	SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ SAKARYA UNIVERSITY JOURNAL OF SCIENCE		al cate union	C BS 11 2147419X
SAU	e-ISSN: 2147-835X Dergi sayfası: http://dergipark.gov.tr/saufenbilder		emos rojo celos	SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
60	<u>Geliş/Received</u> 25-08-2017 <u>Kabul/Accepted</u> 11-09-2017	<u>Doi</u> 10.16984/saufenbilder.336128 <u>Online Access</u>	Enstmissi de vans	LNS II FUSU DERGISI Tip-Virodegar-gen bar kertitike

Lacunary statistical delta 2 quasi Cauchy sequences

Şebnem YILDIZ¹

ABSTRACT

The notion of a lacunary statistical δ^2 -quasi-Cauchyness of sequence of real numbers is introduce and investigated. In this work, we present interesting theorems related to lacunary statistically δ^2 -ward continuity. A function f, whose domain is included in R, and whose range included in R is called lacunary statistical δ^2 ward continuous if it preserves lacunary statistical δ^2 quasi-Cauchy sequences, i.e. $(f(x_k))$ is a lacunary statistically δ^2 quasi-Cauchy sequence whenever (x_k) is a lacunary statistically δ^2 quasi-Cauchy sequence, where a sequence (x_k) is called lacunary statistically δ^2 quasi-Cauchy if $(\Delta^2 x_k)$ is a lacunary statistically quasi-Cauchy sequence. We find out that the set of lacunary statistical δ^2 ward continuous functions is closed as a subset of the set of continuous functions.

Keywords: summability, quasi Cauchy sequence, lacunary statistical convergence, continuity

İstatistiksel boşluklu delta 2 quasi Cauchy dizileri

ÖZ

Bu makalede istatistiksel boşluklu δ^2 -quasi-Cauchy dizisi kavramı tanımlanmış ve araştırılmıştır. Bu araştırmada istatistiksel boşluklu δ^2 -süreklilik ile ilgili ilgi çekici teoremler ispatlanmıştır. ($\Delta^2 x_k$) istatistiksel boşluklu quasi Cauchy dizisi olduğunda (x_k) dizisine istatistiksel boşluklu δ^2 -quasi-Cauchy dizisi dendiğine göre, reel sayılar kümesinin bir alt kümesi üzerinde tanımlı reel değerli bir f fonksiyonuna eğer terimleri A da olan istsatistiksel boşluklu δ^2 -quasi-Cauchy dizisi olduğunda ($f(x_k)$) dizisi de istatistiksel boşluklu δ^2 -quasi-Cauchy dizisi olduğunda ($f(x_k)$) dizisi de istatistiksel boşluklu δ^2 -quasi-Cauchy dizisi olduğunda ($f(x_k)$) dizisi de istatistiksel boşluklu δ^2 -quasi-Cauchy dizisi olduğunda ($f(x_k)$) dizisi de istatistiksel boşluklu δ^2 -quasi-Cauchy dizisi oluyor ise istatistiksel boşluklu δ^2 -ward süreklidir denir. İstatistiksel boşluklu δ^2 -ward sürekli fonksiyonların kümesinin sürekli fonksiyonlar uzayının kapalı bir alt kümesi olduğu ortaya çıkarılmıştır.

Anahtar Kelimeler: toplanabilme, quasi Cauchy dizisi, istatistiksel boşluklu yakınsaklık, süreklilik

¹Ahi Evran Üniversitesi Fen Edebiyat Fakültesi / Matematik sebnemyildiz@ahievran.edu.tr

1. INTRODUCTION

Cakalli introduced a generalization of compactness, a generalization of connectedness via a sequential method in [2] and [3], respectively. In [6] Fridy and Orhan introduced the notion of lacunary statistical convergence in the manner that a sequence (x_k) of points in R is called lacunary statistically convergent, or S₀-convergent, to an element L of R if

