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EXISTENCE OF SOME RICCI-FLAT FINSLER METRICS
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ABSTRACT

This paper shows the existence of some Ricci-flat Finsler metrics defined by a Riemannian metric and 1-form supported
by an example.
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BAZI RICCI-DUZ FINSLER OLCUMLERININ VARLIGI
OZET
Bu makalede bir Riemann metrik ve 1-form kullanilarak tanimlanan bazi Ricci-Diiz Finsler metriklerin varhigini gosteriyoruz.

Anahtar Kelimeler: (o, 5)-metrikler, Einstein Metrikleri, Ricci Egriligi

1. INTRODUCTION

One of the main features that distinguishes Riemannian metrics and Finsler metrics defined on a
manifold is that Riemannian metrics are quadratic metrics, whereas Finsler metrics have no
restriction on the quadratic property. One can naturally extends the Ricci curvature Ric in Riemannian
geometry to Finsler metrics. It is a natural problemto study Finsler metrics F = F (x,y) with isotropic
Ricci curvature (They are also called Einstein metrics.) Ric = Ric(x,y), i.e., Ric = (n—1)oF?,
where cis a scalar function in x on the n-dimensional manifold. It is known that there are Einstein
metrics in a certain form that are Ricci-flat. We consider Finsler metrics defined by a Riemannian metric
a and a 1-form g in the following form

F=agp(s) where s= % (1)

where ¢ isa positive smooth function. These Finsler metrics in (1) are called («, 8)-metrics. Randers
metrics defined by F = a + £ are the simplest (o, #)-metrics. We have more general (a, f)-metrics

defined by a polynomial
k .
L
anE a(8), kz2 @
i=0
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where ap=1and a;s are constants with a, # 0. These metrics are called polynomial metrics. Bao-
Robles, [1], presented equations on « and 8 characterizing constant Ricci curvature Randers metrics.
There are a lot of constant (zero or non-zero) Ricci curvature Randers metrics. On the other hand, if a
polynomial metric of non-Randers type in (2) is of constant Ricci curvature, then it is Ricci-flat ([2]).
Equations on «, 8 and ¢ characterizing Douglas type Ricci-flat (a, ) — metrics were obtained by the
authors in [3, 5], independently. Next question arises naturally: Are there any non-Douglas type Ricci-
flat (a, ) — metrics? Cheng-Shen discovered some new Einstein metrics after studying (a,f) —
metrics where g is a Killing form with constant length. They also found singular Einstein metrics on

s3 with Ric = +2F2, and Ric =0, respectively, [4].

In this paper, we set new assumptions on a,  for an (a, 8) — metric F defined in (1) with a goal of
characterizing Einstein metrics. These assumptions came as an inspiration through our published papers
with Zhongmin Shen, [5,6,7]. Indeed, these papers contain examples for the metrics and similar
conditions to form the corresponding Einstein Finsler spaces. (We finalized the assumptions below after
a private conversation with Zhongmin Shen). We compute the Riemann curvature and the Ricci
curvature for (a, 8) — metrics to characterize Einstein metrics, [2].

Let M’f .be an n-dimensional manifold and F an (a, B) — metric as defined in (1) where a =
a;j(x)y'y’ is a Riemannian metric and 8 = b;(x)y* # 0 is a 1-formon M™ .

1 1
rij =5 (baj + byi ) Sij =75 (bitj = byjii )
where “|”denotes the covariant derivative with respect to the Levi-Civita connection of a. We also let
7= bMryj,  Sj=bMsy;

where a¥ == (a;))~" and b; := aijbj. We denote 15 = rl-jyj, Sio = sl-jyj, and 1y = rijyiyj, Ty =
1y’ s = s;y/, etc. Here we have r; +s; = 0 if and only if S has constant length with respect to a.
We have the following Assumption I:

Assumption I:

(@ “Ric=m—-11t(K; +K, ( b? —5?))a?
(b) s;; =0
() rij = E(bzaij — b;bj)

where z and ¢ are scalar functions inx on M™ with (z,€) # (0,0). Then ¢ must satisfy

62
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200
where € == —tK, — 6(;"—_5) b2 (refer to Lemma 2 below). By Assumption I, (a) — (¢) b := [|8]], must

be constant, here K; and K, are constants and there is no relationship between t and €. In particular, if
both t and € are zero, then “Ric =0 and r;; =0, s;; = 0 (B is parallel with respect to a) by
Assumption I. Then, thisis the trivial caseand F = a¢(B/a) is Ricci-flat for any ¢. Hence, we assume
that (z,€) # (0, 0) throughout this paper. Next we state the main theorem of the paper.

