
 Journal of Polytechnic, 2017; 20 (3) : 519-529 Journal of Polytechnic, 2017; 20 (3) : 519-529

519

A Comparison of Metaheuristics for the Allocation of

Elevators to Calls in Buildings

Berna BOLAT1,*, Oğuz ALTUN2, Pablo CORTES3, Yunus Emre YILDIZ4, Ali Osman TOPAL5

1 Yildiz Technical University, Mechanical Engineering Department, Istanbul, Turkey

2 Yildiz Technical University, Computer Engineering Department, Istanbul, Turkey

3 Escuela Tecnica Superior de Ingeniería , Ingeniería Organizacion, University of Seville , Camino de los Descubrimientos, s/n

Sevilla, Spain

4Epoka University, Faculty of Architecture and Engineering, Computer Engineering Department, Tirana, Albania

5Epoka University, Faculty of Architecture and Engineering, Computer Engineering Department, Tirana, Albania

(Received : 11.07.2016 ; Accepted : 12.07.2016)

ABSTRACT

This paper deals with the car-call allocation problem in vertical transportation in buildings. We have made a wide comparison of

different metaheuristic optimization algorithms to identify those with a better performance dealing with the problem. The tested

approaches are Differential Evolution (DE), Simulated Annealing with Random Starts (SAR), Artificial Bee Colony (ABC), Bat

Algorithm (BA), Bacterial Foraging Optimization Algorithm (BF), Particle Swarm Optimization (PSO), Genetic Algorithm (GA),

and Tabu Search (TS). Each algorithm was tested in high-rise building simulations of 10 to 24 floors, with car configurations of 2

to 6 cars. Results proved that the ABC and TS algorithms generally result in better average journey times compared to other

methods. It has to be noted that we introduced a new version of the Simulated Annealing, Simulated Annealing with Restarts

(SAR), which ranked as the third best algorithm.

Keywords : Elevator group control system, evolutionary algorithms, optimization.

ÖZ

Bu çalışma binalarda düşey taşımacılıkta kullanılan asansörler için çağrıların kabinlere dağıtılması problemi üzerinedir. Geniş bir

spektrumda farklı sezgisel optimizasyon algoritmaları problem üzerinde performans yönünden karşılaştırılmış ve başarılıları

belirlenmiştir. Test edilen algoritmalar Çıkarımsal Evrim (Differential Evolution, DE), Rastgele Yeniden Başlatmalı Benzetimli

Tavlama (Simulated Annealing with Random Starts, SAR), Yapay Arı Kolonisi (Artificial Bee Colony, ABC), Yarasa Algoritması

(Bat Algoritması, BA), Bakteri Otlama Optimizasyon Algoritması (Bacterial Foraging Optimization Algorithm, BF), Parçacık Sürü

Optimizasyonu (Particle Swarm Optimization, PSO), Genetic Algoritma (Genetic Algorithm, GA) ve Tabu Araştırmasıdır (Tabu

Search, TS). Her algoritma simülasyon ile 10 ila 24 katlı binalar ve 2 ila 6 kabin ile test edilmiştir. Sonuçlar ABC ve TS

algoritmalarının daha iyi bir ortalama yolculuk zamanı verdiğini göstermiştir. Ayrıca Benzetimli Tavlama algoritmasının yeni bir

versiyonu olan Rastgele Yeniden Başlatmalı Benzetimli Tavlama (SAR) algoritması geliştirilmiştir. SAR deney sonuçlarında en

iyi 3. algoritma olarak çıkmaktadır.

1. INTRODUCTION

The main problem in a vertical transportation system

operated by an elevator group control system (EGCS)

appears when a passenger in a floor makes a call and

waits for a car to arrive his/her floor of destination in a

quick and safe manner [1]. Therefore, the primary task an

EGCS needs to solve efficiently is this landing call

assignation problem. The major difficulty arises when

such an EGCS needs to manage multiple elevators in a

building in order to efficiently transport all the

passengers in the building. Obviously, high-rise

buildings with multiple coordinated cars increase the

complexity of the problem. The generic problem to be

solved consists of a passenger wanting to travel from one

floor to another and therefore pressing the landing call

button at a floor, generating what is called a landing call.

The duty of the EGCS is to satisfy all the demands by

assigning an elevator to each landing call (call made at a

floor) in a way that some criteria are optimized. The most

usual criterion is to minimize the passengers’ waiting

times. This so characterized problem is known to be a

complex NP-hard problem [2,3,4], as such, an efficient

deterministic solution is not known.

This problem recently attracted the increasing interest of

the scientific community and several contributions have

been made. Contributions based on metaheuristics have

showed an adequate performance to deal with such

complex problem. Examples of such techniques include

Genetic Algorithm [5,6,7], Tabu Search [8], Particle

Swarm Optimization [9,10,11], Immune Systems [12],

Ant Colony Optimization [13], Viral Systems [14], and

Fuzzy Logic approaches [15,16,17,18,19].