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |x_k - L| \ge \varepsilon\}| = 0$$

for every positive real number ε where

$$I_r = (k_{r-1}, k_r]$$

and $k_0 = 0$, $h_r : k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$ and $\theta = (k_r)$ is an increasing sequence of positive integers (see also [1], and [7]). In this case we write S_{θ} -lim $x_k = L$. The set of lacunary statistically convergent sequences of points in R is denoted by S_{θ} . In this paper, we will always assume that lim inf_r $q_r > 1$. A sequence (x_k) in R is called lacunary statistically quasi-Cauchy if S_{θ} - lim $\Delta x_k = 0$, where $\Delta x_k = x_{k+1}$ - x_k for each positive integer k. The set of lacunary statistically quasi-Cauchy sequences will be denoted by ΔS_{θ} .

The aim of this paper is to investigate the notion of lacunary statistical δ^2 ward continuity.

2. MAIN RESULTS

A sequence (x_k) in R is called lacunary statistically δ quasi-Cauchy if

S₀ - lim $\Delta^2 x_k = 0$, where $\Delta^2 x_k = x_{k+2} - 2x_{k+1} + x_k$ for each positive integer k. The set of lacunary statistically δ quasi-Cauchy sequences of points in R is denoted by $\Delta^2 S_0$. If we put $|\Delta^3 x_k|$ instead of $|\Delta^2 x_k|$ in the above definition given in [5] we have:

Definition 1. A sequence (x_k) in R is called lacunary statistically δ^2 quasi-Cauchy, or S_{θ} - δ^2 quasi Cauchy if the sequence $(\Delta^2 x_k)$ is lacunary statistically quasi-Cauchy, i.e.

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3 x_k| \ge \varepsilon\}| = 0$$

for every positive real number ε , where $\Delta^3 x_k = x_{k+3}$ -3 x_{k+2} +3 x_{k+1} - x_k for each positive integer k.

We note that any S₀-quasi Cauchy sequence is also $S_0 - \delta^2$ -quasi Cauchy, so is a slowly oscillating sequence, so is a Cauchy sequence, so is a

convergent sequence, but the converses are not always true. Thus the inclusions

 $C \subset \Delta S_{\theta} \subset \Delta^3 S_{\theta}$ hold strictly, where $\Delta^3 S_{\theta}$ denotes the set of $S_{\theta} - \delta^2$ -quasi-Cauchy equences, and C denotes the set of Cauchy sequences of points in R.

Proposition 1. If (x_k) and (y_k) are lacunary statistically δ^2 quasi-Cauchy sequences, then $(x_k + y_k)$ is a lacunary statistically δ^2 quasi-Cauchy sequence.

Proof. Let (x_k) and (y_k) be lacunary statistically δ^2 quasi-Cauchy sequences. To prove that $(x_k + y_k)$ is a lacunary statistically δ^2 quasi-Cauchy sequence, take any $\epsilon > 0$. Then we have

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3 x_k \mid \geq \frac{\varepsilon}{2}\}| = 0$$

and
$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3 y_k \mid \geq \frac{\varepsilon}{2}\}| = 0.$$

Hence
$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3 (x_r + y_r)| > c\}| = 0.$$

 $\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3(x_k + y_k)| \ge \varepsilon\}| = 0.$ This completes the proof.

Definition 2. A real valued function f defined on a subset A of R is called lacunary statistically δ^2 ward continuous, or S_0 - δ^2 ward continuous on A if it preserves lacunary statistically δ^2 quasi-Cauchy sequences in A.

The set of lacunary statistical δ^2 ward continuous functions on A will be denoted

by $\Delta^3 CS_{\theta}(A)$.

Proposition 2. If $f \in \Delta^3 CS_{\theta}(A)$, $g \in \Delta^3 CS_{\theta}(A)$, then $f + g \in \Delta^3 CS_{\theta}(A)$.

