

starts by initializing (Node 2) an empty tabu list 𝐿, getting 

a random current solution 𝑠, and adding 𝑠 to 𝐿. While 

there is enough time (Node 3), we proceed to build a new 

solution 𝑟 by tweaking the existing solution 𝑠 (Node 4). 

If 𝑟 is not in the tabu list (Node 5), current solution is 

updated (Node 5) 𝑠 ← 𝑟, and 𝑟 is added to the tabu list 𝐿. 

 

 
Figure 5. Tabu Search flowchart. 

 

4.7. Simulated Annealing with Random Restarts 

Simulated Annealing [24] algorithm simulates annealing 

process. The algorithm decreases the chance of getting 

stuck in local optima by occasionally accepting solutions 

that are worse than the current solution. This version with 

random restarts, restarts search from a random position 

after local search fails to improve a given time (limit 𝑙). 
As seen in Figure 6, the algorithm starts by initializing 

(Node 2) constants limit 𝑙, initial temperature 𝑡0, and 

cooling scheduler 𝑐. If there is time to another annealing 

(Node 3), algorithm resets (Node 4) current temperature 

with 𝑡 ← 0, and current solution with 𝑠 ←
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. If number of bad trials 𝑛 is less than 

limit 𝑙, we continue (Node 5 ) improving current solution 

by producing a tweak of it (Node 6). If the tweak 𝑟 is 

better than 𝑠 (Nodes 7-8), we directly update current 

solution: 𝑠 ← 𝑟. The interesting thing about Simulated 

Annealing is that we still update when 𝑟 is worse than 𝑠 
if 𝑟 is “lucky”, e.g. if (15) holds, where 𝑟𝑎𝑛𝑑(0,1) is a 

random value between 0 and 1, and |. | denotes the 

absolute value. 

𝑟𝑎𝑛𝑑(0,1)

≤ exp (−
|𝑓(𝑠) − 𝑓(𝑟)|

𝑡
) 

(15) 

This allows the algorithm to escape from local optimums. 

When there is an update, the number of bad trials is reset: 

𝑛 ← 0. When an update was not done, the number of bat 

trials is incremented: 𝑛 ← 𝑛 + 1 (Node 9). In each 
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iteration the temperature is cooled down (Node 10) using 

schedule constant 𝑐 that has a value less than 1: 𝑡 ← 𝑐𝑡. 

 

 
Figure 6. Simulated Annealing with Restarts flowchart. 

 

4.8. Bat Algorithm 

Bath algorithm is a nature inspired algorithm that 

simulates bat’s echolocation ability to get optimum 

solution for tough optimization problems. Yang [25] has 

used advantages of other well-known algorithms 

(Particle Swarm Optimization (PSO)) and Harmony 

Search (HS) in the bat algorithm and proposed a powerful 

algorithm. 

As depicted in Fig 7. the Bat Algorithm starts with 𝑛 bats 

being placed randomly in the search space. Velocity 𝑣𝑖  , 
frequency 𝑓𝑖 , pulse rate 𝑟𝑖  , and loudness 𝐴𝑖   are initialized 

(Node 2) for each bat 𝑖 at the beginning. Bat’s position 

and velocity are updated using (16), (17), and (18), 

𝒇𝒊
= 𝒇𝒎𝒂𝒙
+ (𝒇𝒎𝒂𝒙 − 𝒇𝒎𝒊𝒏)𝜷 

(16) 

𝑽𝒊
𝒕 = 𝑽𝒊

𝒕−𝟏 + (𝒙𝒊 
𝒕 − 𝒙∗) (17) 

𝒙𝒊  
𝒕 = 𝒙𝒊

𝒕−𝟏 + 𝑽𝒊
𝒕 (18) 

where 𝛽 is a random vector generated from a uniform 

distribution in the range [0,1]. Then the algorithm 

evaluates the fitness (solutions) and chooses the current 

best position 𝑥∗ (Node 4). After these updates, in Node 

5, if the bat’s pulse rate is low (which means bat is far  

away from the prey), with a high probability it will fly 

near the current best bat (Node 6) and make a random 

short fly there. If its pulse rate is high then it should be 

near prey and with a high probability it will make a 

random fly around its current position (Node 7). After 

this fly if the bat’s position is better than the current 

global best and its loudness is loud enough to be greater 

than a random number (Node 8), the bat will fly to this 

position and current global best will be updated with the 

new one. The bat’s pulse rate 𝑟𝑖 will be increased and 

loudness 𝐴𝑖 will be decreased (Node 9). Then in Node 

10, again fitness will be evaluated and the current best 𝑥∗  
will be found. 