In this paper we present a comparison of diverse

metaheuristics that can provide an interesting analysis

about their performance for allocating cars to landing

calls in buildings managed by an EGCS. This whole

comparison has not been done previously and allows

*Corresponding Author

e-mail: balpan@yildiz.edu.tr
Digital Object Identifier (DOI) :

Berna BOLAT, Oğuz ALTUN, Pablo CORTES, Yunus Emre YILDIZ, Ali Osman TOPAL / Journal of Polytechnic, 2017; 20 (3) : 519-529

520

comparing different alternatives under the same basis of

analysis. Tested techniques include Differential

Evolution (DE), Simulated Annealing with Random

Restarts (SAR), Artificial Bee Colony (ABC), Bat

Algorithm (BA), Bacterial Foraging Optimization

Algorithm (BF). All of them make use of the same

solution encoding, which is based on a hall call allocation

strategy to define the solution encoding (representation),

together with a quick-to-evaluate car-call allocation

quality estimation.

The rest of the paper deals with the specification of this

solution encoding (in Section 2), the procedure to

evaluate the quality of the different solutions (in Section

3), and the description of the different algorithms applied

to the problem (in Section 4). The experimental results

are described in Section 5.

2. REPRESENTATION

We start by the approach that was first proposed by [5]:

Let 𝑙 be number of elevators in an elevator system

installed in a building with 𝒏 floors. For the sake of

giving an example let us assume 𝒍 = 𝟓 and 𝒏 = 𝟏𝟎. The

requests for going to an upper floor can be represented by

a 𝒏 − 𝟏 element binary vector as in (1), where a 𝟏

represents a request (e.g. a push to the “up” button), and

0 represents no request. Notice there cannot be an up

request in the highest floor.

𝑩𝒖 = < 𝟎, 𝟎, 𝟏, 𝟏, 𝟎, 𝟏, 𝟏, 𝟏, 𝟏, > (1)

Down requests can also be represented with a similar 𝑛 −
1 element (there cannot be a down request in the lowest

floor) binary vector 𝐵𝑑 .

We then convert the representation of up requests to a

more compact representation than proposed by [5], using

an ordered set of integers where each element of the set

represents a floor with an up request as in (2), where floor

indices start from 𝟎.

𝑹𝒖 = {𝟐, 𝟑, 𝟓, 𝟔, 𝟕, 𝟖} (2)

Down requests can be represented with a similar set of

integers 𝑅𝑑. Then a solution 𝑥 can be represented by a

vector of elevator assignments to the requests in 𝑅𝑢 and

𝑅𝑑 as in (3), where the first 6 assignments are for 𝑅𝑢, and

the rest are for 𝑅𝑑.

𝑋 = < 𝟑, 𝟐, 𝟐, 𝟏, 𝟎, 𝟐, 𝟏, 𝟏, 𝟑, 𝟑 > (3)

Let 𝑠(𝐴) be the number of elements in collection𝐴. Then

𝑠(𝑋) = 𝑠(𝑅𝑢) + 𝑠(𝑅𝑑).

Elevator indices start from 𝟎 and go to 𝒍 − 𝟏, hence upper

bounds for each dimension can be shown in a vector 𝑼 as

in (4), and lower bounds for each dimension can be

shown in a vector 𝑳 as in (5). In this representation

changing the value of an element of 𝑿 corresponds to

changing the assigned elevator for that request.

𝑈 = < 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒, 𝟒 > (4)

𝐿 = < 𝟎, 𝟎, 0, 0, 0, 0, 0, 0, 0, 0 > (5)

3. COST EVALUATION

To calculate the cost of the whole elevator system 𝑠, we

start by calculating the personal cost 𝑐 for each elevator

as in [9], where Case I is when there are no requests, Case

II is when there are only down requests, Case III is when

there are only up requests, Case IV is when there are both

up and down requests, 𝜓1 is the ground floor level, 𝜓2 is

the highest down request level, 𝜓3 is the number of down

requests between 𝜓1 and 𝜓2, 𝜓4 is the highest up request,

𝜓5 is the number of up requests between 𝜓1 and 𝜓4, 𝜓6

is the lowest down request, 𝑡 is the door opening and

closing time, and 𝑡𝑝 is the passenger transfer time.

After we calculate personal cost 𝑐𝑖 for each elevator 𝑖, we

get the average group cost 𝑔 as in (7), where 𝑙 is the

number of elevators.

𝑔 =
𝟏

𝐥
∑𝒇𝒊
𝒊

 (7)

Finally, we get the solution cost value 𝑐 for solutions 𝑠 as

in (8), where 𝑡+ is the highest elevator trip time, 𝑡− is the

lowest elevator trip time, and 𝑘1 and 𝑘2 are constant

weights.

𝑐 = 𝒌𝟏 𝒈 + 𝒌𝟐(𝒕
+ − 𝒕−) (8)

See [9] for a more in depth analysis of this cost function.

