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Abstract  Özet 

Generative Adversarial Networks (GANs) have 

revolutionized the field of deep learning by enabling the 

production of high-quality synthetic data. However, the 

effectiveness of GANs largely depends on the size and 

quality of training data. In many real-world applications, 

collecting large amounts of high-quality training data is 

time-consuming, and expensive. Accordingly, in recent 

years, GAN models that use limited data have begun to be 

developed. In this study, we propose a GAN model that can 

learn from a single training image. Our model is based on the 

principle of multiple GANs operating sequentially at 

different scales, where each GAN learns the features of the 

training image and transfers them to the next GAN, 

ultimately generating examples with different realistic 

structures at the final scale. In our model, we utilized a self-

attention and new scaling method to increase the realism and 

quality of the generated images. The experimental results 

show that our model performs image generation 

successfully. In addition, we demonstrated the robustness of 

our model by testing it in different image manipulation 

applications. As a result, our model can successfully produce 

realistic, high-quality, diverse images from a single training 

image, providing short training time and good training 

stability. 

 Üretken Çekişmeli Ağlar (GANs), yüksek kaliteli sentetik 

verilerin üretilmesini sağlayarak derin öğrenme alanında 

devrim yaratmıştır. Bununla birlikte, GAN'ların etkinliği 

büyük ölçüde eğitim verilerinin boyutuna ve kalitesine 

bağlıdır. Birçok gerçek dünya uygulamasında, büyük 

miktarda yüksek kaliteli eğitim verisi toplamak zaman alıcı 

ve pahalı bir süreçtir. Buna bağlı olarak, son yıllarda, az veri 

kullanan GAN modelleri geliştirilmeye başlanmıştır. Bu 

çalışmada tek bir eğitim görüntüsünden öğrenebilen üretken 

çekişmeli ağ model önermekteyiz. Modelimiz, farklı 

ölçeklerde sıralı olarak çalışan birden fazla GAN'ın, eğitim 

görüntüsünün özelliklerini öğrenip son ölçekte farklı 

gerçekçi yapılarla örnekler ürettiği bir prensibe 

dayanmaktadır. Modelimizde, üretilen görüntülerin 

gerçekçiliğini ve kalitesini artırmak amacıyla bir öz-dikkat 

ve yeni ölçeklendirme yöntemi kullandık. Deneysel 

sonuçlar, modelimizin başarılı bir şekilde çalıştığını 

göstermektedir. Buna ilaveten, modelimizi farklı görüntü 

manipülasyonu uygulamalarında test ederek model 

sağlamlığını ortaya koyduk. Sonuç olarak, geliştirdiğimiz 

GAN modeli; tek bir eğitim görüntüsünden faklı, gerçekçi ve 

kaliteli görüntü örneklerini başarılı bir şekilde üretebilmekte, 

kısa eğitim süresi ve iyi eğitim kararlılığı sağlamaktadır.  

Keywords: Generative adversarial networks, single image 

generation, self-attention, image manipulation 

 Anahtar kelimeler: Üretken çekişmeli ağlar, tek görüntü 

üretimi, öz-dikkat, görüntü manipülasyonu 

1 Introduction 

Recent advances in deep learning techniques have 

contributed significantly to the growth of artificial 

intelligence. However, the acquisition of consistently 

structured datasets that conform to specified criteria poses a 

remarkable challenge confronting researchers and 

developers in the field of artificial intelligence. Creating 

large problem-specific datasets and performing the 

necessary pre-processing operations is challenging and time-

consuming; in some cases, the dataset may not exist at all. 

Therefore, developing successful models for learning from 

small amounts of data has emerged as a significant research 

area. Recent works have focused on developing methods to 

learn effectively from limited data, such as transfer learning 

[1], meta-learning [2], and data augmentation [3]. Besides, 

several studies have explored the use of generative models to 

learn from low data regimes. For example, Variational 

Autoencoders (VAEs) have been utilized in natural language 

processing to produce new samples [4]. Few-shot learning 

generates more samples for under-represented classes using 

Generative Adversarial Networks (GANs) [5]. 

GANs [6], stand out as a powerful method in machine 

learning to generate synthetic data that can be used for 

various applications. However, training GANs with limited 

data has some challenges. One of these challenges is 

overfitting. GANs can lead to memorization of training data 

rather than learning specific features that generate new data. 

