Turk. J. Math. Comput. Sci.
16(1)(2024) 137-142
(C) MatDer

DOI : 10.47000/tjmcs. 1366843

# On the Norm in the Plane $\mathbb{R}_{\pi 3}^{2}$ 

Ziya Akça<br>Eskişehir Osmangazi University, Faculty of Science, Department of Mathematics and Computer Science, 26480, Eskişehir, Turkey.

Received: 26-09-2023 • Accepted: 25-03-2024
Abstract. In this study, norm in the Plane $\mathbb{R}_{\pi 3}^{2}$ is produced naturally from a different vector norm. Its triangle inequality, Schwarz inequality properties and geometrical interpretation in the Plane $\mathbb{R}_{\pi 3}^{2}$ are given.

2020 AMS Classification: 51F99
Keywords: Iso-taxicab distance, non-Euclidean geometry, norm.

## 1. Introduction and Preliminaries

Recall that the unit circle, where distances are calculated using the common Euclidean norm, is the location of all points in the plane $\mathbb{R}^{2}$ that are one unit away from the origin. The trigonometric functions $\sin \theta$ and $\cos \theta$ are just the unit circle's parametrization with respect to arc length. It is known that the $L p$ norm is induced by an inner product if and only if $p=2$. The norms are induced by inner products, Stirling numbers, Bell polynomials, Lagrange inversion, gamma functions, and generalized $\pi$ values, [13].

The norms generalize the notion of length from Euclidean space. A norm on a vector space $V$ is a function $\|$.$\| :$ $V \rightarrow \mathbb{R}$ that satisfies
(i) $\|v\| \geq 0$, with equality if and only if $v=0$
(ii) $\|\alpha v\|=|\alpha|\|v\|$
(iii) $\|u+v\| \leq\|u\|+\|v\|$ (the triangle inequality)
for all $u, v \in V$ and all $\alpha \in F$. A vector space endowed with a norm is called a normed vector space, or simply a normed space.

An important fact about norms is that they induce metrics, giving a notion of convergence in vector spaces.
A Minkowski or normed plane is a 2 -dimensional vector space with a norm. This norm is induced by its unit ball $U$, which is a compact, convex set centered at the origin.

The geometries in which the Euclidean distance between two points is replaced by $d_{T}$ and $d_{C}$ are called taxicab and Chinese checker geometries [5, 14, 16]. In [3, 4, 7-9], the lengths and norm in taxicab and CC plane geometry were given.

Iso-taxicab geometry is a non-Euclidean geometry defined by K.O. Sowell in 1989 in [15]. In this geometry presented by Sowell three distance functions arise depending upon the relative positions of the points $A$ and $B$. There are three axes at the origin; the $x$-axis, the $y$-axis and the $y^{\prime}$-axis, having $60^{\circ}$ angle which each other. These tree axes separate the plane into six regions. The iso-taxicab trigonometric functions in iso-taxicab plane with three axes were given in $[10,11]$. A family of distances, $d_{\pi n}$, that includes Taxicab, Chinese-Checker and Iso-taxi distances, as special
cases introduced and the group of isometries of the plane with $d_{\pi n}$ metric is the semi-direct product of $D_{2 n}$ and $T(2)$ was shown in [6]. The trigonometric Functions in $\mathbb{R}_{\pi 3}^{2}$ and the versions in the plane $\mathbb{R}_{\pi 3}^{2}$ of some Euclidean theorems were given in $[1,2,12]$.

The definition of $d_{\pi n}$-distances family is given as follows;
Definition 1.1. Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ be any two points in $\mathbb{R}^{2}$, a family of $d_{\pi n}$ distances is defined by;

$$
\begin{aligned}
& d_{\pi n}(A, B)=\frac{1}{\sin \frac{\pi}{n}}\left(\left|\sin \frac{k \pi}{n}-\sin \frac{(k-1) \pi}{n}\right|\left|x_{1}-x_{2}\right|+\left|\cos \frac{(k-1) \pi}{n}-\cos \frac{k \pi}{n}\right|\left|y_{1}-y_{2}\right|\right) \\
& \begin{cases}1 \leq k \leq\left[\frac{n-1}{2}\right], k \in \mathbb{Z}, & \tan \frac{(k-1) \pi}{n} \leq\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right| \leq \tan \frac{k \pi}{n} \\
k=\left[\frac{n+1}{2}\right], & \tan \frac{\left[\frac{n-1}{2}\right] \pi}{n} \leq\left|\frac{y_{2-} y_{1}}{x_{2}-x_{1}}\right|<\infty \text { or } x_{1}=x_{2} .\end{cases}
\end{aligned}
$$