We define cost mapper function 𝑓(𝑆) that takes a list of

elevator systems 𝑆 and return a list of cost values for each

elevator system in 𝑆.

4. ALGORITHMS

This section presents the different approaches we have

tested to deal with the car-call allocation problem in

buildings managed by EGCS. All of them make use of

the same representation described in Section 2, and

evaluates the quality of the solutions by the procedure

described in Section 3.

4.1. Global Best and Fixing Solutions

In all the algorithms it makes sense to keep a best solution

found so far (e.g. global best) 𝑥∗. Hence we augment the

objective function 𝑓 to also update the global best when

necessary as seen in Algorithm 1. In addition 𝑓 checks

for the validity of the input solution, and fixes it using the

fix_solution function supplied by the user. 𝑓 also takes

care to return costs of all solution when there are more

than one solutions.

Algorithm 1 In addition to returning the cost, objective

function 𝑓 also a) updates the global best 𝑥∗ if necessary,

𝑐 =

{

 0, Case I

t(𝜓2 − 𝜓1) + 𝑡p(𝜓3 − 𝜓1), Case II

t(𝜓4 − 𝜓1) + 𝑡p(𝜓5 − 𝜓1), Case III

t(𝜓4 − 𝜓1) + 𝑡|𝜓2 − 𝜓4| + 𝑡|𝜓2 − 𝜓6| + 𝑡p|𝜓3 + 𝜓5 –𝜓1|, Case IV

 (6)

A COMPARISON OF METAHEURISTICS FOR THE ALLOCATION OF ELEVATORS TO … Journal of Polytechnic, 2017; 20 (3) : 519-529

521

b) fixes out of range and similar problems with the

solution (Line 6), c) works for single or multiple

dimensions.

1: function

𝑓
Inputs:

2: 𝑋 ←<
𝑥1, … , 𝑥𝑛 > //

solution list

3: 𝑐 ← cost

function

4: 𝑠 ←

function for

fixing invalid

solutions

Body:

5: if 𝑋 is a

single solution

then

6: 𝑥𝑓 ←

𝑠(𝑋)
7: 𝑣 ←
𝑐(𝑥𝑓)

8: if

isbetter(𝑣, 𝑣∗)
then

9: 𝑥∗ ← 𝑥𝑓

10: 𝑣∗ ← 𝑣

11: end if

12: return

𝑥𝑓 , 𝑣

13: else

14: 𝑇 ←< 𝑡1, … , 𝑡𝑛 >

15: 𝑣 ←< 𝑣1, … , 𝑣𝑛 >

16: for each 𝑖 ∈ indices(𝑋) do

17: 𝑡𝑖, 𝑣𝑖 ← 𝑓(𝑥𝑖)
18: end for

19: return 𝑇, 𝑣

20: end if

21: end function

All algorithms described in this section use the objective

function 𝑓 described in Algorithm 1.

4.2. Particle Swarm Optimization

Particle Swarm Optimization is a population based

stochastic optimization method developed by Eberthart

and Kennedy [20] in 1995. The algorithm, which is based

on a metaphor of social interaction, searches a space by

adjusting the trajectories of individual vectors. These

vectors are called particles, as they are conceptualized as

moving points in multidimensional space. The individual

particles are drawn stochastically toward the positions of

their own previous best performance and the best

previous performance of their neighbors [21].

PSO algorithm is depicted in Figure 1. The algorithm

starts with Node 1. In Node 2, we randomly initialize

particle positions 𝑥𝑖 and particle velocities 𝑣𝑖. In addition

particle “personal best positions” 𝑝𝑖 are initialized as

starting positions 𝑥𝑖 and the global best position 𝑥∗ is

initialized as the best of personal bests. In Node 3 if we

decide to continue, because e.g. we have more time, we

start processing each particle 𝑖 in the next generation 𝑡
one by one. While we have unprocessed particles (Node

4), we get a new solution (Node5) using (9) and (10).

𝒗𝒊(𝒕 + 𝟏) = 𝒘𝒗𝒊(𝒕)

+ 𝒄𝟏𝒓𝟏(𝒑𝒊 − 𝒙𝒊(𝒕))

+ 𝒄𝟐𝒓𝟐(𝒙
∗ − 𝒙𝒊(𝒕))

(9)

𝒙𝒊 (𝒕 + 𝟏) = 𝒙𝒊 (𝒕) + 𝒗𝒊(𝒕 + 𝟏) (10)

Where 𝑤, 𝑐1, and 𝑐2 are constants and 𝑟1 and 𝑟2 are

random values between [0,1] drawn from the uniform

distribution. If the new solution is better than personal

best (𝑓(𝑥𝑖(𝑡 + 1)) > 𝑓(𝑝𝑖)) as in Node 6, we update

personal best in Node 7: 𝑝𝑖 = 𝑥𝑖(𝑡 + 1). When we have

no more particles to process (Node 4), we get out of

particle loop. When the termination criteria is met (e.g.

“No” edge in Node 3) the algorithm ends.