Proof. Let $f \in \Delta^3 CS_{\theta}(A)$, $g \in \Delta^3 CS_{\theta}(A)$. To prove that the sum f + g is lacunary statistically δ^2 ward continuous on A, take any $(x_k) \in \Delta^3 S_{\theta}$. Then $(f(x_k)) \in \Delta^3 S_{\theta}$ and $(g(x_k)) \in \Delta^3 S_{\theta}$. Let $\varepsilon > 0$ be given. Since $(f(x_k)) \in \Delta^3 S_{\theta}$ and $(g(x_k)) \in \Delta^3 S_{\theta}$, we have

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\varDelta^3 f(x_k)| \ge \frac{\varepsilon}{2}\}| = 0$$

and

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3 g(x_k)| \ge \frac{\varepsilon}{2}\}| = 0.$$

Hence
$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3 (f(x_k) + g(x_k))| \ge \varepsilon\}| = 0$$

This completes the proof.

On the other hand, the product of a constant real number and $f \in \Delta^3 CS_{\theta}$ is an element of $\Delta^3 CS_{\theta}$ Thus $\Delta^3 S_{\theta}$ is a vector space.

In connection with lacunary statistically δ^2 -quasi-Cauchy sequences and convergent sequences the

problem arises to investigate the following types of continuity of functions on R:

$$\begin{array}{l} (\delta^2 \ S_\theta \ \delta^2): \ (x_n) \in \Delta^3 \ S_\theta \Rightarrow (f(x_n)) \in \Delta^3 \ S_\theta \\ (\delta^2 \ S_{\theta c}): \ (x_n) \in \Delta^3 \ S_{\theta} \Rightarrow (f(x_n)) \in c \\ (S_\theta): \ (x_n) \in S_\theta \Rightarrow (f(x_n)) \in S_\theta \\ (\Delta S_{\theta_-}): \ (x_n) \in \Delta \ S_\theta \Rightarrow (f(x_n)) \in \Delta \ S_\theta \\ (c): \ (x_n) \in c \Rightarrow (f(x_n)) \in c \\ (cS_\theta \ \delta^2): \ (x_n) \in c \Rightarrow (f(x_n)) \in \Delta^3 \ S_\theta \end{array}$$

We see that $(\delta^2 S_{\theta} \delta^2)$ is lacunary statistically δ^2 ward continuity of f, (S_{θ}) is S_{θ}-sequential continuity of f, and (c) is the ordinary continuity of f. It is easy to see that $(\delta^2 S_{\theta}c)$ implies $(\delta^2 S_{\theta} \delta^2)$, and $(\delta^2 S_{\theta} \delta^2)$ does not imply $(\delta^2 S_{\theta}c)$; and $(\delta^2 S_{\theta} \delta^2)$ and $(\delta^2 S_{\theta} \delta^2)$, and (c S_{\theta} \delta^2) does not imply $(\delta^2 S_{\theta} \delta^2)$; $(\delta^2 S_{\theta}c)$ implies (c), and (c) does not imply $(\delta^2 S_{\theta}c)$.

Now we give the implication ($\delta^2 S_{\theta} \delta^2$) implies (ΔS_{θ}).

Theorem 1. If $f \in \Delta^3 CS_{\theta}(A)$, then $f \in \Delta CS_{\theta}(A)$.

Proof. Suppose that $f \in \Delta^3 CS_{\theta}(A)$. Let $(x_n) \in \Delta S_{\theta}(A)$. Then the sequence

 $(x_1, x_1, x_1, x_2, x_2, x_2, \dots, x_{n-1}, x_{n-1}, x_{n-1}, x_n, x_n, x_n, \dots)$ is in Δ S $_{\theta}(A)$, so is in Δ^2 S $_{\theta}(A)$. Since f is in $\Delta^2CS_{\theta}(A)$, the sequence

 $(y_n) = (f(x_1), f(x_1), f(x_2), f(x_2), f(x_2), \dots, f(x_{n-1}), f(x_{n-1}), f(x_{n-1}), f(x_{n-1}), f(x_n), f(x_n), f(x_n), \dots)$

is in $\Delta^2 S_{\theta}(A)$. Then $(f(x_n)) \in \Delta S_{\theta}(A)$.