For $n=3$ and accordingly $k=1, k=2$, we obtain the formula of $d_{\pi 3}$-distance between the points $A$ and $B$ according to the inclination in the plane $\mathbb{R}_{\pi 3}^{2}$

$$
\begin{aligned}
& d_{\pi 3}(A, B)=\frac{1}{\sin \frac{\pi}{3}}\left(\left|\sin \frac{k \pi}{3}-\sin \frac{(k-1) \pi}{3}\right|\left|x_{1}-x_{2}\right|+\left|\cos \frac{(k-1) \pi}{3}-\cos \frac{k \pi}{3}\right|\left|y_{1}-y_{2}\right|\right) \\
& \begin{cases}k=1 & , \quad 0 \leq\left|\frac{y_{2-}-y_{1}}{x_{2}-x_{1}}\right| \leq \tan \frac{\pi}{3} \\
k=2, & \tan \frac{\pi}{3} \leq\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right|<\infty \text { or } x_{1}=x_{2}\end{cases}
\end{aligned}
$$

or

$$
d_{\pi 3}(A, B)= \begin{cases}\left|x_{1}-x_{2}\right|+\frac{1}{\sqrt{3}}\left|y_{1}-y_{2}\right|, & 0 \leq\left|\frac{y_{2-} y_{1}}{x_{2}-x_{1}}\right| \leq \sqrt{3} \\ \frac{2}{\sqrt{3}}\left|y_{1}-y_{2}\right|, & \sqrt{3} \leq\left|\frac{y_{2-} y_{1}}{x_{2}-x_{1}}\right|<\infty \text { or } x_{1}=x_{2}\end{cases}
$$

Definition 1.2. These values of $\sin _{\pi 3} \theta, \cos _{\pi 3} \theta, \tan _{\pi 3} \theta$ can be calculated in similar ways for other regions. The calculated $\sin _{\pi 3} \theta, \cos _{\pi 3} \theta$ values for all regions are shown as;

$$
\begin{aligned}
& \sin _{\pi 3} \theta= \begin{cases}\frac{2 \sin \theta}{|\sin \theta|+\sqrt{3}|\cos \theta|}, & I-I I I-I V-V I \\
1 & , \\
-1 I\end{cases} \\
& \cos _{\pi 3} \theta=\left\{\begin{array}{ll}
\frac{\sqrt{3} \cos \theta-\sin \theta}{|\sin \theta|+\sqrt{3}|\cos \theta|}, & I-I I I-I V-V I \\
\frac{\sqrt{3} \cos \theta-\sin \theta}{2|\sin \theta|}, & I I-V
\end{array} .\right.
\end{aligned}
$$

## 2. Defining Angle Measurement Through Inner Product in the Plane $\mathbb{R}_{\pi 3}^{2}$

In this section, one of the common ways to measure an angle, called the angle between a vector and the positive $x$-axis using dot product, will be defined. Before diving into this definition, a proposition will be presented to assist us in making this definition, which includes a method for determining the norm of a vector and offers a new perspective.
Proposition 2.1. If a vector space $\mathbb{R}_{\pi 3}^{2}$ is equipped with a norm

$$
\|\vec{u}\|_{\pi 3}= \begin{cases}|x|+\frac{1}{\sqrt{3}}|y| & , \quad 0 \leq\left|\frac{y}{x}\right| \leq \sqrt{3} \\ \frac{2}{\sqrt{3}}|y| & , \quad \sqrt{3} \leq\left|\frac{y}{x}\right|<\infty\end{cases}
$$

then $d_{\pi 3}$ is a metric on $\mathbb{R}_{\pi 3}^{2}$.