4.3. Artificial Bee Colony

Artificial Bee Colony (ABC) [22,23], simulates behavior

of bees in a bee hive in search of food sources. As

depicted in Figure 2, the algorithm starts with initializing

random initial solutions 𝑥 (Node 2). Note that in ABC

metaphor each solution is a food source.

Figure 1. PSO algorithm flowchart.

2: Initialize

3: Continue?

4: Have Particle?

5: New solution

6: Beats

Personal

Best?

7: Update

Personal

Best

1: Start

8: End

Yes

No

Yes

No

Yes

No

Berna BOLAT, Oğuz ALTUN, Pablo CORTES, Yunus Emre YILDIZ, Ali Osman TOPAL / Journal of Polytechnic, 2017; 20 (3) : 519-529

522

If there is enough time (Node 3), the algorithm moves to

updating food sources. In each iteration, each food source

is “visited” once (Node4). Visiting a solution 𝑥𝑖 entails

making a recombination of it with a random other

solution 𝑥𝑗 as in (11), where 𝑑 is a random dimension

and 𝑟 is a uniform random number in the range [−1,1].

𝑥𝑖 [𝑑] ← 𝑥𝑖[𝑑] + 𝑟(𝑥𝑖[𝑑]
− 𝑥𝑗[𝑑])

(11)

In Node 5 each food source is assigned a probability of

being re-visited, e.g. “luck”, in the same iteration, based

on the value of 𝑓. The food source with better 𝑓 value has

a higher probability 𝑝 of being re-visited [15].

Figure 2. ABC algorithm flowchart.

𝑝𝑖 = {

𝑓(𝑥𝑖) + 1, 𝑓(𝑥𝑖) ≥ 0
1

(1 − 𝑓(𝑥𝑖)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12)

In Node 6 if the food source is lucky, e.g. if 𝑝𝑖 >
𝑟𝑎𝑛𝑑 (0,1), where 𝑟𝑎𝑛𝑑(0,1) is a random number in the

range [0,1] from the uniform distribution, the food source

is re-visited according to probability determined in (12).

This ensures that the neighborhoods of better solutions

are visited more, hence makes the algorithm more elitist.

In Node 7 the algorithm checks whether any of the

current solution neighborhoods failed to produce any

improvement for the last limit iterations. Such

neighborhoods are abandoned for a random new

neighborhood.

4.4. Genetic Algorithm

Genetic Algorithm (GA) [24], simulates evolution of

solutions. As seen in Figure 3, GA starts with

initialization of population 𝑥 (Node2) randomly. If there

is time to generate another generation of solutions (Node

3), the algorithm proceeds to produce a new generation.

If still a new child is needed to complete the new

generation (Node 4), two new children are generated in

Node 5. In this step (Node 5), first two new parents are

selected. From the two parents, two children are

populated by crossover. Each child is mutated, and then

added to the list of new generation solutions. In Node 6,

the old generation is completely overwritten with the new

generation. If no new generation is needed, the algorithm

ends (Node 7).

Figure 3. Genetic Algorithm flowchart.

4.5. Differential Evolution

Differential Evolution [24] is another algorithm that

simulates the evolutionary behavior. As seen in Figure 4,

the algorithm starts with initializing the populations of

individuals 𝑋 randomly. While we have time to work on

another generation (Node 3), the algorithm takes a copy

of the current population into parents 𝑄 (Node4), and

iterates through each parent 𝑞 (Node 5). In each iteration

a new child 𝑒 is made through (13) and (14), where 𝑎, 𝑏,

and 𝑐 are random parents that are different from 𝑞 and

each other, 𝑚 is the constant mutation rate, and

represents the genetic crossover operator.

𝒅 = 𝒂 +𝒎(𝒃 − 𝒄) (13)

𝑒 = 𝒒 𝒅 (14)

If the child 𝑒 is better than the parent 𝑞, 𝑒 replaces

corresponding element in X.

2: Initialize

3: Continue?

8: End

4: Visit all sources

5: Assign luck

6: Re-visit lucky sources

7: Leave empty sources

No

Yes

1: Start 2: Initialize

3: new

generation?

7: End

4: new child

needed?

5: Add

Child

6: Replace

Generation

No

Yes

Yes

No

1: Start

A COMPARISON OF METAHEURISTICS FOR THE ALLOCATION OF ELEVATORS TO … Journal of Polytechnic, 2017; 20 (3) : 519-529

523

Figure 4. Differential Evolution flowchart

4.6. Tabu Search

Tabu Search [24] algorithm keeps a list of solutions that

are already evaluated (tabu), and avoids re-evaluating

those solutions. As depicted in Figure 5 the algorithm

starts by initializing (Node 2) an empty tabu list 𝐿, getting

a random current solution 𝑠, and adding 𝑠 to 𝐿. While

there is enough time (Node 3), we proceed to build a new

solution 𝑟 by tweaking the existing solution 𝑠 (Node 4).