Hence, they are highly susceptible to overfitting when 

trained on small datasets. The other challenge is the mode 

collapsing which is a limited set of outputs, drawn by the 
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generator, that do not reflect the exact distribution of the 

training data. Mode collapse occurs more frequently when 

the generator network does not have enough samples to learn 

all the features in the data. Another challenge is training 

instability. GANs can be highly sensitive to hyperparameter 

selection, such as learning rates and batch sizes, and require 

a significant amount of fine-tuning to achieve stable training 

[7-9]. 

This study aims to propose an enhanced generative model 

that addresses the aforementioned issues by utilizing a single 

training image to generate new samples. Our model follows 

Single Image Generative Adversarial Network (SinGAN) 

[10], which is trained on a single natural image and produces 

diverse and visually plausible samples. SinGAN relies on a 

pyramid structure comprising fully convolutional GANs, 

wherein each level corresponds to a different scale of the 

input image. The key breakthrough of SinGAN lies in its 

utilization of a generative model at each pyramid level, 

enabling the transformation of feature maps from the 

previous level into the corresponding feature maps of the 

current level. However, despite the impressive outcomes, 

images generated by SinGAN often encounter challenges in 

preserving the intended overall structure or semantic content 

of the original image. In our model, we employed the self-

attention module [11] to capture pixel dependencies within a 

single image, resulting in the generation of highly realistic 

images. Self-attention is a valuable tool as it enables the 

model to selectively emphasize different parts of the data that 

are most relevant for rendering the image. Additionally, we 

introduced a new scaling method for image resizing in our 

model. This method specifically focuses on enhancing the 

realistic representation of medium-sized objects in training 

images. Moreover, this approach facilitates a seamless 

transition from global dependencies to local dependencies 

during the image generation phase, thereby improving the 

overall coherence of the generated results. Consequently, our 

model aims to improve the quality and fidelity of produced 

images, addressing the specific challenges related to realism 

and object consistency. 

The contributions of our study are summarized as 

follows: 

 Using the self-attention module: To enhance the 

realism of generated images and improve the 

coherence of depicted objects. 

 Introducing a new scaling method: To focus on 

medium-sized images generated in coarse scales of 

the training. 

The rest of the paper is organized as follows. Section 2 

presents a related work. Section 3 introduces our generative 

model using the self-attention module for the single image 

generation problem. Section 4 provides experimental results. 

Section 5 presents some image manipulation tasks such as 

paint-to-image and harmonization. Finally, Section 6 

summarizes and concludes the paper. 

2 Related Work 

Developing GAN models that effectively operate with a 

limited amount of data poses an intriguing yet challenging 

task. Zakharov et al. [12] introduced an innovative solution 

in the form of a few-shot learning approach, which enables 

the creation of high-quality videos featuring individuals 

speaking, even when only a small number of images of the 

target person are available. The proposed model leverages a 

GAN architecture that operates specifically based on these 

target person images. Moreover, to improve the generated 

images' quality and maintain consistency with the target 

person's appearance, the GAN architecture is combined with 

a meta-learning approach. The results obtained from both 

training and test datasets demonstrated that the method is 

capable of producing impressive talking head videos. These 

videos exhibit realistic lip synchronization and facial 

expressions, even when trained on a small number of images. 

Lucic et al. [13] presented a model aimed at generating high-

quality images when confronted with a scarcity of training 

data. Their approach involved the development of a GAN 

model incorporating both self-supervised learning and semi-

supervised learning techniques. Self-supervised learning is 

used for extracting semantic features and guiding the training 

of the learnable GAN. Semi-supervised learning is used for 

selectively removing labels from a small subset of labelled 

training images and utilizing this modified dataset as 

conditional information during GAN training. By using self-

supervised learning and semi-supervised learning together, 

the authors overcame the challenges associated with limited 

training data and achieved the generation of high-quality 

images. Noguchi and Harada [14] focused on the challenge 

of generating high-quality images when working with small 

datasets. They introduced a method that processes the batch 

statistics of a pre-trained GAN to adapt the characteristics of 

the limited dataset. By tailoring the aggregated statistics, 

their approach enables the model to generate high-quality 

images that align with the distribution of the small dataset. 

This adaptation process ensures that the generated images 

maintain consistency and fidelity with limited data, resulting 

in improved image quality.  