Proof. Consider a position vector $\vec{u}=\overrightarrow{O A}$ with its endpoint $A=(x, y)$ coordinates. The norm of this vector can be calculated using the coordinates of the starting and ending points

$$
\|\vec{u}\|_{\pi 3}= \begin{cases}|x|+\frac{1}{\sqrt{3}}|y| & , \quad 0 \leq\left|\frac{y}{x}\right| \leq \sqrt{3} \\ \frac{2}{\sqrt{3}}|y| & , \quad \sqrt{3} \leq\left|\frac{y}{x}\right|<\infty\end{cases}
$$

Additionally, if the vector $\vec{u}$ lies on the region determined by vectors $\vec{v}_{k}$ and $\vec{v}_{k+1}$, the norm of the vector $\vec{u}$, denoted as $\|\vec{u}\|_{\pi 3}$, can be expressed as

$$
\|\vec{u}\|_{\pi 3}=\vec{u}_{k} \cdot \vec{u}
$$

Here, the vectors $\vec{u}_{k}$ can be determined by equations that provide the values, serving as corner vectors that separate each region of the unit circle

$$
\begin{aligned}
& \vec{u}_{k}=\left(\frac{\sin \frac{k \pi}{3}-\sin \frac{(k-1) \pi}{3}}{\sin \frac{\pi}{3}}, \frac{\cos \frac{(k-1) \pi}{3}-\cos \frac{k \pi}{3}}{\sin \frac{\pi}{3}}\right), \\
& \vec{v}_{k}=\left(\cos \frac{(k-1) \pi}{3}, \sin \frac{(k-1) \pi}{3}\right) \quad, \quad k=\{1,2,3, \ldots, 6\}
\end{aligned}
$$

By substituting these equations according to the values of $k$

$$
\begin{array}{lll}
\vec{u}_{1}=\left(1, \frac{1}{\sqrt{3}}\right) & , & \vec{u}_{2}=\left(0, \frac{2}{\sqrt{3}}\right)
\end{array}, \quad, \quad \vec{u}_{3}=\left(-1, \frac{1}{\sqrt{3}}\right)
$$

and

$$
\begin{array}{lll}
\vec{v}_{1}=(1,0) & , \quad \vec{v}_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) & , \quad \vec{v}_{3}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
\vec{v}_{4}=(-1,0) \quad, \quad \vec{v}_{5}=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \quad, \quad \vec{v}_{6}=\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
\end{array}
$$

values are obtained
$\|\cdot\|_{\pi 3}$ satisfies the norm properties. Let $\vec{u}$ be a vector with slope $m$;
i) If the slope of vector $\vec{u}$ is such that $0 \leq|m| \leq \sqrt{3}$, then $|x|+\frac{1}{\sqrt{3}}|y| \geq 0$.

$$
|x|+\frac{1}{\sqrt{3}}|y|=0 \Leftrightarrow x=0, y=0 \text {. This means that } \vec{u}=0
$$

If the slope of vector $\vec{u}$ is such that $\sqrt{3} \leq|m| \leq \infty$ then $\frac{2}{\sqrt{3}}|y| \geq 0$.

$$
\frac{2}{\sqrt{3}}|y|=0 \Leftrightarrow y=0 . \text { This means that } \vec{u}=0
$$

ii) If the slope of vector $\vec{u}$ is such that $0 \leq|m| \leq \sqrt{ } 3$ and $\alpha \in \mathbb{R}$, then

$$
\begin{aligned}
\|\alpha \vec{u}\|_{\pi 3} & =|\alpha x|+\frac{1}{\sqrt{3}}|\alpha y| \\
& =|\alpha|\left(|x|+\frac{1}{\sqrt{3}}|y|\right) \\
& =|\alpha|\|\vec{u}\|_{\pi 3} .
\end{aligned}
$$

If the slope of vector $\vec{u}$ is such that $\sqrt{3} \leq|m| \leq \infty$, then

$$
\begin{aligned}
\|\alpha \vec{u}\|_{\pi 3} & =\frac{2}{\sqrt{3}}|\alpha y| \\
& =\frac{2}{\sqrt{3}}|\alpha||y| \\
& =|\alpha|\|\vec{u}\|_{\pi 3} .
\end{aligned}
$$

The proof of the triangle inequality is given as follows:
iii) For the vectors $\vec{u}$ and $\vec{v},\|\vec{u}+\vec{v}\|_{\pi 3} \leq\|\vec{u}\|_{\pi 3}+\|\vec{v}\|_{\pi 3}$

This inequality can be obtained from the convexity of the closed unit circle $\left\{\vec{u} \in \mathbb{R}^{2}:\|\vec{u}\|_{\pi 3} \leq 1\right\}$ and the norm function on $\mathbb{R}_{\pi 3}^{2}$. In the plane $\mathbb{R}_{\pi 3}^{2}$, the set of vectors $x$ that lie on the unit circle satisfies the equation $u_{k} \cdot x=1$. Additionally, the coordinates of the vertices of this hexagon are known as:

$$
\vec{v}_{k}=\left(\cos \frac{(k-1) \pi}{3}, \sin \frac{(k-1) \pi}{3}\right), k=\{1,2,3, \ldots, 6\} .
$$