If 𝑟 is not in the tabu list (Node 5), current solution is

updated (Node 5) 𝑠 ← 𝑟, and 𝑟 is added to the tabu list 𝐿.

Figure 5. Tabu Search flowchart.

4.7. Simulated Annealing with Random Restarts

Simulated Annealing [24] algorithm simulates annealing

process. The algorithm decreases the chance of getting

stuck in local optima by occasionally accepting solutions

that are worse than the current solution. This version with

random restarts, restarts search from a random position

after local search fails to improve a given time (limit 𝑙).
As seen in Figure 6, the algorithm starts by initializing

(Node 2) constants limit 𝑙, initial temperature 𝑡0, and

cooling scheduler 𝑐. If there is time to another annealing

(Node 3), algorithm resets (Node 4) current temperature

with 𝑡 ← 0, and current solution with 𝑠 ←
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. If number of bad trials 𝑛 is less than

limit 𝑙, we continue (Node 5) improving current solution

by producing a tweak of it (Node 6). If the tweak 𝑟 is

better than 𝑠 (Nodes 7-8), we directly update current

solution: 𝑠 ← 𝑟. The interesting thing about Simulated

Annealing is that we still update when 𝑟 is worse than 𝑠
if 𝑟 is “lucky”, e.g. if (15) holds, where 𝑟𝑎𝑛𝑑(0,1) is a

random value between 0 and 1, and |. | denotes the

absolute value.

𝑟𝑎𝑛𝑑(0,1)

≤ exp (−
|𝑓(𝑠) − 𝑓(𝑟)|

𝑡
)

(15)

This allows the algorithm to escape from local optimums.

When there is an update, the number of bad trials is reset:

𝑛 ← 0. When an update was not done, the number of bat

trials is incremented: 𝑛 ← 𝑛 + 1 (Node 9). In each

2: Initialize

3: new

generation?

1: Start

9: End

4: make parents

5: have

parent?

6: child

7: Better?

8: Replace

No

Yes

No
Yes

No

Yes

2: Initialize

3: Have

time?

1: Start

8: End

4: new solution

5: Tabu?

6: Update

7: Tabu

No

Yes

Yes

No

Berna BOLAT, Oğuz ALTUN, Pablo CORTES, Yunus Emre YILDIZ, Ali Osman TOPAL / Journal of Polytechnic, 2017; 20 (3) : 519-529

524

iteration the temperature is cooled down (Node 10) using

schedule constant 𝑐 that has a value less than 1: 𝑡 ← 𝑐𝑡.

Figure 6. Simulated Annealing with Restarts flowchart.

4.8. Bat Algorithm

Bath algorithm is a nature inspired algorithm that

simulates bat’s echolocation ability to get optimum

solution for tough optimization problems. Yang [25] has

used advantages of other well-known algorithms

(Particle Swarm Optimization (PSO)) and Harmony

Search (HS) in the bat algorithm and proposed a powerful

algorithm.

As depicted in Fig 7. the Bat Algorithm starts with 𝑛 bats

being placed randomly in the search space. Velocity 𝑣𝑖 ,
frequency 𝑓𝑖 , pulse rate 𝑟𝑖 , and loudness 𝐴𝑖 are initialized

(Node 2) for each bat 𝑖 at the beginning. Bat’s position

and velocity are updated using (16), (17), and (18),

𝒇𝒊
= 𝒇𝒎𝒂𝒙
+ (𝒇𝒎𝒂𝒙 − 𝒇𝒎𝒊𝒏)𝜷

(16)

𝑽𝒊
𝒕 = 𝑽𝒊

𝒕−𝟏 + (𝒙𝒊
𝒕 − 𝒙∗) (17)

𝒙𝒊
𝒕 = 𝒙𝒊

𝒕−𝟏 + 𝑽𝒊
𝒕 (18)

where 𝛽 is a random vector generated from a uniform

distribution in the range [0,1]. Then the algorithm

evaluates the fitness (solutions) and chooses the current

best position 𝑥∗ (Node 4). After these updates, in Node

5, if the bat’s pulse rate is low (which means bat is far

away from the prey), with a high probability it will fly

near the current best bat (Node 6) and make a random

short fly there. If its pulse rate is high then it should be

near prey and with a high probability it will make a

random fly around its current position (Node 7). After

this fly if the bat’s position is better than the current

global best and its loudness is loud enough to be greater

than a random number (Node 8), the bat will fly to this

position and current global best will be updated with the

new one. The bat’s pulse rate 𝑟𝑖 will be increased and

loudness 𝐴𝑖 will be decreased (Node 9). Then in Node

10, again fitness will be evaluated and the current best 𝑥∗
will be found.

Figure 7. Bat Algorithm flowchart.

4.9. Bacterial Foraging Optimization Algorithm

The bacterial foraging system consists of three principal

mechanisms, namely chemotaxis, reproduction and

elimination-dispersal [26].

