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Abstract. In this study, norm in the Plane R2
π3 is produced naturally from a different vector norm. Its triangle

inequality, Schwarz inequality properties and geometrical interpretation in the Plane R2
π3 are given.
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1. Introduction and Preliminaries

Recall that the unit circle, where distances are calculated using the common Euclidean norm, is the location of all
points in the plane R2 that are one unit away from the origin. The trigonometric functions sin θ and cos θ are just the
unit circle’s parametrization with respect to arc length. It is known that the Lp norm is induced by an inner product if
and only if p = 2. The norms are induced by inner products, Stirling numbers, Bell polynomials, Lagrange inversion,
gamma functions, and generalized π values, [13].

The norms generalize the notion of length from Euclidean space. A norm on a vector space V is a function ∥.∥ :
V → R that satisfies

(i)∥v∥ ≥ 0, with equality if and only if v = 0
(ii) ∥αv∥ = |α| ∥v∥
(iii) ∥u + v∥ ≤ ∥u∥ + ∥v∥ (the triangle inequality)
for all u, v ∈ V and all α ∈ F. A vector space endowed with a norm is called a normed vector space, or simply a

normed space.
An important fact about norms is that they induce metrics, giving a notion of convergence in vector spaces.
A Minkowski or normed plane is a 2−dimensional vector space with a norm. This norm is induced by its unit ball

U, which is a compact, convex set centered at the origin.
The geometries in which the Euclidean distance between two points is replaced by dT and dC are called taxicab and

Chinese checker geometries [5, 14, 16]. In [3, 4, 7–9], the lengths and norm in taxicab and CC plane geometry were
given.

Iso-taxicab geometry is a non-Euclidean geometry defined by K.O. Sowell in 1989 in [15]. In this geometry pre-
sented by Sowell three distance functions arise depending upon the relative positions of the points A and B. There are
three axes at the origin; the x-axis, the y-axis and the y′ -axis, having 600 angle which each other. These tree axes
separate the plane into six regions.The iso-taxicab trigonometric functions in iso-taxicab plane with three axes were
given in [10, 11]. A family of distances, dπn, that includes Taxicab, Chinese-Checker and Iso-taxi distances, as special
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cases introduced and the group of isometries of the plane with dπn metric is the semi-direct product of D2n and T (2)
was shown in [6]. The trigonometric Functions in R2

π3 and the versions in the plane R2
π3of some Euclidean theorems

were given in [1, 2, 12].
The definition of dπn−distances family is given as follows;

Definition 1.1. Let A = (x1, y1) and B = (x2, y2) be any two points in R2, a family of dπn distances is defined by;

dπn(A, B) =
1

sin
π

n

(∣∣∣∣∣sin
kπ
n
− sin

(k − 1)π
n

∣∣∣∣∣ |x1 − x2| +

∣∣∣∣∣cos
(k − 1)π

n
− cos

kπ
n

∣∣∣∣∣ |y1 − y2|

)


1 ≤ k ≤
[
n − 1

2

]
, k ∈ Z , tan

(k − 1)π
n

≤

∣∣∣∣∣ y2−y1

x2 − x1

∣∣∣∣∣ ≤ tan
kπ
n

k =
[
n + 1

2

]
, tan

[
n − 1

2

]
π

n
≤

∣∣∣∣∣ y2−y1

x2 − x1

∣∣∣∣∣ < ∞ or x1 = x2 .

For n = 3 and accordingly k = 1, k = 2, we obtain the formula of dπ3-distance between the points A and B according
to the inclination in the plane R2

π3

dπ3(A, B) =
1

sin
π

3

(∣∣∣∣∣sin
kπ
3
− sin

(k − 1)π
3

∣∣∣∣∣ |x1 − x2| +

∣∣∣∣∣cos
(k − 1)π

3
− cos

kπ
3

∣∣∣∣∣ |y1 − y2|

)


k = 1 , 0 ≤
∣∣∣∣∣ y2−y1

x2 − x1

∣∣∣∣∣ ≤ tan
π

3
k = 2, tan

π

3
≤

∣∣∣∣∣ y2−y1

x2 − x1

∣∣∣∣∣ < ∞ or x1 = x2

or

dπ3(A, B) =


|x1 − x2| +

1
√

3
|y1 − y2| , 0 ≤

∣∣∣∣∣ y2−y1

x2 − x1

∣∣∣∣∣ ≤ √3

2
√

3
|y1 − y2| ,

√
3 ≤

∣∣∣∣∣ y2−y1

x2 − x1

∣∣∣∣∣ < ∞ or x1 = x2.