Theorem 1 Let F = a¢(s), s = B/a be an (a, B) - metric on an n-dimensional manifold M
where «, § satisfy Assumption I with (t,€) # (0,0). We have Ric = 0 if and only if
130
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€?A(s) + (n — Dth—2B(s) = 0, 4)
where

b := /aijbibj, €:= €(x), T := 7(x) and T = K3 €2 when B(s) # 0

and
A(s) = (m— D{B? — s?)[3sE + 2(n — 2)b2¥P]+ (b* — s2)?[—-E +
2(b* — s?PE' — 2sWE — (b* — s¥)? (W)} + (b* —s?)?[E — (b* — sH)¥'], (5)
B(s) := (m—1 [K + K, (? — sH)]b? —(b? — s?)(K; + b 2)(2b*¥ — s&)
(6)
and K; , K, , b are constants, T and € are scalar functions, and
. ¢’ o 2 2y\n! _Q - sQ'
Q'_qb—sqb" A:=1 + sQ + (b?—52)Q’, 0 := T
o— Q, 7 oe— 2 2 !
W._ZA, E:i=(n—- 160 + (b*—s*)¥'.

Note that since the equation (4) also depends on x € M™, itis notan ODE in s. We divide (4) into some
cases. Firstly, if
A(s) =0, and B(s) =0, @)

then regardless of the values of € and t the equation (4) holds. We assume that (4, B) = (0, 0).
(@) If e #0,thent = K5 €2 for some constant K3, then the equation (4) is reduced to

A(s) + (n — 1)K3 B(s) = 0. (8)
(b) If T # 0, then €2 = K, t for some constant K,, then the equation (4) is reduced to

K, A(s) + (n — 1)B(s) = 0. 9)

By Theorem 1 (a), (b?);, = 2a"b;bj = 0. Thus b := /aijbibj is a constant.

The equation (8) (or (9)) is a third order ordinary differential equation in ¢. By ODE theory, for any
given initial conditions the local solution of the equation (4) exists nearby 0. It is not possible to express
the solution by using simple functions defined on an interval containing [— b, b]. This indicates that we
might have a singular (a, #) Finsler metric F = a¢(f/a) defined by ¢.

Example 1. [4] For the Lie group S3 we let n*,n?,n3 be the standard right invariant 1-form on

§3 such that
dn' = 2dn?Adn®,  dn? =2dn3Adnt,  dn® = 2dn*Adn?.

Forany numbere > 0, let 81 := (1 + e)nt, 06%:=./1+en? 63:=1+en3

a. = +J[01)2 + [62]2 + [63]2, B, = bOY,

where b = \Je/(1 + €) < 1.ThenF := a. + f. isaRanders metric on $3 with constant-flag
curvature o = 1. Further, a, satisfies
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] n+1
%Ric = (n — D{a? — — (b2 az — BE)}

and B, = b; 6% is a Killing form of constant length b and

SimSjt = —(b?8y; — bib;), g =m—1)B

Thus a. and S, satisfy Assumption | with

n+1
= —b? K =-b?, K, = b2
T 1 2 n—1

e =0,

If ¢ = ¢(s) satisfies B(s) =0, then F = a.¢(B: /a. ) is Ricci-flat.