Generating high-quality, diverse images from only a 

single training image has long been a challenging task in the 

field of deep learning. In response to this challenge, Shocher 

et al. [15] proposed the Internal GAN (InGAN) model, which 

stands as the pioneering generative model designed to 

operate exclusively on a single training image. Unlike 

traditional GAN models, InGAN specifically focuses on 

capturing and manipulating the internal structure of a single 

natural image, encompassing both low-level and high-level 

feature representations. By emphasizing the internal 

structure, InGAN produces diverse samples from a single 

training image. Shaham et al. [10] introduced SinGAN, 

which is an unconditional GAN model trained on a single 

natural image. SinGAN distinguishes itself from InGAN by 

becoming the first generative model capable of learning and 

producing new samples from a single training image. The 

model is structured around a hierarchical arrangement of 

fully convolutional GANs, with each level corresponding to 

a different scale of the training image. By training each 

sample using the input image progressively scaled from 

small to large, the top-level generative network generates the 

final output image. SinGAN's main innovation lies in its 

implementation of a generative model at each hierarchical 
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level, enabling the transformation of feature maps from the 

previous level to align with the corresponding feature maps 

at the current level. In addition, the integration of the patch 

discriminator [16] effectively reduces the memorization, 

allowing for training on the entire image. This significantly 

increases SinGAN’s performance and image generation 

capabilities. Hinz et al. [17] presented Concurrent Single 

Image Generative Adversarial Network (ConSinGAN), 

which is based on the pyramid structure of SinGAN. 

However, ConSinGAN distinguishes itself in training 

method. Instead of networks operating at a single scale, it 

enables multiple scales to be trained concurrently with 

different learning rates,  

The remarkable success of deep learning-based models 

in various domains has intensified the interest in this field. 

Alongside their achievements, researchers have proposed 

numerous methods to further optimize the performance of 

these models. Among these methods, attention has emerged 

as a prominent technique for enabling models to identify 

both local and global dependencies within datasets. The 

attention mechanism addresses a limitation in convolutional 

neural networks, where the filters that underpin their success 

excel at capturing local dependencies but struggle to detect 

global dependencies due to their limited receptive fields. By 

incorporating attention, models can selectively focus on 

different parts of the data, allowing them to capture and 

utilize both local and global information effectively. This 

advancement has proven instrumental in enhancing the 

capabilities of deep learning models, enabling them to handle 

a wider range of complex tasks by appropriately addressing 

both local and global dependencies within the data. The 

initial version of the attention mechanism was introduced by 

Bahdanau et al. [18]. The authors applied their model to the 

machine translation problem [18]. Subsequently, Vaswani et 

al. [19] proposed an attention mechanism for machine 

translation, which achieved remarkable success. This 

breakthrough paved the way for the widespread adoption of 

attention mechanisms beyond text-based models, extending 

their application to tasks such as image recognition [20], 

image classification [21], and image segmentation [22]. The 

introduction of the self-attention mechanism in the context 

of image generation was accomplished by H. Zhang et al. 

with Self-Attention Generative Adversarial Network 

(SAGAN) [11]. This study demonstrated the successful 

utilization of self-attention, showcasing its effectiveness in 

image-generation tasks with fewer iterations. In terms of 

detecting dependencies within images and producing high-

quality results, SAGAN stands out as a pioneering and 

original approach among GAN models. Its incorporation of 

self-attention has significantly advanced the field of image 

generation and demonstrated its potential for generating 

visually compelling outputs. 

3 Material and method 

Our model is an unconditional GAN that generates 

diverse images. It performs image generation by employing 

a sequential approach with multiple GANs that cater to 

various image sizes. The overall architecture of our model is 

showed in Figure 1. We followed a similar image generation 

procedure with SinGAN [10]. Training across all sizes 

follows the conventional principles of GAN training, 

maintaining consistency throughout. In each dimension, the 

training process remains consistent. Specifically, for the 

smallest scale, the generating network receives input in the 

form of noise-only data. However, as we move through 

sequential scales, the generative networks take as input the 

sum of the image generated at the preceding scale and the 

noise data. This iterative process ensures a progressive 

generation of images with increasing levels of complexity 

and detail, resulting in high-quality outputs. Let's denote the 

scaled image set of x with Κ =  {𝑥0, 𝑥1, ⋯ , 𝑥𝑠}, although the 

image used for training is x, the number of scales is s. For 

each scale, we denote generator and discriminator pairs as 
{(𝐺0, 𝐷0), (𝐺1, 𝐷1), ⋯ , (𝐺𝑠 , 𝐷𝑠)}. According to this, the 

model operates starting from the initial network (𝐺0, 𝐷0) and 

continues training until the completion of network (𝐺𝑠, 𝐷𝑠). 

Once the training of (𝐺𝑖 , 𝐷𝑖) is completed, the parameter 

values are frozen, and the training transitions to (𝐺𝑖+1, 𝐷𝑖+1). 