As seen in Figure 8, the algorithm starts with initializing

the bacterium position 𝑥𝑖 randomly. Suppose 𝜃(𝑖, 𝑗 +
1, 𝑘, 𝑙) represents bacterium 𝑖 (Node 12), chemotactic

step 𝑗 (Node 9), reproductive step 𝑘 (Node 5) and

elimination – dispersal step 𝑙 (Node 4). 𝐶(𝑖) is the size of

the step taken in the random direction specified by the

2: Initialize

3: Have

time?

1: Start

11: End

4: Reset

5: Continue?

6: Tweak

10: Cool

7: Better

or Lucky?

8: Update9: Increment

No

Yes

No Yes

Yes

No

A COMPARISON OF METAHEURISTICS FOR THE ALLOCATION OF ELEVATORS TO … Journal of Polytechnic, 2017; 20 (3) : 519-529

525

tumble (Node 14). The chemotaxis movement of the

bacterium may be represented by (19), where (𝑖) is the

random vector whose elements lie in range [−1,1].

𝜃 (𝑖, 𝑗 + 1, 𝑘, 1) = 𝜃(𝑖, 𝑗, 𝑘, 𝑙)

+ 𝐶(𝑖)
(𝑖)

√𝑇(𝑖)(𝑖)

 (19)

𝐽(𝑖, 𝑗, 𝑘, 𝑙) is the current bacterium’s cost function value

(Node 15). It only changes its position if the 𝐽(𝑖, 𝑗 +
1, 𝑘, 𝑙) is better than 𝐽(𝑖, 𝑗, 𝑘, 𝑙). We let bacterium 𝑖 take a

step size (Node 14 and 20) along the direction of tumble

vector (𝑖). Elimination and dispersal events (Node7)

may occur in the local environment when the bacteria are

exposed to gradual or sudden changes such as significant

rise of temperature or sudden flow of water. In order to

simulate these events in BF, some bacteria are liquidated

at random with a very small probability while the new

replacements are randomly initialized over the search

space. The health of each bacterium is computed as the

sum of the objective function value during its lifetime.

After each chemotaxis step, all bacteria are sorted in

decreasing order of health. Only the first half of the

bacteria (healtiest ones) asexually split into two bacteria

which are then placed at the same locations. In this way,

the size of the population is kept constant (Node 10).

5. EXPERIMENTAL RESULTS

We devised 6 different problems by changing the number

of floors 𝑛 and number of elevators 𝑙 as in Table 1, and

compared each algorithm on each of the problems.

Table 1. Information on the problems 𝑝 is problem number,

𝑛 is number of floors, and 𝑙 is number of elevators.

P N l

1 25 5

2 25 10

3 100 5

4 100 10

5 200 5

6 200 10

For comparison of the algorithms on a problem 𝑝, we

follow the procedure detailed in Algorithm 2. In

Figure 8. Classical Bacterial Foraging Algorithm (BF) flowchart.

Berna BOLAT, Oğuz ALTUN, Pablo CORTES, Yunus Emre YILDIZ, Ali Osman TOPAL / Journal of Polytechnic, 2017; 20 (3) : 519-529

526

Algorithm 2, we first define inputs. Notice that 𝐸 and 𝑑

are functions that are used in the procedure. Inside the

procedure we loop over problems 𝑃, and algorithms 𝐴.

We do 30 trials for each < 𝑎, 𝑝 > pair and get an average

convergence graph. On each trial, the algorithm

terminates after 10000 function evaluations. For each

problem p we draw convergence comparison graphs.

Algorithm 2 The procedure that compares algorithms on

problems. Line 10: Run the algorithm 𝑎 on problem 𝑝 to

get list of <function evaluation, global best value> pairs

𝑌. Algorithm 𝑎 terminates after calling 𝐹 function

evaluations. Line 12: Get a mean 𝑌𝑎𝑝 list of <function

evaluation, global best value> pairs. Line 14: Draw the

convergence comparison graph for 𝐴 on 𝑝.

1: procedure compare

Inputs:

2: 𝑃 ← set of problems

3: 𝐴 ← set of algorithms

4: 𝐼 ← set of trials to carry out

5: 𝐹 ← number of function evaluations allowed

6: 𝐸 ← function to take a set of list of <function

evaluation, global best value> pairs and return

a mean list

Body:

7: for each 𝑝 ∈ 𝑃 do

8: for each 𝑎 ∈ 𝐴 do

9: for 𝑖 ← 1 to 𝐼 do

10: 𝑌𝑖 ← 𝑎(𝑝, 𝐹)

11: end for

12: 𝑌𝑎𝑝 ← 𝐸({𝑌𝑖})

13: end for

14: draw({𝑌𝑎𝑝})

15: end for

16: end procedure

5.1. Convergence Graphs

As described in Algorithm 2, for each problem defined in

Section 5 we draw a convergence graph.

A convergence graph shows the mean of the values of the

best position found (𝑓∗) with respect to the number of

cost function evaluations (FES). In our work 𝑓 represents

travel time, so lower curves are better.

