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Factor Rotation Methods in Factor Analysis: An Application on 
Agricultural Data 
 

Ayşe Sümeyye CAN1 , Özgür KOŞKAN1 , Malik ERGİN*1  
 
Abstract: In this study, the rotation stage of factor analysis, which is one of the 
multivariate analysis methods, was examined. All stages of factor analysis have 
been defined. The material of the study consisted of a data set obtained from 
barley planted in 20 plots (replication) having 9 variables.  In each plot, the 
average of 6 plants selected from that plot was used. The variables emphasized 
in the study were plant height, number of leaves, spike length, spike weight, grain 
yield, flowering period (days), harvest index, yield, and 1000-grain weight. Factors 
were obtained by principal component analysis, which is a factor extraction 
method, from the data set that met the prerequisites of the analysis. The criteria 
used in different factor rotations are given and based on these criteria, the 
formula that gives the optimum rotation angle for each data set was obtained. As 
a result, the formulas obtained for orthomax, varimax, quartimax, and equamax 
were applied to the factors obtained from the data set and the results were 
interpreted.  As a result of factor rotation, when varimax, quartimax, and 
equamax methods were used, the values of the variables in terms of factor loads 
differed in each factor. This is a desirable situation for factor analysis results. 
 
Keywords: Equamax, factor analysis, orthomax, rotation methods, varimax, 
quartimax 
 

Faktör Analizinde Faktör Döndürme Yöntemleri: Ziraat Verisi 
Üzerinde Bir Uygulama 
 
Öz: Bu çalışmada, çok değişkenli analiz yöntemlerinden biri olan faktör analizinde 
döndürme aşaması incelenmiştir. Faktör analizinin tüm aşamaları tanımlanmıştır. 
Çalışmanın materyali, 9 değişken içeren 20 parsele (tekrarlama) ekilen arpadan 
elde edilen bir veri setinden oluşmaktadır. Her parselde, o parselde seçilen 6 
bitkinin ortalaması kullanılmıştır. Çalışmada vurgulanan değişkenler bitki boyu, 
yaprak sayısı, başak uzunluğu, başak ağırlığı, tane verimi, çiçeklenme periyodu 
(gün), hasat indeksi, verim ve 1000 tane ağırlığıdır. Analizin ön koşullarını sağlayan 
veri setinden, faktör çıkarma yöntemi olan temel bileşen analizi ile faktörler elde 
edilmiştir. Farklı faktör döndürmeler için kullanılan kriterler verilmiş ve bu 
kriterlere dayanarak her veri seti için en uygun döndürme açısını veren formül 
elde edilmiştir. Sonuç olarak, orthomax, varimax, quartimax ve equamax için elde 
edilen formüller veri setinden elde edilen faktörlere uygulanmış ve sonuçlar 
yorumlanmıştır. Faktör döndürme sonucunda varimax, quartimax ve equamax 
yöntemleri kullanıldığında değişkenlerin faktör yükleri açısından değerleri her 
faktörde farklılık göstermiştir. Bu, faktör analizi sonuçları için arzu edilen bir 
durumdur. 
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1. Introduction 
 
The purpose of factor analysis is to explain the underlying 
structure of a multivariate data matrix. As it is a stand-

alone analysis, it can also serve as a precursor to many 
multivariate analysis techniques. It is a set of methods that 
allows explaining the structure explained with the data 
obtained from related p variables, with a smaller number 
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of k variables that are not related. The new variables 
obtained by this method are also called 
factors/components. Thus, the variation explained by a 
large number of variables can be seen whether it can be 
explained by a smaller number of variables. In summary, 
the two main purposes of factor analysis are to reduce the 
variable (size) and to investigate the relation between the 
variables, in other words, to classify the variables (Alpar, 
2013). The steps of analysis are; investigation of the 
suitability of the data set, factor creation stage, deciding 
factor numbers, factor rotation, interpretation of results, 
and naming factors. In order for factor analysis to be used, 
the data set should be in a structure that the Pearson 
correlation coefficient can be applied. At the same time, 
one of the most important requirements is that the 
correlations should be large enough to enable 
factorization, and the correlation coefficient range is 
accepted as between 0.30 and-0.90 (Didia and Idenedo, 
2021).  Besides the correlation coefficients, another 
element to look at is the partial correlation coefficient. 
Partial correlation is the correlation coefficient between 
two variables after the effect of other variables has been 
held out on both other variables (Brown and Hendrix, 
2005). 
 