For 𝑖𝑡ℎ scale, to generate the image �̃�𝑖+1 produced by (𝐺𝑖), 

upsampling is applied to the image using interpolation, and 

noise data is added. This resulting image is then fed into the 

generator network 𝐺𝑖+1 of (𝐺𝑖+1, 𝐷𝑖+1) for training.  

 

 

Figure 1. The system architecture of our model. 

 

For model training, we employed a combination of 

adversarial and reconstruction loss functions, as specified in 

Equation (1). The patch discriminator was utilized as the 

means to split the image into patches for evaluation. Unlike 

evaluating the entire training image, the patch discriminator 

focuses on assessing individual patches within the image, 

enabling more targeted analysis. The reconstruction loss 

function was employed to ensure that specific (fixed) noise 
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values converge to the training image within the infinite 

noise space. To implement this, we utilized the ℒ2 quadratic 

difference function described in Equation (2). As for the 

adversarial loss function, we adopted the Wasserstein 

Generative Adversarial Network Gradient Penalty (WGAN-

GP) [23] formulation, which has proven to be effective in 

promoting adversarial learning and generating high-quality 

results. WGAN-GP stands as a variant of the traditional 

GAN framework and offers significant improvements by 

introducing the Wasserstein distance metric and the gradient 

penalty technique. These additions address several 

limitations commonly encountered in traditional GANs, such 

as training instability and mode collapsing. The Wasserstein 

distance metric serves to quantify the dissimilarity between 

the distributions of real and generated data, offering a more 

informative and easier-to-optimize measure compared to 

conventional Jensen-Shannon or Kullback-Leibler 

deviations. By leveraging the Wasserstein distance, the 

model gains valuable insights into the quality of the 

generated samples. 

The parameter values of the model were used based on 

[10]. However, we determined the iteration and filter number 

parameters as a result of our experiments. In our model, both 

the generator and discriminator networks are trained for 

2000 iterations at each scale. We employ a 3x3 convolution-

Batch Normalization- Leaky Rectified Linear Unit (Leaky 

ReLU) layer in both networks. The Tanh activation function 

is used solely in the last layer of the generator network for 

each scale. Our networks consist of 6 convolution blocks, 

with 32 filters used for images up to half of the training 

image scale and 64 filters used for larger images at other 

scales. In networks without self-attention, we substitute self-

attention with a convolution layer. In cases where the same 

number of filters are used, we set the initial parameters of the 

networks to the final values obtained in the previous scale. 

However, for other scenarios, we initialize the networks with 

random parameter values. The learning rate employed is set 

at 5e-4. We used Adam optimizer [24] with  𝛽1 = 0.5, 𝛽2 =
0.9. We determined the coefficient of reconstruction loss 

values as α=10 [10]. The average run time of our model on 

the NVIDIA TITAN X PASCAL GPU is 35 minutes.  

 

 
Figure 2. The self-attention module in the generator and 

discriminator. 

 

𝑚𝑖𝑛
𝐺𝑠

𝑚𝑎𝑥
𝐷𝑠

ℒ𝑎𝑑𝑣 (𝐺𝑠 , 𝐷𝑠) + 𝛼ℒ𝑟𝑒𝑐(𝐺𝑠) (1) 

ℒ𝑟𝑒𝑐 = ‖𝐺(𝑧𝑖) −𝑥𝑖‖2
2 (2) 

 

The success of our work depends on the number of scales 

needed for training and the size of the educational image at 

each scale. In addition to enhancing the model structure, we 

focused on improving the scaling method. Generally, the 

receptive fields of convolution filters in the generator and 

discriminator networks match the size of medium-sized 

objects in the image. Hence, during the image scaling 

process, our objective was to generate a greater number of 

scales that aligned with the sizes of the targeted objects 

within the processing areas. This approach allows us to 

achieve improved results and a better representation of 

objects at various scales. In SinGAN, the scaling factor for 

an image with size 𝑥𝑆 to obtain an image with size 𝑥𝑚 in 

dimension m is given by 𝑟𝑚, where r   is the scaling factor. 

Therefore, the scaling operation in SinGAN can be expressed 

as 𝑥𝑚 = 𝑥𝑆 × 𝑟𝑚. obtain scales with a higher 

representation of medium-sized images, we determined the 

scale coefficient using the piecewise function outlined in 

Equation (3). This approach enables our model to effectively 

transfer global features learned from small-scale images to 

large-scale local features. In our proposed model, we utilized 

a minimum image size of 25 pixels and a maximum image 

size of 250 pixels for the scaling process. Figure 3 illustrates 

a comparison between the scaling methods employed by 

SinGAN and our model. Through experimentation, we 

determined the scaling factor (𝑟0 = 0.7 and the scale add-on 

𝜀 = 0.1  in the scaling method based on the fundamental 

base. These parameters were identified as a result of rigorous 

testing and analysis. 