In Figure 9a we see that ABC and TS are the best

performing algorithms. ABC did not converge when the

maximum number of FES was reached, so it could still

lower the result. The objective function 𝑓 was reduced to

less than 100.

In Figure 9b we see that ABC and SAR lead again. ABC

is not still converged. 𝑓 was decreased to less than 100.

In Figure 9c we see that ABC and SAR are the two best

performing algorithms. SAR seems to have converged,

and ABC seems to be still improving. Hence we expect

ABC to further improve. The 𝑓 was reduced to less than

625.

In Figure 9d we see that ABC and SAR lead again. ABC

is still not converged. 𝑓 was decreased to less than 650.

In Figure 9e we see that SAR and ABC are the best

performing algorithms. ABC seems to be still improving.

The 𝑓 was reduced to less than 1250.

In Figure 9f we see that SAR and ABC are performing

best, and neither of them was converged. 𝑓 was reduced

to less than 1200 by SAR.

We see that ABC and TS are always in the top two. We

also see that as number of floors 𝑛 change, the successful

algorithm change: for 𝑛 = 25 ABC is the best algorithm.

When 𝑛 increases to 100, TS becomes on par with ABC,

and when 𝑛 is increased furthermore to 200 TS beats

ABC. SAR emerges as the third best algorithm for higher

number of floors.

We also see that the number of elevators 𝑙 does not affect

the ordering of the algorithms, whereas number of floors

𝑛 affects greatly. As the number of floors 𝑛 increases, the

probability of problem having a high dimensionality

increases, since in the representation we introduced in

Section 2, the dimensionality of the problem changes

with the number of requests coming from the floors. E.g.

when 𝑛 = 200, the maximum possible dimensionality of

the problem becomes 2𝑛 − 2 = 398. Number of

elevators 𝑙 effects the upper bounds of the search space,

and what we see from our experiments is that it does not

affect the success order of different algorithms.

It needs to be noted that ABC did not seem to be

converged in any of trails. When the convergence graphs

of Problem 1, Problem 3 and Problem 5 are inspected

consecutively, it can be hypothesized that ABC can beat

TS in the long run, even for the larger number of floors

𝑛. Performance of ABC over much longer runs is to be

seen.

The elevator system optimization obviously benefits

from using soft computing techniques, as seen from the

fact that the solution was improved vastly for all

problems.

A COMPARISON OF METAHEURISTICS FOR THE ALLOCATION OF ELEVATORS TO … Journal of Polytechnic, 2017; 20 (3) : 519-529

527

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9. Convergence graphs for Problems 1-6. (a) Problem 1, (b) Problem 2, (c) Problem 3, (d) Problem 4, (e) Problem 5,

(f) Problem 6. See Table 1 for definition of problems.

Berna BOLAT, Oğuz ALTUN, Pablo CORTES, Yunus Emre YILDIZ, Ali Osman TOPAL / Journal of Polytechnic, 2017; 20 (3) : 519-529

528

6. CONCLUSION AND FUTURE WORK

We have presented a comparison of Particle Swarm

Optimization (PSO), Genetic Algorithm (GA), Artificial

Bee Colony (ABC), Differential Evolution (DE), Tabu

Search (TS), Simulated Annealing with Random Restarts

(SAR) , Bat Algorithm (BA), Bacterial Foraging

Optimization Algorithm (BF) soft computing techniques

for global optimization of the car-call allocation strategy

of the controller in EGCS. Each algorithm was permitted

10000 function evaluations, and the convergence graphs

of the global best function value were drawn. Results

were provided for high-rise buildings from 10 to 24

floors, and several car configurations from 2 to 6 cars.

We observe the SAR and ABC algorithms outperform the

other algorithms in general. Furthermore, ABC has

potential to further improve its results provided that more

function evaluations are permitted.

Also, we introduced a new problem representation that

sets up the problem as assignment of cars to floor

requests, which allows easier programming of the

simulation. In this presentation, the number of floors

affects the success order of the algorithms, as it affects

the dimensionality of the problem, whereas the number

of elevators does not have an obvious effect on that order.

We introduced a new version of Simulated Annealing,

namely Simulated Annealing with Random Restarts

(SAR), that restarts the search produce when stuck in a

local optimum. SAR performed as the third ranked

algorithm in general in our tests. Results showed that

aforementioned soft computing optimization techniques,

TS and ABC in particular, help in reducing the passenger

travel times greatly, hence are suitable for this problem.

ABC algorithm did not seem to be converged in any of

the trials, and their performances over longer runs are to

be seen in future works.

REFERENCES

1. Fernandez J.R. and Cortes, P., “A survey of elevator

group control systems forvvertical transportation: a

look at recent literature”, IEEE Control Systems,

35(4): 38-55, (2015).

2. Cortes P., Munuzuri J. and Onieva L., “Design and

Analysis of a Tool for Planning and Simulating

Dynamic Vertical Transport”, Simulation, 82: 255-

274, (2006).

3. Knuth D. E., “A terminological proposal”, SIGACT

News, 6(1): 12-18, (1974).