 

Figure 7. Bat Algorithm flowchart. 

 

4.9. Bacterial Foraging Optimization Algorithm 

The bacterial foraging system consists of three principal 

mechanisms, namely chemotaxis, reproduction and 

elimination-dispersal [26]. 

As seen in Figure 8, the algorithm starts with initializing 

the bacterium position 𝑥𝑖 randomly. Suppose 𝜃(𝑖, 𝑗 +
1, 𝑘, 𝑙) represents bacterium 𝑖 (Node 12), chemotactic 

step 𝑗 (Node 9), reproductive step 𝑘 (Node 5) and 

elimination – dispersal step 𝑙 (Node 4). 𝐶(𝑖) is the size of 

the step taken in the random direction specified by the 
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tumble (Node 14). The chemotaxis movement of the 

bacterium may be represented by (19), where (𝑖) is the 

random vector whose elements lie in range [−1,1]. 

𝜃 (𝑖, 𝑗 + 1, 𝑘, 1) = 𝜃(𝑖, 𝑗, 𝑘, 𝑙)

+ 𝐶(𝑖)
(𝑖)

√𝑇(𝑖)(𝑖)

 (19) 

𝐽(𝑖, 𝑗, 𝑘, 𝑙) is the current bacterium’s cost function value 

(Node 15). It only changes its position if the 𝐽(𝑖, 𝑗 +
1, 𝑘, 𝑙) is better than 𝐽(𝑖, 𝑗, 𝑘, 𝑙). We let bacterium 𝑖 take a 

step size (Node 14 and 20) along the direction of tumble 

vector (𝑖). Elimination and dispersal events (Node7) 

may occur in the local environment when the bacteria are 

exposed to gradual or sudden changes such as significant 

rise of temperature or sudden flow of water. In order to 

simulate these events in BF, some bacteria are liquidated 

at random with a very small probability while the new 

replacements are randomly initialized over the search 

space. The health of each bacterium is computed as the 

sum of the objective function value during its lifetime. 

After each chemotaxis step, all bacteria are sorted in 

decreasing order of health. Only the first half of the 

bacteria (healtiest ones) asexually split into two bacteria 

which are then placed at the same locations. In this way, 

the size of the population is kept constant (Node 10). 

 

5. EXPERIMENTAL RESULTS 

We devised 6 different problems by changing the number 

of floors 𝑛 and number of elevators 𝑙 as in Table 1, and 

compared each algorithm on each of the problems.  

Table 1. Information on the problems  𝑝 is problem number, 

𝑛 is number of floors, and 𝑙 is number of elevators. 

P N l 

1 25 5 

2 25 10 

3 100 5 

4 100 10 

5 200 5 

6 200 10 
 

 

For comparison of the algorithms on a problem 𝑝, we 

follow the procedure detailed in Algorithm 2. In 

 

Figure 8. Classical Bacterial Foraging Algorithm (BF) flowchart. 
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Algorithm 2, we first define inputs. Notice that 𝐸 and 𝑑 

are functions that are used in the procedure. Inside the 

procedure we loop over problems 𝑃, and algorithms 𝐴. 

We do 30 trials for each < 𝑎, 𝑝 > pair and get an average 

convergence graph. On each trial, the algorithm 

terminates after 10000 function evaluations. For each 

problem p we draw convergence comparison graphs. 

 

Algorithm 2 The procedure that compares algorithms on 

problems. Line 10: Run the algorithm 𝑎 on problem 𝑝 to 

get list of <function evaluation, global best value> pairs 

𝑌. Algorithm 𝑎 terminates after calling 𝐹 function 

evaluations. Line 12: Get a mean 𝑌𝑎𝑝 list of <function 

evaluation, global best value> pairs. Line 14: Draw the 

convergence comparison graph for 𝐴 on 𝑝. 

1: procedure compare 

 

Inputs: 

2:  𝑃 ← set of problems 

3:  𝐴 ← set of algorithms 

4:  𝐼 ← set of trials to carry out 

5:  𝐹 ← number of function evaluations allowed 

6:  𝐸 ← function to take a set of list of <function 

evaluation, global best value> pairs and return 

a mean list 

 

Body: 

7:  for each 𝑝 ∈ 𝑃 do 

8:   for each 𝑎 ∈ 𝐴 do 

9:    for 𝑖 ← 1 to 𝐼 do 

10:     𝑌𝑖 ← 𝑎(𝑝, 𝐹)  

11:    end for 

12:    𝑌𝑎𝑝 ← 𝐸({𝑌𝑖}) 

13:    end for 

14:   draw({𝑌𝑎𝑝})  

15:  end for 

16: end procedure 

5.1. Convergence Graphs 

As described in Algorithm 2, for each problem defined in 

Section 5 we draw a convergence graph.  