 

𝑟𝑚 = {

(1 + 𝜀) × 𝑟0
𝑚 , 0 ≤ 𝑚 ≤ 2

(1 − 𝜀) × 𝑟0
𝑚 , 3 ≤ 𝑚 ≤ 5

𝑟0
𝑚 , 𝑚 > 5

   (3) 

 

 
Figure 3. Comparison of the scaling methods. 

 

In our model, we incorporated the self-attention block to 

create medium-sized networks (𝐺𝑖, 𝐷𝑖). Figure 2 represents 

internal structure of each (𝐺𝑖 , 𝐷𝑖) network pair. Every 𝐺𝑖 has 

a residual connection that aggregates input image (�̃�𝑖) with 

output image. Each network contains the self-attention 

block, which was implemented with reference to [11]. This 

block establishes a connection between each element of the 
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input array, such as individual pixels of the image, and a 

vector representation within the self-attention mechanism. 

By utilizing these vector representations, we assess the 

significance of each element by calculating attention 

weights. The self-attention mechanism provides a crucial 

advantage: the ability to selectively focus on different 

components of the input array. This selective focus is 

especially valuable when certain regions of the image have 

varying importance in generating specific outputs. With the 

aid of self-attention, our model concentrates on the most 

critical areas of the image for generating each pixel, resulting 

in higher-quality images with enhanced levels of detail. In 

the scaling method we use, our model focuses more on 

medium-sized images. Using a self-attention block at all 

scales reduces the variety of images produced and requires 

excessive processing power. For this reason, we used the 

self-attention block only in medium-sized networks. 

4 Results and discussions 

To evaluate the performance of our model, we utilized a 

dataset of 50 images selected from the Places dataset [25], as 

well as additional training images obtained from the Internet. 

Figure 4 shows several image samples generated by our 

model by using the training images in [25-27]. The results 

demonstrate that our model can produce diverse and realistic 

images, maintaining high variability while being situated in 

the same space as the training images. For instance, upon 

examining the waterfall image in the first row, our model 

successfully generates realistic patterns with varying 

structures and locations. Similarly, in the second row 

featuring the colosseum image, the generated samples 

showcase the model's ability to maintain the structure and 

position of the Colosseum while producing distinct and 

realistic variations. This highlights the model's capability to 

capture pixel dependencies effectively. Additionally, we 

evaluated our model's performance by feeding inputs of 

different sizes to the generator network, consisting of 

convolutional layers. We randomly selected and presented 

some of the resulting outputs in Figure 4. These demonstrate 

how our proposed model successfully generates diverse and 

realistic images while preserving pixel dependencies, even 

for inputs of variable sizes. 

 

Figure 4. Images samples generated by our model. 

 
Table 1. Quantitative results for Places dataset. 

 SinGAN [10] ConSinGAN [17] Our Model 

SIFID(↓) 0.09 0.06 0.08 

SSIM(↓) 0.46 0.44 0.47 

# Scale ~8-9 ~5-6 ~7-8 

Training Time ~50 dk. ~25 dk. ~35 dk. 

# Parameter  ~1.350.000 ~650.000 ~1.050.000 
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To quantitatively evaluate the images produced by our 

model, we employed the Single Image Fréchet Inception 

Distance (SIFID) method [10]. SIFID is an adaptation of the 

Fréchet Inception Distance [29] specifically tailored for 

single images. By utilizing feature maps extracted from 

intermediate layers of a pre-trained Inception network, 

SIFID compares the real and generated images. A lower 

SIFID value suggests that the generated images are more 

realistic. Additionally, to assess diversity, we employed the 

Structural Similarity Index Metric (SSIM) [30]. SSIM serves 

as a metric for measuring the similarity between two images, 

taking into account structural information, brightness, and 

contrast. It achieves this by dividing the images into small 

pixel windows and calculating their respective means, 

variances, and covariances. The mean represents the average 

brightness within the window, the variance reflects the 

contrast level, and the covariance measures the correlation 

between windows in the two images, indicating how well the 

images align in terms of structure. 

Table 1 presents the results obtained for the Places 

dataset, providing insights into the performance of our 

proposed model. Notably, our model achieved 0.08 SIFID 

value, outperforming SinGAN. Furthermore, when 

examining the diversity values, all models achieved similar 

levels of SSIM value. These findings highlight the ability of 

our model to effectively learn global dependencies in real 

images, resulting in the generation of highly realistic images. 

