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ABSTRACT 
 

The one-dimensional nonlinear KdV equation is solved numerically based on Crank Nicolson discretization and Galerkin 

finite element method using quintic B-spline basis function. Two classical test problems, including a single soliton 

propagation and interaction of two solitons, are used to validate the proposed method. Finally, we can see that the proposed 

numerical method is a useful approach for numerical solution of KdV equation.  
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KDV DENKLEMİ İÇİN KUİNTİK B-SPLİNE GALERKİN METODU 

 

ÖZET 
 

Bir boyutlu lineer olmayan KdV denklemi, Crank Nicolson parçalanması ile birlikte kuintik B-spline taban fonksiyonlarının 

kullanıldığı Galerkin sonlu elemanlar metoduyla yaklaşık olarak çözülmüştür. Bir solitonun yayılması ve iki solitonun 

çarpışmasını içeren iki klasik test problemi kullanılarak önerilen yöntemin doğruluğu kontrol edilmiştir. Sonuç olarak 

önerilen yaklaşık yöntemin KdV denkleminin sayısal çözümü için faydalı bir yöntem olduğu görülmüştür. 

 

Anahtar Kelimeler: Soliton, B-spline, Galerkin Sonlu Elemanlar Metodu 
 

 

1. INTRODUCTION 
 

We consider the following nonlinear PDE known as the KdV equation given by 

 

 0t x xxxu uu u                (1) 

 

where   and   are convection and dispersion parameters.  Appropriate boundary conditions over the 

space interval [ , ]a b  will be taken from  

 

 

( , ) 0, ( , ) 0,   

( , ) 0, ( , ) 0,  0

( , ) 0, ( , ) 0

x x

xx xx

u a t u b t

u a t u b t t

u a t u b t

 

  

 

          (2) 

 

to model the analytical conditions that u  as x  and we will consider the initial condition as 

 

 ( ,0) ( ).u x f x              (3) 

 

Eq. (1) is a fundamental mathematical model for describing the theory of water waves in shallow 

channels [1]. These water waves are known as solitons, which are stable and do not disperse with time 
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and they are not deformed after collision with other solitons. The terms xuu  and xxxu  in the KdV Eq. 

(1) represent the nonlinear convection and the dispersion effects, respectively and soliton waves are 

generated as a result of the balance between these terms.  

 

The KdV equation was first studied numerically by Zabusky and Kruskal using leapfrog finite 

difference method [2]. Various numerical methods, including finite element, differential quadrature, 

spline approximation, have also been used for the KdV equation by many researcher [3-8] so far. In 

this study, a numerical solution of the one-dimensional nonlinear KdV equation is presented using 

Galerkin B-spline approach based on quintic B-spline approximation. Galerkin method based on 

different degrees B-spline basis functions have been widely proposed to obtain numerical solutions of 

the nonlinear partial differential equations so far. The RLW and time split RLW equation were solved 

numerically by using the quintic B-spline Galerkin finite element method [9]. A numerical solution of 

one dimensional heat equation was presented using quadratic B-spline Galerkin method [10]. Kutluay 

and Uçar proposed a quadratic B-spline Galerkin finite element approach for numerical solution of  

the one-dimensional coupled KdV equation [11]. The Galerkin method for MRLW equation was 

studied using linear finite elements for space discretization and the Crank-Nicolson and the Runge-

Kutta scheme for time discretization [12]. The quadratic B-spline Galerkin method was proposed to 

obtain the numerical solutions of the Improved Boussinesq type equation by Uçar et. al. [13]. Karakoç 

and Zeybek obtained the numerical solution of GEW equation by using cubic B-spline Galerkin 

approach [14].  
 

In the proposed method, quintic B-splines as both interpolation and weight functions in space and the 

Crank-Nicolson approximation in time are set up. Finally, the method is validated by comparing the 

present results with earlier numerical results. 
 