Corollary 1. If $f \in \Delta^3 CS_{\theta}(A)$, then f is continuous. Proof. The proof follows immediately from the preceding theorem and [14, Corollary 2], so is omitted.

We note that any lacunary statistically δ^2 ward continuous function is G-sequentially continuous for any regular subsequential sequential method G (see [2]).

Theorem 2. If a real valued function f is uniformly continuous on a subset A of R, then $(f(x_n))$ is lacunary statistically δ^2 quasi-Cauchy whenever (x_n) is a quasi-Cauchy sequence of points in A.

Proof. Let f be uniformly continuous on A. Take any quasi-Cauchy sequence (x_n) of points in A. Let ε be any positive real number. Since f is uniformly continuous, there exists $\delta > 0$ such that $|f(x) - f(y)| < \frac{\varepsilon}{5}$ whenever $|x - y| < \delta$.

As (x_k) is a quasi-Cauchy sequence, for this δ there exists an $n_0 \in N$ such that $|x_{k+1} - x_k| < \delta$ for $k \ge n_0$. Therefore $|f(x_{k+1}) - f(x_k)| < \frac{\epsilon}{5}$ for $n \ge n_0$, so the number of indices k for which $|f(x_{k+1}) - f(x_k)| \ge \frac{\epsilon}{5}$ is less than n_0 . Hence

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |\Delta^3 f(x_k)| \ge \varepsilon\}|$$

$$= \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+3}) - 3f(x_{k+2}) + 3f(x_{k+1}) - f(x_k)| \ge \varepsilon\}|$$

$$\leq \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+3}) - f(x_{k+2})| \ge \frac{\varepsilon}{5}\}|$$

$$+ \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |2f(x_{k+2}) - 2f(x_{k+1})| \ge \frac{\varepsilon}{5}\}|$$

$$+ \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+1}) - f(x_k)| \ge \frac{\varepsilon}{5}\}|$$

$$\leq \lim_{r \to \infty} \frac{n_0}{h_r} + \lim_{r \to \infty} \frac{2n_0}{h_r} + \lim_{r \to \infty} \frac{n_0}{h_r} = 0 + 0 + 0 = 0.$$
This completes the proof of the theorem.

Theorem 3. The uniform limit of sequence of lacunary statistically δ^2 ward continuous functions is lacunary statistically δ^2 ward continuous.

Proof. Let (f_n) be a sequence of lacunary statistically δ^2 ward continuous functions on a subset A of R and (f_n) is uniformly convergent to a function f. To prove that f is lacunary statistically δ^2 ward continuous on A, take a lacunary statistically δ^2 quasi-Cauchy sequence (x_k) of points in A, and let ε be any positive real number. By the uniform convergence of (f_n) , there exists a positive integer n_1 such that $|f(x) - f_k(x)| < \frac{\varepsilon}{5}$ for $n \ge n_1$ and every $x \in A$. As f_{n_1} is lacunary statistically δ^2 ward continuous on A, it follows that

$$\begin{split} \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : | f_{n_1}(x_{k+3}) - 3f_{n_1}(x_{k+2}) \\ &+ 3f_{n_1}(x_{k+1}) - f_{n_1}(x_k) \left| \ge \frac{\varepsilon}{5} \right\}| \\ &= 0. \end{split}$$

Now

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+3}) - 3f(x_{k+2}) + 3f(x_{k+1}) - f(x_k)| \ge \varepsilon\}|$$

$$\begin{split} &= \lim_{r \to \infty} \frac{1}{h_r} \left| \{ k \in I_r \colon | \, f(x_{k+3}) - 3f(x_{k+2}) \right. \\ &+ 3f(x_{k+1}) - f(x_k) - [f_{n_1}(x_{k+3}) \\ &- 3f_{n_1}(x_{k+2}) + 3f_{n_1}(x_{k+1}) \\ &- f_{n_1}(x_k)] + [f_{n_1}(x_{k+3}) \\ &- 3f_{n_1}(x_{k+2}) + 3f_{n_1}(x_{k+1}) \\ &- f_{n_1}(x_k)] \left| \geq \frac{\varepsilon}{5} \right\} | \end{split}$$