Notably, our proposed model also boasts a reduced 

parameter count and requires less training time, showcasing 

its superiority over SinGAN in terms of both performance 

and efficiency. 

5 Applications 

We tested our model on two different applications: paint-

to-image and harmonization. For training images [27, 28] 

used in these applications, we conducted unconditional 

image generation training. Once the training phase was 

completed, each application went through the inference 

phase without any modifications or adjustments made to the 

model. The inference stage of the applications was carried 

out using the trained model as is, without any changes or 

fine-tuning.  

5.1 Paint-to-image 

Figure 5 presents the visual outcomes acquired for the 

paint-to-image application. Through the employing of a 

trained model, the objective of this application is to generate 

realistic drawings. A drawing is created that possesses the 

same textural and structural features as the training image.  

The generative model is trained on a single image. Once the 

model training is complete (i.e., in the test time), the drawing 

is provided to the model as input at a specified scale. The 

model's task is to generate a realistic version of the input 

drawing, progressing from the initial scale to the final scale. 

Notably, this application does not prescribe a specific input 

scale level. In the case of drawing, all available scales are 

consecutively employed as the input scale, and the model 

generates corresponding outputs. The choice of the input 

scale depends on the scale at which the model yields the most 

realistic output. In the domain of the paint-to-image 

application, the input scales range between 2 and 4. The 

selection of the input scale significantly influences the 

resulting output. 

 

 

Figure 5. Paint-to-image. 
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Table 2. Quantitative results for paint-to-image. 

 SinGAN [10] Our Model 

SIFID(↓) 3.2 3.1 

SSIM(↑) 0.55 0.57 

 
Two different implementations have been utilized to 

carry out this application. In the first implementation, the 

model receives the complete drawing as its input and 

produces the transformation of this drawing into highly 

plausible and visually coherent images. This approach 

showcases the model's ability to process the essential textural 

and structural features of the drawing.  

In the second implementation, drawing patches are 

meticulously embedded within the training images. With this 

hybrid input, the trained mode attempts to generate more 

integrative and contextualized images. Figure 5 shows the 

visual outcomes of paint-to-images for two single training 

images. Successful outputs of different types of input images 

underscores the model's versatility and adaptability in 

handling different input scenarios, further underscoring its 

potential applicability across a range of use cases within the 

realm of computer vision and image generation. Table 2 

indicates our model achieves similar SIFID and SSIM values 

with SinGAN for these images. 

5.2 Harmonization 

Harmonization is the process of modifying an inserted 

object within an image to match the image's visual structure. 

The application image is created by placing an object within 

the training image. In this context, the training image can be 

considered a background image. The application image is 

given as input at a certain scale to the model trained on the 

training image. The core objective of the model is to 

orchestrate a harmonious fusion of the inserted object with 

the background image, all while faithfully adhering to the 

characteristic traits inherent in the training image. 

 

The degree to which the added object carries the 

characteristics of this background image indicates the level 

of realism achieved. Similar to the paint-to-image 

application, the scale at which the harmonized image is 

introduced to the model during the inference stage plays a 

pivotal role in shaping the outcome. 

Figure 6 unfolds a comparative exposition of 

harmonization outcomes of our model in comparison to 

SinGAN and ConSinGAN. These results unveil the 

resounding success of our model in striking a balance that 

heightens the realism and naturalness of the inserted objects 

within the image. SIFID and SSIM values for harmonization 

reveals that our model Works successfully as other models, 

in Table 3. 

 

 

Figure 6. Harmonization. 

 

Table 3. Quantitative results for harmonization. 

 SinGAN [10] ConSinGAN [17] Our Model 

SIFID(↓) 4.6 3.4 4.2 

SSIM(↑) 0.24 0.26 0.24 
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6 Conclusions  

In this study, we proposed a GAN model that operates on 

a training dataset. Our model is based on the SinGAN 

architecture but incorporates significant modifications. 

While SinGAN may struggle to capture global dependencies 

and semantic coherence in training images, our aim was to 

address this limitation. To achieve this, we introduced self-

attention blocks in the intermediate layers of both the 

generator and discriminator networks. This approach 

facilitates a smoother transition between the global features 

learned at smaller scales to the local features learned at larger 

scales. As a result, our model becomes more capable of 

accurately detecting both local and global features in images. 