2. APPLICATION OF THE METHOD  
 

Given an uniform grid with the time step t  and space step h , the exact solution of the KdV equation 

at the grid point is denoted by  

 

 ( , ) , 0,1, , 0,1,2,n

m n mu x t u m N n     

 

and the notation n

mU  is also used to show the numerical value of .n

mu   

 

Using Crank-Nicolson method [15], time discretization form of the KdV equation is obtained as 

 

    
11 1 1 .

2 2 2 2

n nn n n n n n

x xxx x xxx

t t t t
u u u u u u u u   

     
          (4) 

 

The space domain [ , ]a b  is discretized into N  subintervals of equal length h  as  

 0 1 1 .N Na x x x x b        

The quintic B-splines basis functions l ,   2, , 2l N    are defined over the above uniform mesh 

as 
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where ( ) lg l x x  . The set of quintic B-splines l  forms a basis for functions defined over the space 

interval a x b   [16]. Each quintic B-spline l  covers 6 elements so that each element 1[ , ]l lx x   is 

covered by six splines. Then an approximation ( , )U x t  in terms of quintic B-splines can be written 

over the element 1[ , ]l lx x    as  

 

 
3

2

( , ) ( ) ( ),
l

j j

j l

U x t x t 


 

              (6) 

 

where j   are time dependent unknown parameters which will be determined from the quintic B-

spline Galerkin form of the KdV equation. Since the quintic B-spline functions (5) and its first four 

derivatives are continuous, trial solutions (6) have continuity up to fourth order. Then using quintic B-

splines (5) in (6), approximation U  and its first four derivatives at the knots are calculated as 
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       (7) 

 

The finite element 1[ , ]l lx x   is mapped onto the interval [0, ]h  using the transformation ,lx x  

0 h  . Then expressions of quintic B-spline shape functions in terms of a local coordinate   are 

obtained over [0, ]h  as 
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Applying Galerkin approach with weight function ( )W x  to Eq. (4) produces 

 

 
  

  

11 1 1

2 2

2 2

( )

( ) .

b
nn n nt t

x xxx
a

b
nn n nt t

x xxx
a

W x u u u u dx

W x u u u u dx

 

 

   

 

   

  

        (9) 

 

Using (6) in (9) and identify the weight functions ( )W x with quintic B-splines over the element [0, ],h  

we obtain 

 

 

 

3 3
1 1

2 2
0 2 0 0

2

3 3

2 2
0 2 0 0

2
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,
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j l
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i l l

k l l
d d d

           

           

 
    

 
 

 
  

 
 

 
      

   

   
       

 




   (10) 

for 0,1, , 1l N  . The previous expression is also written in matrix form as 

 

          
1 1

2 2 2 2

n n n n
e e e e e e e e e et t t t

   
       

   
   
A B C A B C          (11) 

 

where the element matrices and element parameters are 

 

 
   

 

1 1

0 0

1
1 1

2 3
0

, ,

, ( , , ) .

h h
e e n n

ij i j ij i k k j

h
n

e e n n T

ij i j l l

A d B d

C d

      
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  


  

 

  

  

 



        (12) 

 

Note that the element matrices 
e

A  and e
C , which independent from the parameters e

k , are 6 6   and 

the matrix 
e

B , which dependent from the parameters e

k ,  is 6 6 6.   Assembling together 

contributions from all elements lead to the following nonlinear matrix equation  

 

 1 12 2n n n nt t t t              A C B A C B             (13) 

 

where ,A  B , C  are assembled from the  element matrices ,e
A  e

B  and .e
C  The nonlinear system 

(13) is a set of 5N   nonlinear equations in 5N   unknown parameters  

  2 1 1 2, , , , .N N         

 

After the first and last two equations are deleted in the system, imposition of the boundary conditions  

 

 ( , ) ( , ) ( , ) ( , ) 0,x xU a t U a t U b t U b t      

 

enables us to eliminate the 4 parameters 1

2 ,n 

  1

1

n 

  and 1

1

n

N



, 1

2

n

N


  from the above system. After 

initial vector  

 