Definition 1.2. These values of sinπ3 θ, cosπ3 θ, tanπ3 θ can be calculated in similar ways for other regions. The
calculated sinπ3 θ, cosπ3 θ values for all regions are shown as;

sinπ3 θ =


2 sin θ

|sin θ| +
√

3 |cos θ|
, I − III − IV − VI

1 , II
−1 , V

cosπ3 θ =


√

3 cos θ − sin θ

|sin θ| +
√

3 |cos θ|
, I − III − IV − VI

√
3 cos θ − sin θ

2 |sin θ|
, II − V

.

2. Defining AngleMeasurement Through Inner Product in the Plane R2
π3

In this section, one of the common ways to measure an angle, called the angle between a vector and the positive
x−axis using dot product, will be defined. Before diving into this definition, a proposition will be presented to assist us
in making this definition, which includes a method for determining the norm of a vector and offers a new perspective.

Proposition 2.1. If a vector space R2
π3 is equipped with a norm

∥∥∥−→u ∥∥∥
π3 =


|x| +

1
√

3
|y| , 0 ≤

∣∣∣∣∣ yx
∣∣∣∣∣ ≤ √3

2
√

3
|y| ,

√
3 ≤

∣∣∣∣∣ yx
∣∣∣∣∣ < ∞,

then dπ3 is a metric on R2
π3 .
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Proof. Consider a position vector −→u =
−−→
OA with its endpoint A = (x, y) coordinates. The norm of this vector can be

calculated using the coordinates of the starting and ending points

∥∥∥−→u ∥∥∥
π3 =


|x| +

1
√

3
|y| , 0 ≤

∣∣∣∣∣ yx
∣∣∣∣∣ ≤ √3

2
√

3
|y| ,

√
3 ≤

∣∣∣∣∣ yx
∣∣∣∣∣ < ∞.

Additionally, if the vector −→u lies on the region determined by vectors −→v k and −→v k+1, the norm of the vector−→u , denoted
as

∥∥∥−→u ∥∥∥
π3, can be expressed as ∥∥∥−→u ∥∥∥

π3 =
−→u k.
−→u

Here, the vectors −→u k can be determined by equations that provide the values, serving as corner vectors that separate
each region of the unit circle

−→u k =


sin

kπ
3
− sin

(k − 1)π
3

sin
π

3

,
cos

(k − 1)π
3

− cos
kπ
3

sin
π

3

 ,

−→v k =

(
cos

(k − 1)π
3
, sin

(k − 1)π
3

)
, k = {1, 2, 3, ..., 6} .

By substituting these equations according to the values of k

−→u 1 =

(
1,

1
√

3

)
, −→u 2 =

(
0,

2
√

3

)
, −→u 3 =

(
−1,

1
√

3

)
−→u 4 =

(
−1,−

1
√

3

)
, −→u 5 =

(
0,−

2
√

3

)
, −→u 6 =

(
1,−

1
√

3

)
and

−→v 1 = (1, 0) , −→v 2 =

1
2
,

√
3

2

 , −→v 3 =

−1
2
,

√
3

2


−→v 4 = (−1, 0) , −→v 5 =

−1
2
,−

√
3

2

 , −→v 6 =

1
2
,−

√
3

2


values are obtained
∥.∥π3 satisfies the norm properties. Let −→u be a vector with slope m ;

i) If the slope of vector −→u is such that 0 ≤ |m| ≤
√

3, then |x| +
1
√

3
|y| ≥ 0.

|x| +
1
√

3
|y| = 0⇔ x = 0, y = 0. This means that −→u = 0

If the slope of vector −→u is such that
√

3 ≤ |m| ≤ ∞ then
2
√

3
|y| ≥ 0.

2
√

3
|y| = 0⇔ y = 0. This means that −→u = 0.

ii) If the slope of vector −→u is such that 0 ≤ |m| ≤
√

3 and α ∈ R, then∥∥∥α−→u ∥∥∥
π3 = |αx| +

1
√

3
|αy|

= |α|

(
|x| +

1
√

3
|y|

)
= |α|

∥∥∥−→u ∥∥∥
π3 .
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If the slope of vector −→u is such that
√

3 ≤ |m| ≤ ∞, then∥∥∥α−→u ∥∥∥
π3 =

2
√

3
|αy|

=
2
√

3
|α| |y|

= |α|
∥∥∥−→u ∥∥∥

π3 .