Therefore, it is not recommended to apply factor analysis 
if the partial correlation is high. The relationship between 
the variables should also be sufficient for factorization. 
One way to examine this is to look at the determinant of 
the correlation matrix. The closer this value is to zero, the 
greater the dependency is. In addition to these, the other 
most widely used criterion is the Kaiser-Mayer-Olkin 
(KMO) measure (Khalaf, 2007). The KMO value is a 
measure of how well data is suited for factor analysis. It 
also indicates the suitability of the sample size. The KMO 
value measures the sampling adequacy for each variable 
in the model and the sampling adequacy for the overall 
model (Shrestha, 2021). The result obtained with KMO 
and the sample adequacy is interpreted with the help of 
information given in Table 1. 
 
Table 1. Sampling adequacy according to KMO value 
(Alpar, 2013). 

KMO Sampling adequacy 

0.90-1.00 Excellent 
0.80-0.89 Very well 
0.70-0.79 Well 
0.60-0.69 Mediocre 
0.50-0.59 Poor 

<0.50 Unacceptable 

 
The most basic step in factor analysis is factor creation. 
This step involves different but also related techniques. 
These techniques are: principal component analysis, basic 
axis factor, unweighted least squares, generalized least 
squares, maximum likelihood, alpha factor, and image 
factor (Süzülmüş, 2005).  Of these techniques, the most 

commonly used one is principal component analysis. This 
method tries to summarize the structure of the secondary 
data matrix derived from the original data matrix. 
Secondary data matrix can be a variance-covariance 
matrix or correlation matrix. Thus, the total variance, 
which is equal to the number of variables, is explained. In 
this method, the first factor is calculated to explain the 
maximum variance between the variables, and the second 
factor is calculated to explain the maximum remaining 
variance. This situation is repeated for each factor. The 
important thing that should be considered is that the 
factors obtained as a result of the analysis should be 
orthogonal. The factor load matrix provides an answer to 
the question of how much each variable contributes to 
which factor; in other words, the factor loads in each 
factor are a measure of each variable's contribution to 
that factor. Similarly, the correlation coefficient between 
the related variable and the related factor is the factor 
load. The loads (weights) here are between -1 and +1 since 
they are correlation coefficients and can be classified as. 
 

• 0.30-0.40 acceptable 

• 0.50-0.70 reasonable to use 

• >0.70 loads that explain the factor well 
 
Another data obtained here is the explained variance, in 
another word, the eigenvalues. These eigenvalues are 
equal to the sum of the squares of the factor loads in each 
factor. When a single factor load is squared, the variance 
of that variable explained by the relevant factor is 
obtained. In addition, the sum of the multiplication of 
loads of any two variables gives the correlation coefficient 
between the two variables. After the factors are 
established, an important step is to decide which factors 
to consider.  Some methods are used to decide which 
factors to consider or how many factors to choose (Khalaf, 
2007). These methods are:  
 
Eigenvalue criterion: It is based on the principle that only 
factors with an eigenvalue greater than 1 are taken into 
account. 
 
Explained variance: after eigenvalues are found, the 

smallest m value for which (∑ 𝜆𝑖/𝑝𝑚
𝑗=1 ) ≥ 2/3, the 

condition is met is determined as the number of 
significant principal components. 
 
Scree plot approach: A plot is drawn with the factor 
number on the x-axis and the eigenvalue of the relevant 
factor on the y-axis. In this plot, the number of factors up 
to the factor where the slope decreases steeply is taken 
into account. Jolliffe criterion: factors with an eigenvalue 
of 0.7 and higher are taken into account. 
 
Percentage of total variance: factors are considered until 
the contribution of each additional factor to the explained 
total variance falls below 5%. In the literature, there are 
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many studies that used factor analysis in various 
disciplines. For instance, Sadek et al. (2006) used factor 
analysis with promax rotation for each gender to derive 
fewer independent common factors in Arabian horses. 
They found that three key factors were extracted which 
explained a significant portion of the overall variation in 
mares and stallions, accounting for 66% and 67%, 
respectively. Beniston et al. (2014) developed a soil 
quality index using factor analysis. 
 
The main focus of this study is factor rotations. The factors 
obtained by factor analysis method can sometimes be 
difficult to interpret and have a complex structure. In this 
case, in order to provide clarity and independence in 
interpretation, axis rotation increases the load of the 
variables on one factor and decreases the loads on the 
other factors. As a result, variables that are predominantly 
effective in each factor are determined (Polat, 2012). 
 
The rotated factor load matrix is the final result of the 
factor analysis.  The factor with a high load on a variable is 
closely related to that variable. For instance, a common 
title can be given to variables A, B, and C with the greatest 
weight under the first factor. Likewise, a naming can be 
made for the 2nd and 3rd factors. 
 
The purpose of this study was to show the calculation 
steps of factor rotation methods on a data set obtained 
from barley planted in 20 plots (replication) having 9 
variables and to compare the results of the methods with 
each other. 
 