A convergence graph shows the mean of the values of the 

best position found (𝑓∗) with respect to the number of 

cost function evaluations (FES). In our work 𝑓 represents 

travel time, so lower curves are better. 

 

 

 

 

 

In Figure 9a we see that ABC and TS are the best 

performing algorithms. ABC did not converge when the 

maximum number of FES was reached, so it could still 

lower the result. The objective function 𝑓 was reduced to 

less than 100.  

In Figure 9b we see that ABC and SAR lead again. ABC 

is not still converged. 𝑓 was decreased to less than 100. 

In Figure 9c we see that ABC and SAR are the two best 

performing algorithms. SAR seems to have converged, 

and ABC seems to be still improving. Hence we expect 

ABC to further improve. The 𝑓 was reduced to less than 

625.  

In Figure 9d we see that ABC and SAR lead again. ABC 

is still not converged. 𝑓 was decreased to less than 650.  

In Figure 9e we see that SAR and ABC are the best 

performing algorithms. ABC seems to be still improving. 

The 𝑓 was reduced to less than 1250.  

In Figure 9f we see that SAR and ABC are performing 

best, and neither of them was converged. 𝑓 was reduced 

to less than 1200 by SAR. 

We see that ABC and TS are always in the top two. We 

also see that as number of floors 𝑛 change, the successful 

algorithm change: for 𝑛 = 25 ABC is the best algorithm. 

When 𝑛 increases to 100, TS becomes on par with ABC, 

and when 𝑛  is increased furthermore to 200 TS beats 

ABC. SAR emerges as the third best algorithm for higher 

number of floors. 

We also see that the number of elevators 𝑙 does not affect 

the ordering of the algorithms, whereas number of floors 

𝑛 affects greatly. As the number of floors 𝑛 increases, the 

probability of problem having a high dimensionality 

increases, since in the representation we introduced in 

Section 2, the dimensionality of the problem changes 

with the number of requests coming from the floors. E.g. 

when 𝑛 = 200, the maximum possible dimensionality of 

the problem becomes 2𝑛 − 2 = 398. Number of 

elevators 𝑙 effects the upper bounds of the search space, 

and what we see from our experiments is that it does not 

affect the success order of different algorithms. 

It needs to be noted that ABC did not seem to be 

converged in any of trails. When the convergence graphs 

of Problem 1, Problem 3 and Problem 5 are inspected 

consecutively, it can be hypothesized that ABC can beat 

TS in the long run, even for the larger number of floors 

𝑛. Performance of ABC over much longer runs is to be 

seen. 

The elevator system optimization obviously benefits 

from using soft computing techniques, as seen from the 

fact that the solution was improved vastly for all 

problems. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 9. Convergence graphs for Problems 1-6. (a) Problem 1, (b) Problem 2, (c) Problem 3, (d) Problem 4, (e) Problem 5, 

(f) Problem 6. See Table 1 for definition of problems. 
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6. CONCLUSION AND FUTURE WORK 

We have presented a comparison of Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), Artificial 

Bee Colony (ABC), Differential Evolution (DE), Tabu 

Search (TS), Simulated Annealing with Random Restarts 

(SAR) , Bat Algorithm (BA), Bacterial Foraging 

Optimization Algorithm (BF) soft computing techniques 

for global optimization of the car-call allocation strategy 

of the controller in EGCS. Each algorithm was permitted 

10000 function evaluations, and the convergence graphs 

of the global best function value were drawn. Results 

were provided for high-rise buildings from 10 to 24 

floors, and several car configurations from 2 to 6 cars. 

We observe the SAR and ABC algorithms outperform the 

other algorithms in general. Furthermore, ABC has 

potential to further improve its results provided that more 

function evaluations are permitted. 

Also, we introduced a new problem representation that 

sets up the problem as assignment of cars to floor 

requests, which allows easier programming of the 

simulation. In this presentation, the number of floors 

affects the success order of the algorithms, as it affects 

the dimensionality of the problem, whereas the number 

of elevators does not have an obvious effect on that order. 

We introduced a new version of Simulated Annealing, 

namely Simulated Annealing with Random Restarts 

(SAR), that restarts the search produce when stuck in a 

local optimum. SAR performed as the third ranked 

algorithm in general in our tests. Results showed that 

aforementioned soft computing optimization techniques, 

TS and ABC in particular, help in reducing the passenger 

travel times greatly, hence are suitable for this problem. 

ABC algorithm did not seem to be converged in any of 

the trials, and their performances over longer runs are to 

be seen in future works. 
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