The proof of the triangle inequality is given as follows:
iii) For the vectors −→u and −→v ,

∥∥∥−→u + −→v ∥∥∥
π3 ≤

∥∥∥−→u ∥∥∥
π3 +

∥∥∥−→v ∥∥∥
π3

This inequality can be obtained from the convexity of the closed unit circle
{
−→u ∈ R2 :

∥∥∥−→u ∥∥∥
π3 ≤ 1

}
and the norm

function on R2
π3. In the plane R2

π3, the set of vectors x that lie on the unit circle satisfies the equation uk · x = 1.
Additionally, the coordinates of the vertices of this hexagon are known as:

−→v k =

(
cos

(k − 1)π
3
, sin

(k − 1)π
3

)
, k = {1, 2, 3, ..., 6} .

When considering the vector −→v = OB (O, origin), if the vector −→v lies within the region determined by −→v k and −→v k+1,
then similarly, ∥∥∥−→v ∥∥∥

π3 = uk · v

can be written. Correspondingly, with −→t k and −→t k+1 being non-negative numbers,
−→v = −→t k

−→v k +
−→t k+1
−→v k+1

can be written and ∥∥∥−→v ∥∥∥
π3 =
−→t k +

−→t k+1.
Furthermore, vectors inside a unit circle have a norm less than 1, and vectors outside the unit circle have a norm greater
than 1.

Now, for the final part of the proof, consider a position vector
−−→
OP with endpoint coordinates P = (x3, y3), then

−−→
OP =

−−→
OV +

−−→
VP

=
−−→
OV + t

−−→
VU

=
−−→
OV + t(

−−→
OU −

−−→
OV)

= (1 − t)
−−→
OV + t

−−→
OU

= t−→u + (1 − t)−→v .

The vectors −→u , −→v and −→p on the unit circle, and for 0 ≤ t ≤ 1, the convexity of the unit sphere implies that the vector
t−→u + (1 − t)−→v is either on or inside the unit circle. Thus,∥∥∥t−→u + (1 − t)−→v

∥∥∥
π3 ≤ 1.

To obtain the triangle inequality for t =
a

a + b
, where a and b are both greater than 0,∥∥∥a−→u + b−→v
∥∥∥
π3

a + b
=

∥∥∥∥∥ a
a + b

−→u + (1 −
a

a + b
)−→v

∥∥∥∥∥
π3
≤ 1

and ∥∥∥a−→u + b−→v
∥∥∥
π3 ≤ a

∥∥∥−→u ∥∥∥
π3 + b

∥∥∥−→v ∥∥∥
π3

is obtained. Thus, the triangle inequality holds for arbitrary nonzero vectors a−→u and b−→v . Here, if the vectors −→u and −→v
are in the same region, then ∥∥∥−→u + −→v ∥∥∥

π3 ≤
∥∥∥−→u ∥∥∥

π3 +
∥∥∥−→v ∥∥∥

π3
which completes the proof. □

Proposition 2.2. dπ3(A, 0) = ∥A∥π3.
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Proof. Consider a position vector −→u =
−−→
OA with its endpoint A = (x, y) ∈ R2

π3 coordinates. Using the Definition 1.1,
we have

dπ3(A, 0) =


|x| +

1
√

3
|y| , 0 ≤

∣∣∣∣∣ yx
∣∣∣∣∣ ≤ √3

2
√

3
|y| ,

√
3 ≤

∣∣∣∣∣ yx
∣∣∣∣∣ < ∞ = ∥A∥π3 .

□

Proposition 2.3. (Schwarz Inequality) If A = (x1, y1) and B = (x2, y2) ∈ R2
π3. Then,

|⟨A, B⟩| ≤ ∥A∥π3 . ∥B∥π3 .

Proof. This follows easily from the fact that norm of a vector in the plane R2
π3 is always larger than or equal to its

Euclidean length. □

3. Geometrical Interpretation

It is weel known that
|⟨A, B⟩| ≤ ∥A∥π3 . ∥B∥π3 cosθ, 0 ≤ θ ≤ π

in Euclidean plane. Now, consider the Schwarz inequality

|⟨A, B⟩| ≤ ∥A∥π3 . ∥B∥π3
in the plane R2

π3. If A and B are nonzero vectors one gets

|⟨A, B⟩|
∥A∥π3 . ∥B∥π3

≤ 1

from the Schwarz inequality. The last inequality can be expressed as

−1 ≤
|⟨A, B⟩|

∥A∥π3 . ∥B∥π3
≤ 1

which also to define Iso-taxicab cosπ3θ, as follows:

|⟨A, B⟩| ≤ ∥A∥π3 . ∥B∥π3 .cosπ3θ

and consequently, the relationship between the inner product and lengths and angles in the plane R2
π3can be interpreted

as in Euclidean plane, by related norm.
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