2. Material and Method 
 
2.1. Materials 
 
 The material of the study consisted of a data set obtained 
from barley planted in 20 plots (replication) having 9 
variables.  In each plot, the average of 6 plants selected 
from that plot was used. The variables emphasized in the 
study were plant height (PH), number of leaves (NL), spike 
length (SL), spike weight (SW), grain yield (GY), flowering 

period (days) (FP), harvest index (HI), yield (Y), and 1000-
grain weight (1000-GW). 
 
2.2. Methods 
 
2.2.1. Rotation of factor loads matrix 
 
Researchers may choose to rotate an axis to provide 
"independency of variables, clarity in interpretation, and 
significance" to the important factors they obtained. 
 
As a result of rotating the axis, the load of the variables on 
one factor will increase while the load on the other factors 
will decrease so that there will be predominantly effective 
variables in each factor and the factors can be interpreted 
more easily (Polat, 2012; İlhan, 2007). 
 
This rotation process can be explained using the graphical 
representation of a two-factor structure in Figure 1. Here, 
the axes are the factor and the coordinates of the 
variables are the load value of that factor. 
 
2.2.2. Vertical rotation methods 
 
In this set of methods, rotation is done by finding an 
optimum angle according to criteria. Since both axes 
rotate in the same direction at the same angle, 
orthogonality is preserved, so they are called orthogonal 
rotation methods. The differentiation of these methods is 
due to the accepted criteria when deciding on the 
optimum angle. The criteria of the methods, in other 
words, the functions that obtable to give the maximum 
value after the rotation process a load, are as in Table 2 
(Finch, 2011; Kaiser, 1958). 
 
Table 2. Criteria of the methods 

Orthomax ∑ (∑(𝑎4) − 𝛾 (∑ 𝑎2)
2

) 

Varimax ∑ ({𝑛 ∑(𝑎4) − (∑ 𝑎2)
2

} /𝑛2) 

Quartimax ∑ (∑ 𝑎4) 

Equamax ∑ (∑ 𝑎4 −
𝑘

2
(∑ 𝑎2)

2

) 

 

 
Figure 1.  Vertical and oblique rotation method. 
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When the functions are examined, the difference and 
similarity between the criteria show that the orthomax 
criterion is a general form depending on γ, it gives the 
criteria of quartimax when γ=0, varimax when γ=1, and 
equamax when γ=k/2 (Browne, 2001). 
 
These functions, each developed by different researchers, 
are called orthogonal rotation criteria. The rotation 
process is repeated many times for the entire two-factor 
combination. When rotating both factors, the angle of 
rotation that maximizes these criteria is calculated 
separately. The functions determined for the criteria are 
functions that depend on the factor loads. How to reach a 
rotation angle from these criteria is explained in general 
and then the formulas for each criterion are given below. 
 
𝑥𝑖: The factor load of the 1st factor in the ith row, which has 
not yet been rotated, 
𝑦𝑖: The factor load of the 2nd factor in the ith row, which 
has not yet been rotated, 
Χ𝑖: The factor load of the 1st factor in the ith row, which has 
been rotated, 
𝑌𝑖: The factor load of the 2nd factor in the ith row, which 
has been rotated. 
 
The relationship between them can be expressed 
mathematically (Kaiser, 1958) in Equation (1): 
 

[

𝑥1 𝑦1

𝑥2 𝑦2

⋮
𝑥𝑛

⋮
𝑦𝑛

] × [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] = [

𝑋1 𝑌1

𝑋2 𝑌2

⋮
𝑋𝑛

⋮
𝑌𝑛

] (1) 

 

where, [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]  is a rotation matrix with an angle 

of Ɵ 
 
So from this matrix multiplication, the following formulas 
are obtained in Equation (2); 
 

𝑋𝑖 = 𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖 sin 𝜃 
𝑌𝑖 = −𝑥𝑖𝑠𝑖𝑛𝜃 + 𝑦𝑖𝑐𝑜𝑠𝜃 

(2) 

 
From here also differentiation formulas with respect to θ 
gives the equation (3); 
 

𝑑𝑋𝑖 = 𝑌𝑖 
𝑑𝑌𝑖 = −𝑋𝑖 

(3) 

 
In the orthogonal rotation criteria,  
 

instead of 𝑎1𝑖 𝑋𝑖 = 𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖 sin 𝜃 
instead of 𝑎2𝑖𝑌𝑖 = −𝑥𝑖𝑠𝑖𝑛𝜃 + 𝑦𝑖𝑐𝑜𝑠𝜃 

 
is written. Since these rotation criteria specify a function, 
if it is differentiated with respect to θ and set to zero, the 
value of θ, that is, the rotation angle, will be the angle 
value that makes our criterion maximum or minimum. 