2. PRELIMINARIES

A nonnegative scalar function F = F (x,y) on the tangent bundle TM™ is a Finsler metric on a
manifold M™ where x isa pointin M™ andy € T, M™ is a tangent vector at x. The characterization

of geodesics for a Finsler metric F = F (x,y) in local coordinates are given by

d?xt N ZGi< dx) B
dt2 Yar) T

6's= 20" op) [ [P Goy)y* = [F2 (o)), (10

where

and g;;(x,y) = (%Fz)yiyj. A vector field G — it is called the spray of F- below is defined by using

local functions Gt on TM™
G =yt g 2G! g
=Y gy ay"

These local functions Gt = G (x,y) are called spray coefficients of F for the spray G. For any x €
M™ and y € T, M™ \{0}, the Riemann curvature R, : T, M"* - T, M" s defined by
]

Ry(u) = RY (x, y) u® o lx , Where
Rl o 0G' . 09%G! s, 0°G'  0G' aG’
kT Sy Y dxJoyk

The Ricci curvature is given by

aG™m 92G™

Ric =2 —

J
axm Y (')xfaym+

Consider an (a, 8)-metric on a manifold M™ defined by

F:= a¢(s),

dyJoyk B oyl oyk’

9%G™  9G™ 4G’
oyJjoym oyl oy™

s =f/a

where ¢ = ¢(s) > 0isa C*® functionon (—by,by), a = /aij (x)yt yJ is a Riemannian metric
and B = b;(x)y' is a 1-form with b(x):= Il B, ll, < by. We suppose that ¢ satisfies the following

inequality
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B(s) —s@'(s) + (b?> —s2)p"(s) > 0, Is| < p < by. (11)

Then the (a, B)-metric F is a regular positive definite Finsler metric. The spray coefficients G* of F
obtained by (10), are given in the following lemma.

Lemmal. [8] The spray coefficients of F for an (a, 8)-metric F = a¢p(s),s = B/a, are given by
G\ = “G'+ aQsh+ Ofry — 2Qase}o+ Wirgy — 2Qas, Jb' (12)
where G are the spray coefficients of a,
QI

_ ¢ _ Q-sq’ _Q _ 2 _ 2\’
Q_¢_S¢,I 9_ 2A Jll)_zAl A_1+SQ+(b S)Ql

and 1o =1y’ as;; = sk

K ik i o
i So =YIsi, b'syp=sj, so =58y

We also have that

_ 99 —5' + (b2 —sH)¢")
@—s¢D2

In the case that (11) holds, we have A = A(s) > O forswith|s| < b < by .

A

3. PROOF OF THE MAIN THEOREM 1

Next we prove the main theorem Theorem 1. First we introduce the following Lemma.

Lemma 2. Let F = a¢(B/a) be an (a, B)-metric on an n-dimensional manifold M™ with
a = /aij (x)yt yJ and B = b;(x)y" satisfying Assumption I. Then € = e(x) satisfies
2
€= (Eb2— %) b;, (13)
o _ _2(n=2\,2
where € == —1K; —€ (n_l)b :
Proof: By using Ricci identities, we get that
bijjik — bijkj = b™ “Rimji
—bgjijj + bijjji = —b™ “Rimij) (14)
bjjkji = bjtak = 0™ “Rjmu-

We also have the following equalities,
bijk|j + brjilj = 2Tikj

~buijii = Bjlkji = —27ji (15)
We add all the equations in (14) and (15) to get
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1
sije = 3 (Batjie = bai) = —=D™ “Ruamij + Tikj — Ticji (16)
Hence, we have
m _ pm ap; m _ .m
Sjijm = b™ “Ricyj + Timj — Tjjms
Sojm = D™ *Ricmo + Timjo — Toim- @17

By using (a) and (b) in the Assumption I, we obtain
b™ *Ricyp, = (n — DT K, by, . (18)

By using (c) in the Assumption I, we get
rt = e(n—1)b?,

¢ = e(b?y' — sabt),

and hence,
rijo = €o(n — 1)b?,
¢ = €9b? — &sa — (n — 1)e?sh%a, (19)
where
€ = €xy* and € = e b