Furthermore, we employed a scaling function that ensures 

the dimensions of training images at intermediate scales are 

closer to each other. This approach allows the convolution 

filters, which remain fixed in size, to operate more 

effectively in capturing the details of objects at intermediate 

scales. The improved structure and scaling method of our 

model enable it to learn the structure, position, and realism 

of objects more effectively. We demonstrated through 

measurement results that having similar dimensions for 

intermediate-scale images and the use of self-attention 

blocks in these scales contribute to the enhanced 

performance of our model. Additionally, ability of our model 

to produce high-quality outputs in both paint-to-image and 

harmonization applications demonstrates its suitability for 

image manipulation tasks in addition to unconditional image 

generation. In conclusion, our proposed model exhibits 

potential for applications in various domains with limited or 

single data availability. 

Conflict of interest  

The authors declare that there is no conflict of interest. 

Similarity rate (iThenticate): 3%  

References  

[1] S. J. Pan, Q. Yang, A survey on transfer learning. IEEE 

Transactions on knowledge and data 

engineering, 22(10), 1345-1359, 2010. 

10.1109/TKDE.2009.191 

[2] C. Finn, P. Abbeel, and S. Levine, Model-agnostic 

meta-learning for fast adaptation of deep networks. 

International conference on machine learning PMLR, 
pp. 1126-1135, Sydney, Australia 6-11 August 2017. 

[3] C. Shorten and T. M. Khoshgoftaar, A survey on image 

data augmentation for deep learning. Journal of big 

data, 6(1), 1-48, 2019. https://doi.org/10.1186/s40537-

019-0197-0 

[4] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. 

Jozefowicz and S. Bengio, Generating sentences from 

a continuous space. 20th SIGNLL conference on 

computational natural language learning, CoNLL 2016. 

Association for computational linguistics (ACL), pp. 

10-21, Berlin, Germany, 11-12 August 2016. 

[5] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr and 

T. M. Hospedales, Learning to compare: relation 

network for few-shot learning. Proceedings of the IEEE 

conference on computer vision and pattern recognition, 

pp. 1199-1208, Salt Lake City, USA, 18-23 June 2018. 

[6] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. 

Warde-Farley, S. Ozair, A.C. Courville and Y. Bengio, 

Generative adversarial networks. Communications of 

the ACM, 63(11), 139-144, 2020. 

https://doi.org/10.1145/3422622 

[7] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, 

A. Radford and X. Chen, Improved techniques for 

training gans. Advances in neural information 

processing systems, Barcelona, Spain, 5-10 December, 

2016. 

[8] M. Arjovsky and L. Bottou, Towards principled 

methods for training generative adversarial networks. 

Advances in neural Information Processing Systems, 

Barcelona, Spain, 5-10 December, 2016. 

[9] Z. Zhang, M. Li and J. Yu, On the convergence and 

mode collapse of GAN. SIGGRAPH asia 2018 

technical briefs, pp. 1-4, Tokyo, Japan, 4-8 December 

2018. 

[10] T.R. Shaham, T. Dekel and T. Michaeli, SinGAN: 

Learning a generative model from a single natural 

ımage. Proceedings of the IEEE/CVF ınternational 

conference on computer vision, pp. 4570-4580, Seoul, 

Korea (South), 27 October-2 November, 2019.  

[11] H. Zhang, I. Goodfellow, D. Metaxas and A. Odena. 

Self-attention generative adversarial networks. 36th 
international conference on machine learning PMLR, 

pp. 7354-7363, Long Beach, California, USA, 9-15 

June 2019. 

[12] E. Zakharov, A. Shysheya, E. Burkov and V. 

Lempitsky, Few-shot adversarial learning of realistic 

neural talking head models. Proceedings of the 

IEEE/CVF international conference on computer 

vision, pp. 9459-9468, Seoul, Korea (South), 27 

October-2 November, 2019. 

[13] M. Lučić, M. Tschannen, M. Ritter, X. Zhai, O. 

Bachem and S. Gelly, High-fidelity image generation 

with fewer labels. 36th international conference on 

machine learning PMLR, pp. 4183-4192, California, 

USA, 9-15 June 2019. 

[14] A. Noguchi and T. Harada, Image generation from 

small datasets via batch statistics adaptation. 

Proceedings of the IEEE/CVF international conference 

on computer vision, pp. 2750-2758, Seoul, Korea 

(South), 27 October-2 November, 2019. 

[15] A. Shocher, S. Bagon, P. Isola and M. Irani, InGAN: 

capturing and retargeting the ‘DNA’ of a natural ımage. 