2.2.3. Orthomax 
 
The optimum θ value satisfying the Orthomax criterion is: 
 

𝜚 = 𝑛. ∑(𝑋2)2 − 𝛾 (∑ 𝑋2)
2

+ 𝑛. ∑(𝑌2)2 − 𝛾 (∑ 𝑌2)
2

 

 
The derivative of the expression can be taken by using 
equation (2.2.) in the derivative operation. 
 

𝑛. (∑ 4𝑋𝑖
3 𝑌𝑖) − 2𝛾 (∑ 𝑋𝑖

2) . (∑ 2𝑋𝑖 𝑌𝑖) + 𝑛. (∑ −4𝑌𝑖
3𝑋𝑖) − 2. 𝛾 (∑ 𝑌𝑖

2) . (∑ −2𝑌𝑖 𝑋𝑖) 

 
Let set the expression equaling to zero, and put the 
common multipliers in parentheses: 
 

4. 𝑛. (∑ 𝑋𝑖
3 𝑌𝑖) − 4𝛾 (∑ 𝑋𝑖

2) . (∑ 𝑋𝑖 𝑌𝑖) + 4. 𝑛. (∑ −𝑌𝑖
3𝑋𝑖) − 4. 𝛾 (∑ 𝑌𝑖

2) . (∑ −𝑌𝑖 𝑋𝑖) = 0 

𝑛. ∑ 𝑋𝑌(𝑋2 − 𝑌2) − 𝛾 ∑ 𝑋𝑌  ∑(𝑋2 − 𝑌2) = 0 

 
This equation is written in place of equation (2). 
 
𝑛. ∑((𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖𝑠𝑖𝑛𝜃). (−𝑥𝑖𝑠𝑖𝑛𝜃 + 𝑦𝑖𝑐𝑜𝑠𝜃). ((𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖𝑠𝑖𝑛𝜃)2) − (−𝑥𝑖𝑠𝑖𝑛𝜃 + 𝑦𝑖𝑐𝑜𝑠𝜃)2) = 

𝛾. (∑(𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖𝑠𝑖𝑛𝜃). (−𝑥𝑖𝑠𝑖𝑛𝜃 + 𝑦𝑖𝑐𝑜𝑠𝜃)) . (∑((𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖𝑠𝑖𝑛𝜃)2 − (−𝑥𝑖𝑠𝑖𝑛𝜃 + 𝑦𝑖𝑐𝑜𝑠𝜃)2)) 

 
If the right and left sides of this equation are arranged 
separately. For the left side of the equation; 
 
𝑛. ∑(−𝑥𝑖

2𝑐𝑜𝑠𝜃. 𝑠𝑖𝑛𝜃 + 𝑥𝑖𝑦𝑖𝑐𝑜𝑠2𝜃 − 𝑥𝑖𝑦𝑖𝑠𝑖𝑛2𝜃 + 𝑦𝑖
2𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜃). (𝑥𝑖

2𝑐𝑜𝑠2𝜃 +

𝑦𝑖
2𝑠𝑖𝑛2𝜃 + 2𝑥𝑖𝑦𝑖𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃−𝑥𝑖

2 sin2 𝜃 + 2𝑥𝑖𝑦𝑖𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 − 𝑦𝑖
2 cos2 𝜃)  

 

𝑛. ∑ ((
𝑠𝑖𝑛2𝜃

2
(𝑦𝑖

2 − 𝑥𝑖
2) + 𝑥𝑖𝑦𝑖𝑐𝑜𝑠2𝜃) . (2𝑥𝑖𝑦𝑖𝑠𝑖𝑛2𝜃 + (𝑥𝑖

2 − 𝑦𝑖
2)𝑐𝑜𝑠2𝜃)) =

𝑛. ∑ (𝑥𝑖𝑦𝑖(𝑦𝑖
2 − 𝑥𝑖

2)𝑠𝑖𝑛22𝜃 + 𝑠𝑖𝑛4𝜃 
(𝑥𝑖

2−𝑦𝑖
2)

2

−4
+ 𝑥𝑖

2𝑦𝑖
2𝑠𝑖𝑛4𝜃 + 𝑐𝑜𝑠22𝜃 𝑥𝑖𝑦𝑖(𝑥𝑖

2 −

𝑦𝑖
2)) = 𝑛 ∑ (𝑥𝑖𝑦𝑖(𝑥𝑖

2 − 𝑦𝑖
2). 𝑐𝑜𝑠4𝜃 + 𝑠𝑖𝑛4𝜃 (𝑥𝑖

2𝑦𝑖
2 −

(𝑥𝑖
2−𝑦𝑖

2)
2

4
))  

 
results are obtained. Now let's arrange the right side of 
the equation: 
 