$$\leq \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+3}) - f_{n_1}(x_{k+3})| \geq \frac{\varepsilon}{5}\}| + \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |-3f(x_{k+2}) + 3f_{n_1}(x_{k+2})| \geq \frac{\varepsilon}{5}\}| + \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |3f(x_{k+1}) - 3f_{n_1}(x_{k+1})| \geq \frac{\varepsilon}{5}\}|$$

$$+\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_k) - f_{n_1}(x_k)| \ge \frac{\varepsilon}{5}\}|$$

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : | f_{n_1}(x_{k+3}) - 3f_{n_1}(x_{k+2}) + 3f_{n_1}(x_{k+1}) - f_{n_1}(x_k) | \ge \frac{\varepsilon}{5} \}|$$

So f preserves lacunary statistically δ^2 quasi-Cauchy sequences. This completes the proof of the theorem.

Theorem 4. The set of lacunary statistically δ^2 ward continuous functions on a subset A of R is closed as a subset of the set of continuous functions on A.

Proof. Let f be an element in the closure of the set of lacunary statistically δ^2 ward continuous functions on A. Then there exists a sequence (f_n) of points in the set of lacunary statistically δ^2 ward continuous functions such that $\lim_{n\to\infty} f_n = f$. To show that f is lacunary statistically δ^2 ward continuous, consider a lacunary statistically δ^2 ward quasi Cauchy-sequence (x_k) of points in A. Since (f_k) converges to f, there exists a positive integer N such that for all $x \in A$ and for all $n \ge N$, $|f_k(x) - f(x)| < \frac{\varepsilon}{12}$. As f_N is lacunary statistically δ^2 ward continuous on A, we have that

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f_N(x_{k+3}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - f_N(x_k)| \ge \frac{\varepsilon}{5}\}|$$

= 0.

Now

=

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+3}) - 3f(x_{k+2}) + 3f(x_{k+1}) - f(x_k)| \ge \varepsilon\}|$$

$$= \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : | f(x_{k+3}) - 3f(x_{k+2}) + 3f(x_{k+1}) - f(x_k) - [f_N(x_{k+3}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - f_N(x_k)] + [f_N(x_{k+3}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - f_N(x_k)] | \ge \frac{\varepsilon}{5} \}|$$

$$\leq \lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : |f(x_{k+3}) - f_N(x_{k+3}) \right| \geq \frac{\varepsilon}{5} \right\} \right|$$
$$+ \lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : |-3f(x_{k+2}) \right. \right.$$
$$+ \left. 3 f_N(x_{k+2}) \right| \geq \frac{\varepsilon}{5} \right\} \left|$$

$$\begin{aligned} & +\lim_{r \to \infty} \frac{1}{h_r} \left| \{k \in I_r : |3f(x_{k+1}) - 3f_N(x_{k+1}) \right| \ge \frac{\varepsilon}{5} \} \right| \\ & +\lim_{r \to \infty} \frac{1}{h_r} \left| \{k \in I_r : |f(x_k) - f_N(x_k)| \ge \frac{\varepsilon}{5} \} \right| \\ & +\lim_{r \to \infty} \frac{1}{h_r} \left| \{k \in I_r : |f_N(x_{k+3}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - f_N(x_k)| \ge \frac{\varepsilon}{5} \} \right|. \end{aligned}$$

=0+0+0+0+0=0.

Thus f preserves lacunary statistically δ^2 quasi-Cauchy sequences. This completes the proof of the theorem.

Corollary 2. The set of lacunary statistically δ^2 ward continuous functions on a subset A of R is complete as a subset of the set of continuous functions on A.

Theorem 5. The set of functions on a subset A of R which map quasi Cauchy sequences to lacunary statistically δ^2 quasi Cauchy sequences is closed as a subset of the set of continuous functions on A.