When considering the vector $\vec{v}=O B$ ( $O$, origin), if the vector $\vec{v}$ lies within the region determined by $\vec{v}_{k}$ and $\vec{v}_{k+1}$, then similarly,

$$
\|\vec{v}\|_{\pi 3}=u_{k} \cdot v
$$

can be written. Correspondingly, with $\vec{t}_{k}$ and $\vec{t}_{k+1}$ being non-negative numbers,

$$
\vec{v}=\vec{t}_{k} \vec{v}_{k}+\vec{t}_{k+1} \vec{v}_{k+1}
$$

can be written and

$$
\|\vec{v}\|_{\pi 3}=\vec{t}_{k}+\vec{t}_{k+1}
$$

Furthermore, vectors inside a unit circle have a norm less than 1 , and vectors outside the unit circle have a norm greater than 1.

Now, for the final part of the proof, consider a position vector $\overrightarrow{O P}$ with endpoint coordinates $P=\left(x_{3}, y_{3}\right)$, then

$$
\begin{aligned}
\overrightarrow{O P} & =\overrightarrow{O V}+\overrightarrow{V P} \\
& =\overrightarrow{O V}+t \overrightarrow{V U} \\
& =\overrightarrow{O V}+t(\overrightarrow{O U}-\overrightarrow{O V}) \\
& =(1-t) \overrightarrow{O V}+t \overrightarrow{O U} \\
& =\overrightarrow{t u}+(1-t) \vec{v} .
\end{aligned}
$$

The vectors $\vec{u}, \vec{v}$ and $\vec{p}$ on the unit circle, and for $0 \leq t \leq 1$, the convexity of the unit sphere implies that the vector $\overrightarrow{t u}+(1-t) \vec{v}$ is either on or inside the unit circle. Thus,

$$
\|\vec{t} \vec{u}+(1-t) \vec{v}\|_{\pi 3} \leq 1
$$

To obtain the triangle inequality for $t=\frac{a}{a+b}$, where $a$ and $b$ are both greater than 0 ,

$$
\frac{\|a \vec{u}+b \vec{v}\|_{\pi 3}}{a+b}=\left\|\frac{a}{a+b} \vec{u}+\left(1-\frac{a}{a+b}\right) \vec{v}\right\|_{\pi 3} \leq 1
$$

and

$$
\|a \vec{u}+b \vec{v}\|_{\pi 3} \leq a\|\vec{u}\|_{\pi 3}+b\|\vec{v}\|_{\pi 3}
$$

is obtained. Thus, the triangle inequality holds for arbitrary nonzero vectors $\vec{u} \vec{u}$ and $\vec{v}$. Here, if the vectors $\vec{u}$ and $\vec{v}$ are in the same region, then

$$
\|\vec{u}+\vec{v}\|_{\pi 3} \leq\|\vec{u}\|_{\pi 3}+\|\vec{v}\|_{\pi 3}
$$

which completes the proof.
Proposition 2.2. $d_{\pi 3}(A, 0)=\|A\|_{\pi 3}$.

Proof. Consider a position vector $\vec{u}=\overrightarrow{O A}$ with its endpoint $A=(x, y) \in \mathbb{R}_{\pi 3}^{2}$ coordinates. Using the Definition 1.1, we have

$$
d_{\pi 3}(A, 0)=\left\{\begin{array}{ll}
|x|+\frac{1}{\sqrt{3}}|y| & , \quad 0 \leq\left|\frac{y}{x}\right| \leq \sqrt{3} \\
\frac{2}{\sqrt{3}}|y| & , \quad \sqrt{3} \leq\left|\frac{y}{x}\right|<\infty
\end{array}=\|A\|_{\pi 3} .\right.
$$

Proposition 2.3. (Schwarz Inequality) If $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right) \in \mathbb{R}_{\pi 3}^{2}$. Then,

$$
|\langle A, B\rangle| \leq\|A\|_{\pi 3} \cdot\|B\|_{\pi 3} .
$$

Proof. This follows easily from the fact that norm of a vector in the plane $\mathbb{R}_{\pi 3}^{2}$ is always larger than or equal to its Euclidean length.