𝛾. (∑ (−𝑥𝑖

2 𝑠𝑖𝑛2𝜃

2
+ 𝑥𝑖𝑦𝑖𝑐𝑜𝑠2𝜃 + 𝑦𝑖

2 𝑠𝑖𝑛2𝜃

2
)) . (∑(𝑐𝑜𝑠2𝜃(𝑥𝑖

2 − 𝑦𝑖
2) + 𝑠𝑖𝑛2𝜃(𝑦𝑖

2 −

𝑥𝑖
2) + 2𝑥𝑖𝑦𝑖𝑠𝑖𝑛2𝜃)) = 𝛾. (∑ (

𝑠𝑖𝑛2𝜃

2
(𝑦𝑖

2 − 𝑥𝑖
2)) + ∑(𝑥𝑖𝑦𝑖𝑐𝑜𝑠2𝜃)) . (∑ ((𝑥𝑖

2 −

𝑦𝑖
2). 𝑐𝑜𝑠2𝜃) + ∑(2𝑥𝑖𝑦𝑖𝑠𝑖𝑛2𝜃)) = 𝛾 (

𝑠𝑖𝑛4𝜃

4
((∑(𝑦𝑖

2 − 𝑥𝑖
2))(∑(𝑥𝑖

2 − 𝑦𝑖
2))) +

𝑐𝑜𝑠4𝜃 ((∑(𝑥𝑖
2 − 𝑦𝑖

2))(∑ 𝑥𝑖𝑦𝑖)) + 𝑠𝑖𝑛4𝜃((∑ 𝑥𝑖𝑦𝑖)2)) = 𝛾 (
𝑠𝑖𝑛4𝜃

4
[(4(∑ 𝑥𝑖𝑦𝑖)2) −

(∑(𝑥𝑖
2 − 𝑦𝑖

2))
2

] + 𝑐𝑜𝑠4𝜃 ((∑(𝑥𝑖
2 − 𝑦𝑖

2))(∑ 𝑥𝑖𝑦𝑖)))  

 
results are obtained. Now let's equate the right and left 
sides and arrange them in Equation (4): 
 

𝑛 ∑ (𝑥𝑖𝑦𝑖(𝑥𝑖
2 − 𝑦𝑖

2). 𝑐𝑜𝑠4𝜃 + 𝑠𝑖𝑛4𝜃 (𝑥𝑖
2𝑦𝑖

2 −
(𝑥𝑖

2−𝑦𝑖
2)

2

4
)) =

𝛾 (
𝑠𝑖𝑛4𝜃

4
[(4(∑ 𝑥𝑖𝑦𝑖)2) − (∑(𝑥𝑖

2 − 𝑦𝑖
2))

2
] + 𝑐𝑜𝑠4𝜃 ((∑(𝑥𝑖

2 −

𝑦𝑖
2))(∑ 𝑥𝑖𝑦𝑖)))  

 

𝑠𝑖𝑛4𝜃 [(𝑛. ∑ 𝑥𝑖
2𝑦𝑖

2 −
(𝑥𝑖

2−𝑦𝑖
2)

2

4
) −

𝛾

4
(4(∑ 𝑥𝑖𝑦𝑖)2 − (∑(𝑥𝑖

2 −

𝑦𝑖
2))

2
)] = 𝑐𝑜𝑠4𝜃[𝛾(∑(𝑥𝑖

2 − 𝑦𝑖
2))(∑ 𝑥𝑖𝑦𝑖) − 𝑛 ∑ 𝑥𝑖𝑦𝑖 . (𝑥𝑖

2 −

𝑦𝑖
2)]  
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𝑡𝑎𝑛4𝜃 =
[𝛾(∑(𝑥𝑖

2 − 𝑦𝑖
2))(∑ 𝑥𝑖𝑦𝑖) − 𝑛 ∑ 𝑥𝑖𝑦𝑖 . (𝑥𝑖

2 − 𝑦𝑖
2)]

[(𝑛. ∑ 𝑥𝑖
2𝑦𝑖

2 −
(𝑥𝑖

2 − 𝑦𝑖
2)2

4
) −

𝛾
4

(4(∑ 𝑥𝑖𝑦𝑖)2 − (∑(𝑥𝑖
2 − 𝑦𝑖

2))2)]

 

 

𝜃 =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛

2[𝑛 ∑(𝑥𝑖
2−𝑦𝑖

2).(2𝑥𝑖𝑦𝑖)−𝛾 ∑(𝑥𝑖
2−𝑦𝑖

2).∑(2𝑥𝑖𝑦𝑖)]