 0 0 0 0

2 1 2( , , , )N N    d   
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is found using the initial and boundary conditions 
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unknown vectors   

 

 1 1 1 1

2 1 2( , , , ), 0,1,n n n n

N N n     

   d   

 

can be found repeatedly by solving the system (13). Since the system (13) is a nonlinear system of 

equations, the following inner iteration algorithm is used for all time steps: 

 

Step 1: Set 1error   and 1n

l l    in  1n
B   and taking  

n

l l    , then compute  
mU    

Step 2: While 1010error   do Steps 3-4, 

Step 3: Find 1n

lU    

Step 4:  1max   n

l l
l

error U U  and set 1n

l l    , 

 Stop and go to next time step. 

  

 

To investigate the stability of the difference scheme (13) by using Von Neumann stability analysis, the 

quantity U   in the nonlinear term xUU  is locally constant for KdV equation. Substituting the Fourier 

mode ,( 1)   n n i mh

m G e i  into the linearized difference scheme (13) gives the growth factor G  of 

the form 
 

 
 

 






i
G

i
                   (14) 

 

where  

 

2 2 2

1310354 1623019 17488 50879
cos( ) cos(2 ) cos(3 )

231 231 11 462

1623019 1
cos(4 ) cos(5 ),

231 1386

6787 6645 33946 8700 5203 17775
sin( ) sin(2 )

2 21 7 28 14

   

 

     
  

   

 

     
               

     

h h h h h h h

h h h h

p p p
t h t h t

h h h

2 2

sin(3 )

253 610 5
sin(4 ) sin(5 ).

63 7 252 14



   
 



   
          

   

h

p p
t h t h

h h

 

Since the modulus of (14) is 1G  , the difference scheme (13) is unconditionally stable.   
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3. TEST PROBLEMS 

 

For the first test problem, accuracy of the proposed algorithm is worked out by measuring error norms 

L  and 2L  

 2

0

max ,    .
N

m m m m

m

L u U L h u U



             (15) 

 

The following lowest three conservation invariants for the KdV equation are given as  
 

 2 2 3 2 3 2

1 2 3

3 3
, , .

b b b

x x

a a a

C Udx Udx C U dx U dx C U U dx U U dx
 

 

  

  

   
          

   
        (16) 

 

Composite trapezium method is used to approximate above integrals.  

 

3.1. Single Soliton Waves 
 

In the first test problem, we will study the motion of a single soliton wave. The analytical single 

soliton solution of the KdV equation is  

 

 2

0( , ) 3 sech ( ),u x t c kx x kvt             (17) 

 

where v c  is the wave velocity, 3c   is amplitude of the soliton wave, 0 /x k  is peak position of the 

initially centered wave and / (4 ).k c   This solution represents a soliton of magnitude 3c , 

initially centered on the position  0 /x k   propagating towards the right across the interval [ , ]a b  over 

the time period without change of shape at constant speed v . To allow comparison with other work, 

we take  1,   44.84 10 ,   0 6,x   0.3,c   0.01,h   0.005t   and space interval [ , ] [0,2]a b  .  

The profiles of the soliton at different time levels up to time 3t   are plotted in Fig. 1.  One of the 

properties of soliton waves is that they are non-dispersive, i.e. maintain their initial shapes and size.  

We observe in Figure 1 that the soliton moves along space interval with a constant velocity and 

unchanged amplitude and very little changes in amplitude occurs during run of the algorithm varied 

from initial value of 0.9 to 0.8994512. When we choose smaller time and space steps as 0.001,h   

0.0005t  , the soliton wave’s amplitude varies less from initial value of 0.9 to 0.8999982. 

Therefore, soliton’s amplitude remains close to initial soliton’s amplitude. If we run the program 

further in time, the soliton propagates with a constant velocity and almost unchanged amplitude.  