Proof. It is easy to see that any function which maps quasi Cauchy sequences to lacunary statistically δ^2 quasi Cauchy sequences is continuous. Let f be an element in the closure of the set of functions on A which map quasi Cauchy sequences to lacunary statistically δ^2 quasi Cauchy sequences. Then there exists a sequence (f_n) of points in the set of functions on a subset A of R which map quasi Cauchy sequences to lacunary statistically δ^2 quasi Cauchy sequences such that $\lim_{n \to \infty} f_n = f$. To show that f maps quasi Cauchy sequences to lacunary statistically δ^2 quasi Cauchy sequences, consider a quasi Cauchy-sequence (x_k) of points in A. Since (f_k) converges to f, there exists a positive integer N such that for all $x \in A$ and for all $n \ge N$, $|f_k(x) - f(x)| < \frac{\varepsilon}{5}$. As f_N maps quasi Cauchy sequences to lacunary statistically δ^2 quasi Cauchy sequences, we have that

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f_N(x_{k+3}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - f_N(x_k)| \ge \frac{\varepsilon}{5} \}|$$

= 0.

Now

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+3}) - 3f(x_{k+2}) + 3f(x_{k+1}) - f(x_k)| \ge \varepsilon\}|$$

$$= \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : | f(x_{k+3}) - 3f(x_{k+2}) + 3f(x_{k+1}) - f(x_k) - [f_N(x_{k+3}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - f_N(x_k)] + [f_N(x_{k+3}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - 3f_N(x_{k+2}) + 3f_N(x_{k+1}) - f_N(x_k)] | \ge \frac{\varepsilon}{5} \}|$$

$$\leq \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_{k+3}) - f_N(x_{k+3})| \geq \frac{\varepsilon}{5}\}| \\ + \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |-3f(x_{k+2}) \\ + 3 f_N(x_{k+2})| \geq \frac{\varepsilon}{5}\}| \\ + \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |3f(x_{k+1}) - 3f_N(x_{k+1})| \geq \frac{\varepsilon}{5}\}| \\ + \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f(x_k) - f_N(x_k)| \geq \frac{\varepsilon}{5}\}| \\ + \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |f_N(x_{k+3}) - 3f_N(x_{k+2}) \\ + 3f_N(x_{k+1}) - f_N(x_k)| \geq \frac{\varepsilon}{5}\}|.$$

=0+0+0+0+0=0.

Corollary 3. The set of functions that map quasi Cauchy sequences to lacunary statistically δ^2 quasi Cauchy sequences in A is complete in the set of continuous functions on A.

ACKNOWLEDGMENTS

A part of this study is to be presented in the 15th International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017, 25-30 September 2017, The MET Hotel, Thessaloniki, Greece.

REFERENCES

- H. Cakalli, "Lacunary statistical convergence in topological groups", Indian J. Pure Appl. Math., vol. 26 no. 2, pp. 113-119, 1995.
- [2] H. Cakalli, "Sequential defiitions of compactness", Appl. Math. Lett. vol. 21 no. 6, pp. 594-598, 2008.
- [3] H. Cakalli, "Sequential definitions of connectedness", Appl. Math. Lett., vol. 25 no. 3, pp. 461-465, 2012.
- [4] H. Cakalli, C.G. Aras, and A. Sonmez, "Lacunary statistical ward continuity", AIP Conf. Proc., vol. 1676, 020042, 2015. http://dx.doi.org/10.1063/1.4930468
- [5] H. Cakalli, and H. Kaplan, "A variation on lacunary statistical quasi Cauchy sequences", Commun.Fac.Sci.Univ.Ank.Series A1, vol. 66, no. 2, pp. 71-79, 2017.
- [6] J.A. Fridy, and C. Orhan, "Lacunary statistical convergence", Pacific J. Math., vol. 160 no. 1, pp. 43-51, 1993.
- [7] J.A. Fridy, and C. Orhan, "Lacunary statistical summability", J. Math. Anal. Appl, vol. 173 no. 2, pp. 497-504, 1993.