𝑛.{∑((𝑥𝑖
2−𝑦𝑖

2)
2

−(2𝑥𝑖𝑦𝑖)
2

)}−𝛾{(∑(𝑥𝑖
2−𝑦𝑖

2))
2

−(∑ 2𝑥𝑖𝑦𝑖)
2

}
  (4) 

 
The Equation (4) that gives an optimum angle value for the 
Orthomax criterion is as above. As can be seen in Table 2, 
the orthomax criterion is accepted as a general form. The 
values that can be substituted for the parameter γ here 
allow us to reach other orthogonal criteria 
 
2.2.4. Varimax 
 
As seen in Table 2, the varimax criterion is obtained when 
γ=1 in the orthomax criterion (Kaiser, 1958). In this case, 
if γ=1 is written in the formula (6) for θ, the formula that 
gives the optimum angle θ for varimax was explained in 
Equation (5): 
 

𝜃 =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛

2[𝑛 ∑(𝑥𝑖
2−𝑦𝑖

2).(2𝑥𝑖𝑦𝑖)−∑(𝑥𝑖
2−𝑦𝑖

2).∑(2𝑥𝑖𝑦𝑖)]

𝑛.{∑((𝑥𝑖
2−𝑦𝑖

2)
2

−(2𝑥𝑖𝑦𝑖)2)}−{(∑(𝑥𝑖
2−𝑦𝑖

2))
2

−(∑ 2𝑥𝑖𝑦𝑖)2}
  (5) 

 
2.2.5. Quartimax 
 
As seen in Table 2, the quartimax criterion is obtained 
when γ=0 in the orthomax criterion (Kaiser, 1958). In this 
case, the formula that gives the optimum angle θ for 
quartimax was expressed in Equation (6), if γ is written as 
zero in Equation (4) for θ. 
 

𝜃 =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛

−4 ∑(𝑥𝑖
2 − 𝑦𝑖

2) 𝑥𝑖𝑦𝑖

∑(4𝑥𝑖
2𝑦𝑖

2 − (𝑥𝑖
2 − 𝑦𝑖

2)2)
 (6) 

 

 2.2.6. Equamax 
 
As seen in Table 2, the equamax criterion is reached by 
writing γ=k/2, where k is the number of factors in the 
orthomax criterion. In this case, the formula obtained for 
θ in the equamax method was represented in Eqaution 
(7); 
 

𝜃 =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛

2[𝑛 ∑(𝑥𝑖
2−𝑦𝑖

2).(2𝑥𝑖𝑦𝑖)−
𝑘

2
∑(𝑥𝑖

2−𝑦𝑖
2).∑(2𝑥𝑖𝑦𝑖)]

𝑛.{∑((𝑥𝑖
2−𝑦𝑖

2)
2

−(2𝑥𝑖𝑦𝑖)2)}−
𝑘

2
{(∑(𝑥𝑖

2−𝑦𝑖
2))

2
−(∑ 2𝑥𝑖𝑦𝑖)2}

  (7) 

 
3. Results 
 
In order to exemplify the stages of factor analysis over 
numerical values, a data set with 9 variables and 20 
observations for each variable is given below. The data 
meet the preconditions for the analysis and are given in 
Table 3. In addition, the Pearson correlation coefficients 
between variables in the present dataset and their 
descriptive statistics were tabulated in Tables 4 and 5, 
respectively. When the data is examined according to the 
KMO precondition, it is seen that it has reached a 
sufficient level. KMO value was found as 0.718. From 
these data, the factor load matrix obtained that has not 
been rotated yet, as seen in Table 6. Let us take the factor 
load matrix obtained from our example and apply 
rotations with Ɵ angles that we will obtain from 
orthogonal rotation methods.. 
 
3.1. Varimax 
 
Let us calculate the required angle of rotation for our 
example from the formula for θ in Equation (5). Since the 
explained variances will decrease from the first factor, the  

 
Table 3. Data set belonging to barley plant 

Plant Height 
(PH) 

Number of 
Leaves  

(NL) 

Spike Length 
(SL) 

Spike Weight 
(SW) 

Grain Yield 
(GY) 

Flowering 
Period in Days 

(FP) 

Harvest 
Index  
(HI) 

Yield  
(Y) 

1000-Grain 
Weight  

(1000-GW) 

93,2 10,2 20,1 184 38,4 89 21 160,86 24,43 
71,6 12 17,2 133,2 26,4 95 20 164,86 21,42 
66,9 10 16,1 127,2 25,2 89 20 150,86 28,82 
81,1 11 18,2 184,4 36,8 90 20 164,28 22 
69,6 12,4 17,1 124,4 18 94 15 62 24,45 
71,4 10,4 16,4 131,2 24,2 91 19 89,43 18,8 
85,6 10,6 20 236 42,4 92 18 124,28 20,67 
71 12 16,1 126,8 20 93 16 72,57 23,2 