 

 

 

Figure 1. Single soliton at different times  



Irk / Anadolu Univ. J. of Sci. and Technology  B – Theo.Sci. 5 (2) – 2017 
 

117 

Comparisons are made with several previous works listed in Table 1. As shown in Table 1, the results 

indicate that the proposed method has a highest accuracy than the previous two works for the first test 

problem.  
Table 1. Invariant and error norms 

 
3 3

2 1 2 3

0.052 0.141 0.144600 0.086759 0.046850

0.125 0.320 0.144597 0.086760 0.046850

0.589 0.144593 0.086759 0.046849

0.740 0.144597 0.086759 0.046849

0.130 0.369 0.144598 0.0

Method 10 10

Present 1

Present 3

[5] 1

[5] 3

[6] 1

t L L C C C 

86759 0.046850

0.387 1.042 0.144600 0.086759 0.046850

0 0 0.144599 0.086759 0.046850

[6] 3

Exact

Table 1: Invariant and error norms. 

 

 

 

Absolute error distribution for the proposed method is drawn at time  3t   in Figure 2 with space and 

time steps 0.01,h   0.005t  , respectively.  It can be seen from the figure that the maximum error is 

taken place around the peak amplitude of the soliton wave.  

 

 

 
Figure 2. Absolute error at t = 3 

 

3.2. Interaction of Two Soliton Waves 
 

We consider interaction of two soliton waves using the following initial condition 

 

 2 2

1 1 1 2 2 2( ,0) 3 sech ( [ ]) 3 sech ( [ ]),u x c k x x c k x x         (18) 

 

where / (4 ), 1,2.i ik c i    All of the computations are done for the parameters 6,   1  , 

1 0.3,c     2 0.1,c   1 15x   and  2 35x   over the region 0 90x   for the second test problem. These 

parameters provide two well separated soliton waves of magnitudes  0.9  and 0.3 sited initially at 

15x   and  35  respectively. The program is run until 30t   with 0.1h t    and numerical 

solutions of ( , )u x t   at several times are drawn for visual views of the solutions in Figure 3. We know 

that solitons can collide with other solitons, after which both solitons re-emerge with their original 



Irk / Anadolu Univ. J. of Sci. and Technology  B – Theo.Sci. 5 (2) – 2017 
 

118 

form and speed. We can see from the figure that the initial profile consists of two well separated 

solitons and two soliton propagate to the right at their initial velocities and then they collide after 

which they separate and resume initial shapes and velocities. After interaction, two solitons propagates 

with a constant velocity and almost unchanged amplitude. 

 

 
 

Figure 3. Interaction of two solitons 
 

Table 2 displays numerical values of the invariants and amplitude of wave for various space and time 

step. According to the Table 2, the agreement between numerical and exact values of invariants 

together with amplitudes of the waves after the collision is very satisfactory.  

 
Table 2. Invariants and amplitude of soliton waves at t =30 

 

1 2 3

Small wave Large wave

amplitude amplitude

30 0.1 4.2246681 1.8914716 0.8998216 0.299693 0.886526

30 0.05 4.2328155 1.9202935 0.9255896 0.299938 0.899726

30 0.02 4.2324872 1.9198685 0.9252089 0.299990 0.899956

30 0.0

t h t C C C 

1 4.2324740 1.9198130 0.9251590 0.299998 0.899983

Exact 4.2324749 1.9198099 0.9251562

Table 2: Invariants and amplitude of soliton waves at 30.t 

 

 

 

4. CONCLUSIONS 

 

Galerkin method based on quintic B-spline shape functions was presented for a numerical solution of 

the KdV equation. The propagation of a single soliton wave and interaction of two soliton waves were 

used to examine the performance of the method. From the comparison between the previous numerical 

methods and present method we conclude that our scheme is more accurate than other scheme. 

Therefore the proposed Galerkin finite element method using quintic B-spline provides accurate 

method for solving KdV equation.  
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