4. Knuth D. E. (1974). Postscript about NP-hard

problems. SIGACT News, 6(2): 15-16, (1974).

5. Cortes P., Munuzuri J. and Onieva L., “Genetic

algorithm for controllers in elevator groups: analysis

and simulation during lunchpeak traffic”, Applied

Soft Computing, 4(2): 159-174, (2004).

6. Bolat B., Cortes P., Yalçın E. and Alışverişçi M.,

“Optimal car dispatching for elevator groups using

genetic algorithms”, Intelligent Automation &Soft

Computing, 16(1), (2010).

7. Chen T.C., Hsu Y.J, and Huang Y.J., “optimizing the

intelligent elevator group control system by using

genetic algorithm”, Advanced Science Letters, 9(1),

(2012).

8. Bolat B. and Cortes P., “Genetic and tabu search

approaches for optimizing the hall call-car allocation

problem in elevator group systems”, Applied Soft

Computing, 11(2), (2011).

9. Bolat B., Altun O. and Cortes P., “A particle swarm

optimization algorithm for optimal car-call

allocation in elevator group control systems”, 13(5),

(2011).

10. Li Z, Tan H,Z, and Zhang Y., “Particle swarm

optimization applied to vertical traffic scheduling in

buildings in”, 11 th International Conference KES

and XVII Italian Workshop on Neural Networks

Conference on Knowledge-Based Intelligent

Information and Enginnering Systems : Part I,

(2007).

11. Fei L., Xiaocui Z. and Yuge X., “A new hybrid

elevator group control system scheduling strategy

based on particle swarm simulated annealing

optimization algorithm in intelligent control and

automation”, 8th World Congress, 5121-5124,

(2010).

12. Li Z., Mao Za and Wu J., “Research on dynamic

zoning of elevator traffic based on artifical immune

algorithm”, 8th Control, Automation,Robotics and

Vision Conference, 3: 2170-2175, (2004).

13. Liu J. and Liu Y., “Ant colony algorithm and fuzzy

neural network- based intelligent dispatching

algorithm of an elevator group control system, IEEE

International Conference on Control and

Automation, (2007).

14. Cortes P., Onieva L, Munuzuri J. and Guadix J., “A

viral system algorithm to optimize the car dispatching

in elevatro group control sytems of tall buildings,

Computers&Industrial Engineering, 64(1) :403-

411, (2013).

15. Cortes P., Fernandez J.R, Guadix J. and Munuzuri, J.,

“Fuzzy logic based controller for peak traffic

detection in elevator systems”, Journal of

Computational and Theoretical Nanoscience, 9(2):

(2012).

16. Jamaludin J., Rahim N. and Hew W.P., “An elevator

group control sytem with a self –tuning fuzzy logic

group controller”, IEEE Transactions on Industrial

Electronics, 57(12): 4188-4198, (2010).

17. Rashid M., Kasemi B., and Faruq A. Alam., “Design

of fuzzy based controller for modern elevator group

with floor priority constraints, 4th International

Conference on Mechatronics, (2011).

18. Fernandez J.R., Cortes P., Munuzuri J. and Guadix J.,

“Dynamic fuzzy logic elevator group control system

with relative waiting time consideration”, IEEE

Transaction on Industrial Electronics, 61(9):

(2014).

19. Fernandez J.R., Cortes P., Guadix J., and Munuzuri

J., “Dynamic fuzzy logic elevator group control

system for energy optimization”, International

Journal of Information Technology and Decision

Making, 12(3): (2013).

A COMPARISON OF METAHEURISTICS FOR THE ALLOCATION OF ELEVATORS TO … Journal of Polytechnic, 2017; 20 (3) : 519-529

529

20. Kennedy J. and Eberhart R.C., “Particle swarm

optimization, IEEE International Conference on

Neural Networks, 4: 1942-1948, (1995).

21. Clerc M. and Kennedy J., “The particle swarm-

explosion, stability, and convergence in a

multidimensional complex space”, IEEE

Transactions on Evolutionary Computation, 6(11):

(2002).

22. Karaboğa D., “An idea based on honey bee swarm for

numerical optimization, Technical Report-tr06,

Erciyes University, Engineering Faculty, Computer

Engineering Department, (2005).

23. Karaboğa D. and Basturk B., “A powerful and

efficient algorithm for numerical function

optimization : artifical bee colony (ABC) algorithm”,

Journal of Global Optimization, 39(3): 459-471,

(2007).

24. Luke S., “Essentials of Metaheuristics, Lulu, Second

Edn., (2013).

25. Yang X.S., “A new metaheuristic bat-inspired

algorithm, in J. Gonzalez, D. Pelta, C. Cruz, G.

Terrazas, N.Krasnogar (eds.), Nature Inspired

Cooperative Strategies for Optimization, 284:

(2010).

26. Passino K., “Biomimicry of bacterial foraging for

distributed optimization and control, “IEEE Control

Systems, 22(3): 52-67, (2002).