76,6 10 17,4 180,4 34,8 89 19 82,28 26,02 
81,1 10,2 20,1 208,4 38 90 18 126,57 19,97 
66.6 10.8 14.9 102 12.8 92 13 85.71 22.6 
68.9 10.6 15.5 141.2 27.6 91 20 96.86 24.02 
70.7 10.2 17.2 136.8 24.8 89 18 130.28 19.2 
74.9 12.4 17.8 136.4 28.4 95 21 86.29 22.45 
77.3 10 17.7 165.2 29.6 90 18 124.28 22.55 
81.1 9.8 18.7 158.4 38.4 91 24 133.57 22.65 
66.7 11.4 15.9 118 25.6 91 22 92.86 20.62 
71.3 10.8 16.5 148.8 23.6 93 16 74 21.9 
78 9.8 18.8 152.4 34.4 90 23 125.42 20.05 

77.6 9.8 17.6 146.2 32.2 88 13 93.4 23.6 
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first two factors were considered here in order to do the 
operations manually. 
 
The first two factors of the factor loads matrix are given in 
Table 7. The common factor variance used to standardize 
the factor loads given in Table 7. 
 
Table 7. Loads matrix 

 F1 F2 

PH 0.894 -0.183 
NL -0.589 -0.703 
SL 0.89 -0.316 

SW 0.861 -0.176 
GY 0.956 -0.093 
FP -0.521 -0.792 
HI 0.461 -0.204 
Y 0.659 0.015 

1000-GW -0.116 0.493 

 

The common factor variance for the ith row is ℎ𝑖
2, where 

ℎ𝑖
2 is calculated as; 

 
ℎ𝑖

2 = 𝑎𝑖1
2 + 𝑎𝑖2

2 + ⋯ + 𝑎𝑖𝑝
2  

 

ℎ𝑖
2matrix is calculated from Table (7) and given in Table 

(8). 
 
Table 8. Calculated ℎ𝑖

2 matrix 

 𝒉𝒊
𝟐 

PH 0.832 
NL 0.842 
SL 0.892 

SW 0.772 
GY 0.923 
FP 0.898 
HI 0.254 
Y 0.434 

1000-GW 0.256 

 
In the next step, the square root of the sum of the squares 

of the calculated loads (ℎ𝑖
2) for each row is calculated, and 

each load in this row is weighted by dividing it by this 
calculated value. The weighted loads can now be 
substituted in the formula. For convenience in 
calculations, the required values are found for each row in 
Table 9 where,  
 
𝑓𝑖1𝑧:  weighted factor loading of ith row and 1st factor 

Table 4. Pearson correlation coefficient of the variables in the study 
 PH NL SL SW GY FP HI Y 1000-GW 

PH 1         
NL -0.356 1        
SL 0.911 -0.289 1       

SW 0.818 -0.368 0.839 1      
GY 0.849 -0.481 0.856 0.872 1     
FP -0.308 0.857 -0.217 -0.289 -0.412 1    
HI 0.271 -0.142 0.324 0.180 0.506 -0.063 1   
Y 0.483 -0.331 0.496 0.392 0.542 -0.316 0.499 1  

1000-GW -0.082 -0.038 -0.213 -0.128 -0.091 -0.160 -0.092 -0.016 1 

 
Table 5. Descriptive statistics of the variables 

Variable Mean Minimum Maximum Standard Deviation 

PH 75.06 66.6 93.2 6.97 
NL 10.72 9.8 12.4 0.87 
SL 17.46 14.9 20.1 1.51 

SW 152.07 102 236 32.78 
GY 29.08 12.8 42.4 7.75 
FP 91.1 88 95 2.05 
HI 18.7 13 24 2.99 
Y 112.03 62 164.86 32.53 

1000-GW 22.47 18.8 28.82 2.4 

 
Table 6. Non-rotational factor loads matrix 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PH -0.89371 0.18259 0.210248 -0.16877 0.029005 0.2545 0.033444 0.165908 -0.03152 
NL 0.589313 0.703287 -0.03953 -0.29236 0.078643 0.026821 -0.25321 0.006352 -0.00072 
SL -0.89029 0.315936 0.178741 -0.07606 0.029145 0.157054 0.025808 -0.20881 -0.00738 

SW -0.86091 0.176007 0.333949 -0.11343 -0.04522 -0.30024 -0.02723 0.016024 -0.10144 
GY -0.95622 0.093428 0.000228 -0.06713 -0.17474 -0.10445 -0.05324 0.028634 0.165271 
FP 0.52052 0.792154 -0.04514 -0.18471 0.005479 -0.07652 0.241814 0.017089 0.027265 
HI -0.4611 0.203807 -0.78067 0.067879 -0.35724 0.024179 -0.00917 0.000428 -0.05926 
Y -0.65859 -0.01459 -0.51027 -0.02713 0.547827 -0.0678 0.009292 0.009134 0.007218 