We substitute the results (18) and (19) into the equation (17), then we use (b) to get
0 = (n-DrtK,sa+en—1)b?>—€yb?>+ ésa+(n—1)e?sh?a (20)
We further use the result (16) and get
s{,’ﬁl = (blslm)m = bfms}” + blslrfm
Sim = —tm— rhr™ — b™bt *Ric, + Tim — blrnrf” (21)
where t* = st s™. By using (b), the equation (21) becomes
0 = —nhr™ — b™b! “Ricy,; + Tim — ™ i1 (22)

and therefore, we obtain
209
&= -1k, — D p2, (23)

€0 =Eb"2—_p. (24)
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Lemma 3. Let F = a ¢(f/a) be an (a, B)-metric on an n-dimensional manifold M with
a = ’aij (x)yt yJ and B = b;(x)y" satisfying the conditions in Assumption | above. Then the Ricci

curvature of F is given by
Ric = %Ric — (n — D7 [K; + K, (b? — s?)]a? +ﬁ[ezA(s) +(m — Drbh™2B(s)], (25)

where A(s) and B(s) are given in equations (5) and (6).
Proof: Here, we have b;); as follows:
bll] = G(bzai]’ — bi bj )

We note that (b2)|i = 2bJ b;; = 2bJ r;, = 0, and we get that b is a constant. Lemma 1 lets us write
the spray coefficients of F as follows

G' = %G + T¢,
where

Tl = 15 (y;i@ +wb')

The flag curvature tensor is written as

R. := *RL + HL,
Hp = 2T|l}< - T|ij.k yl+2T1/ T.j'.k —T.§ TIJ('
Then
Ric = “Ric+ H} (26)
where
HY = 2T =Ty + 20T - Ti1]  (@7)

By using the assumptions (b) and (c) in Assumption I, and the following identities, we compute the
Ricci curvature.

spyt=e(b?— s?)a, s;b'=0, s;b =§ (b2 - 5% ), s;y'=0,
s;jib'y) = —e(*— s?)s,  s;y'y =0, s;ylyl =0,
sjiblyl = =22 = s2), s;bih) = =2 (b2 - s?). (28)
We also easily get
To0)y" = €0(b? — s?)a? — 2e2(b* — sH)a?,

r00|l-bi = é(b? — s?)a?,

T00.Y" = 2€(b? — s¥)a? = 21y, To0.ib' = 0,
r00|j.iyiyj = Zfo(bz —s?)a? — 4€?s(b?* —s*)a® = r00|iyi,
To0)jib'y’ = —2€*b*(b* — s?)a?, ro0);ib7y" = 26(b* — sH)a?,
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To0.i Y y" = 2190, T004;b7y =0, To0ijb/b" = 0 (29)
where ¢, = €y and € = e xb*.
By using the identities in (28) and (29), we obtain

T = [€o (b? — 52 Ja — 2eryys]0 + eryy (b* — s? )0 + [e(b? — 52 )a?
+ (n — Dergo b? 1Y,

T|ij_l-yj =— (n+1)(b?—-5%2)2e%sa—€x)a®@ + (n+ 1)e(b? —s2)a’ry,0’
— (b% —s? )2(4€?%sa —€g)a¥’ + e(b? —s2)2ry ¥,
TIT, = a2 1y (b? —s2 2" ¥ — 3a 251 (b2 —s2 YPY' + (n+ Da?2rd(b* —s? )o'¥
+ a?1&B? =52 )V + (n+1Da"?1r%0% — (n+ Dsa 2140V
T}Tl] = 47212, (b% — s2 )O'Y + 2a 21 (b%: —s2 )W’ + a2 rd(b% —s? )2y'?
— 4a7%14s W0 + (n+3)a 214067,

After substituting the equations obtained above in the equations (26), we obtain (25).
We now prove Theorem 1. By assumption on ® Ric, we have

*Ric = (n — Dt(K, + K,(b? — s2))a?,
and & satisfies

€?A(s) + (n—1)1h~2B(s) = 0.
Then by Lemma 3, the Ricci curvature Ric = 0 and hence the (a, ) — metric is an Einstein space.
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