Proceedings of the IEEE/CVF international conference 

on computer vision, pp. 4492-4501, Seoul, Korea 

(South), 27 October-2 November, 2019. 

[16] P. Isola, J.Y. Zhu, T. Zhou and A.A. Efros, Image-to-

image translation with conditional adversarial 

networks. Proceedings of the IEEE conference on 

computer vision and pattern recognition. pp. 1125-

1134, Honolulu, HI, USA, 21-26 July, 2017. 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(1), 196-204 

E. Yıldız, M. E. Yüksel, S. Sevgen 

 

204 

[17]  T. Hinz, M. Fisher, O. Wang and S. Wermter,  

Improved techniques for training single-ımage gans. 

Proceedings of the IEEE/CVF winter conference on 

applications of computer vision (WACV), pp. 1300–

1309, January 5 – 9, 2021. 

[18] D. Bahdanau, K. Cho and Y. Bengio, Neural machine 

translation by jointly learning to align and translate. 

Proceedings of the 3rd ınternational conference on 

learning representations, San Diego, CA, USA, 7-9 

May, 2015. 

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. 

Jones, A.N. Gomez, Ł. Kaiser and I. Polosukhin, 

Attention is all you need. Advances neural information 

processing systems 30, pp. 6000–6010, Long Beach, 

CA, USA, 4-9 December, 2017. 

[20] H. Zhao, J. Jia and V. Koltun, Exploring self-attention 

for ımage recognition. Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition, 

pp. 10076-10085, Seattle, WA, USA, 13-19 June, 2020. 

[21] I. Bello, B. Zoph, A. Vaswani, J. Shlens and Q.V. Le, 

Attention augmented convolutional networks. 

Proceedings of the IEEE/CVF international conference 

on computer vision, pp. 3286-3295, Seoul, Korea 

(South), 27 October-2 November, 2019. 

[22] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang and H. Lu, 

Dual attention network for scene segmentation. 

Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition, pp. 3146-3154, Long 

Beach, CA, USA, 15-20 June 2019. 

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and 

A.C. Courville, Improved training of wasserstein gans. 

Advances in neural information processing systems 30, 

pp. 5769-5779, Long Beach, CA, USA, 4-9 December, 

2017. 

[24] D.P. Kingma and J. Ba, Adam: a method for stochastic 

optimization. Proceedings of the 3rd international 

conference on learning representations, San Diego, CA, 

USA, 7-9 May, 2015. 

[25] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba and A. 

Oliva, Learning deep features for scene recognition 

using places database. Advances in neural information 

processing systems, pp. 487–495 Montreal, Quebec, 

Canada, 8-13 December, 2014. 

[26] Düden şelalesi. 

https://www.kulturportali.gov.tr/contents/images/Yuk

ar%c4%b1%20D%c3%bcden_Servet%20Uygun%20l

ogolu.jpg,  Accessed 10 September 2023. 

[27] SinGAN github web site. 

https://github.com/tamarott/SinGAN/tree/master/Input

/Images, Accessed 1 September 2023. 

[28] ConSinGAN github web site. 

https://github.com/tohinz/ConSinGAN/tree/master/Im

ages/Harmonization, Accessed 1 September 2023. 

[29] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler 

and S. Hochreiter, GANs trained by a two time-scale 

update rule converge to a local nash equilibrium. 

Advances in neural information processing systems 30, 

pp. 6629–6640, Long Beach, CA, USA, 4-9 December, 

2017. 

[30] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. 

Simoncelli, Image quality assessment: from error 

visibility to structural similarity. IEEE Transactions on 

image processing, 13(4), 600-612, 2004. 

10.1109/TIP.2003.819861 
 

 

https://www.kulturportali.gov.tr/contents/images/Yukar%c4%b1%20D%c3%bcden_Servet%20Uygun%20logolu.jpg
https://www.kulturportali.gov.tr/contents/images/Yukar%c4%b1%20D%c3%bcden_Servet%20Uygun%20logolu.jpg
https://www.kulturportali.gov.tr/contents/images/Yukar%c4%b1%20D%c3%bcden_Servet%20Uygun%20logolu.jpg
https://github.com/tohinz/ConSinGAN/tree/master/Images/Harmonization
https://github.com/tohinz/ConSinGAN/tree/master/Images/Harmonization

	1 Introduction
	2 Related Work
	3 Material and method
	4 Results and discussions
	5 Applications
	5.1 Paint-to-image
	5.2 Harmonization

	6 Conclusions
	Conflict of interest
	Similarity rate (iThenticate): 3%
	References