## 3. Geometrical Interpretation

It is weel known that

$$
|\langle A, B\rangle| \leq\|A\|_{\pi 3} \cdot\|B\|_{\pi 3} \cos \theta, \quad 0 \leq \theta \leq \pi
$$

in Euclidean plane. Now, consider the Schwarz inequality

$$
|\langle A, B\rangle| \leq\|A\|_{\pi 3} \cdot\|B\|_{\pi 3}
$$

in the plane $\mathbb{R}_{\pi 3}^{2}$. If $A$ and $B$ are nonzero vectors one gets

$$
\frac{|\langle A, B\rangle|}{\|A\|_{\pi 3} \cdot\|B\|_{\pi 3}} \leq 1
$$

from the Schwarz inequality. The last inequality can be expressed as

$$
-1 \leq \frac{|\langle A, B\rangle|}{\|A\|_{\pi 3} \cdot\|B\|_{\pi 3}} \leq 1
$$

which also to define Iso-taxicab $\cos _{\pi 3} \theta$, as follows:

$$
|\langle A, B\rangle| \leq\|A\|_{\pi 3} \cdot\|B\|_{\pi 3} \cdot \cos _{\pi 3} \theta
$$

and consequently, the relationship between the inner product and lengths and angles in the plane $\mathbb{R}_{\pi 3}^{2}$ can be interpreted as in Euclidean plane, by related norm.

## Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this article.

## Authors Contribution Statement

The author has read and agreed the published version of the manuscript.

## References

[1] Akça, Z., Nazlı, S., On the trigonometric functions in $\mathbb{R}_{\pi 3}^{2}$, Konuralp Journal of Mathematics, 8(2020), 429-437.
[2] Akça, Z., Nazlı, S., On the versions in the plane $\mathbb{R}_{\pi 3}^{2}$ of some Euclidean theorems, New Trends in Mathematical Sciences, 10(2022), $20-27$.
[3] Akça, Z., Bayar, A., Ekmekçi, S., The norm in CC plane geometry, The Pi Mu Epsilon Journal, 6(2007), 321-324.
[4] Akça, Z., Kaya, R., On the norm in higher dimensional taxicab spaces, Hadronic J. Suppl, 19(4)(2004), 491-501.
[5] Bayar, A., Ekmekçi, S., The Chinese Checker Sine and Cosine functions, International Journal of Mathematics and Analysis, 1(3)(2006), 249-259.
[6] Bayar, A., Kaya, R., On isometries of $\mathbb{R}_{\pi n}^{2}$, Hacettepe Journal of Mathematics and Statistics, 40(5)(2011), 673-679.
[7] Ekmekçi, S., Akça, Z., Altıntaş, A., On trigonometric functions and norm in the generalized taxicab metric, Mathematical Sciences And Applications E-Notes, 3(2)(2015), 27-33.
[8] Ekmekçi, S., Bayar, A., Akça, Z., On the plane geometry with generalized absolute value metric, Math. Probl. Eng., 1(0)(2008), 1-8.
[9] Ekici, C., Kocayusufoğlu, İ., Akça, Z., The norm in taxicab geometry, Tr.J.of Mathematics, 22(3)(1998), 295-307.
[10] Kocayusufoglu, İ., Ada, T., On the iso-taxicab trigonometry, Applied Sciences, 8(2006), 101-111.
[11] Kocayusufoglu, İ., Trigonometry on iso-taxicab geometry, Mathematical and Computational Applications, 5(3)(2002), $201-212$.
[12] Nazlı, S., On the plane geometry $\mathbb{R}_{\pi 3}^{2}$, Doctoral Dissertation, Eskişehir Osmangazi University, (2020), 1-118.
[13] Moore, C., Hatfield, A., Klette, R., Chebolu, S., Warden, E., Trigonometric functions in the p-norm, https://arxiv.org/pdf/2109.14036.pdf.
[14] Özcan, M., Ekmekçi, S., Bayar, A., A note on the variation of the taxicab lengths under rotations, The Pi Mu Epsilon Journal, 11(7)(2002), 381-384.
[15] Sowell, K. O.,Taxicab geometry-a new slant, Mathematics Magazine, 62(1989), 238-248.
[16] Turan, M., Özcan, M., General equation for Chinese Checker conics and focus-directrix Chinese Checker conics, International Journal of Pure and Applied Mathematics, 30(3)(2006), 393-401.