1000-GW 0.115903 -0.49265 -0.12496 -0.85006 -0.06279 -0.00477 0.032403 -0.02481 -0.00324 
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𝑓𝑖2𝑧:  weighted factor loading of ith row and 2nd factor 
 

𝑢: (𝑓𝑖1𝑧)2−(𝑓𝑖2𝑧)2 
𝑣: 2. (𝑓𝑖1𝑧). (𝑓𝑖2𝑧) 

 
The optimum angle is found by substituting the sums 
calculated from Table 9 in the angle formula: 
 

𝜃 =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛 (

2. (9. ∑ 𝑢𝑣 − (∑ 𝑢 ∑ 𝑣))

9. (∑ 𝑢2 − 𝑣2) − ((∑ 𝑢)2 − (∑ 𝑣)2)
) 

 
(k=9; k is the number of variables) 

 

Ɵ =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛

−29.3636

7.838799
= −0.32748 

 
so the rotation matrix T: 
 

𝑇 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] if so 

 

𝑇 = [
0.946776 0.321894

−0.321894 0.946776
] 

 
Now, according to equation 7, If the matrix (Table 7) 
multiplied with the matrix T, the varimax rotation 
completed matrix is found (Table 10). 
 
Table 10. Varimax rotation completed matrix 

 F1 F2 

PH 0.905324 0.114513 
NL -0.33136 -0.85518 
SL 0.944349 -0.0127 

SW 0.871827 0.110518 
GY 0.935054 0.21968 
FP -0.23833 -0.91755 
HI 0.50213 -0.04475 
Y 0.619097 0.22633 

1000-GW -0.26852 0.429421 

 
3.2. Quartimax 
 
Let us rotate our data with the quartimax method. The 
weighing of data will not differ from varimax. Let us 
consider the table of values given in Table 11 by Equation 
(8). 

 

𝜃 =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛

−4 ∑(𝑥𝑖
2−𝑦𝑖

2)𝑥𝑖𝑦𝑖

∑(4𝑥𝑖
2𝑦𝑖

2−(𝑥𝑖
2−𝑦𝑖

2)
2

)
=

1

4
𝑎𝑟𝑐𝑡𝑎𝑛

2 ∑ 𝑢𝑣

∑(𝑢2−𝑣2)
  (8) 

 

Ɵ =
1

4
𝑎𝑟𝑐𝑡𝑎𝑛

2 ∗ −1,98969

2,39745
= −0,257141 

 

𝑇 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] if so 

 

𝑇 = [
0,967121 −0,254317

−0,254317 0,967121
] 

 
According to equation 8, multiplying the matrix (Table 7.) 
with the matrix T results in the quartimax rotation 
completed matrix (Table 11). 
 
Table 11. Quartimax rotation completed matrix 

 F1 F2 

PH 0.911135 0.050577 
NL -0.39067 -0.82977 
SL 0.941119 -0.07906 

SW 0.87744 0.048947 
GY 0.948185 0.153394 
FP -0.30225 -0.89853 
HI 0.497741 -0.07994 
Y 0.633478 0.182241 

1000-GW -0.23766 0.447237 

 
3.3. Equamax 
 
Two factors were chosen in the present example, γ=k/2=1. 
Therefore, the Equamax method will give the same 
rotational factor load as varimax. 
 
4. Discussion 
 

Although there are examples of the use of factor analysis 
in agricultural and animal research in the literature 
(Goddard and Beilharz, 1984; Tan and Corke, 2002; Sadek 
et al., 2006; Beniston et al., 2016), the rotation methods, 
which is one of the stages of this analysis, have not been 
adequately explained.  Although there are methods other 
than the rotation methods used in package programs, 
they are not widely used because they are not 
documented in the literature. In addition, the lack of clear 

Table 9. Values calculated over weighted loads 
 𝒇𝒊𝟏𝒛 𝒇𝒊𝟐𝒛 𝒖 𝒗 𝒖𝟐 − 𝒗𝟐 𝒖. 𝒗 

PH 0.980112 -0.20063 0.920369 -0.39327 0.692415 -0.36196 
NL -0.64189 -0.76612 -0.17493 0.983532 -0.93674 -0.17205 
SL 0.94234 -0.33458 0.776058 -0.63058 0.204632 -0.48937 

SW 0.979929 -0.20031 0.920136 -0.39258 0.692531 -0.36123 
GY 0.995078 -0.0968 0.980809 -0.19265 0.924873 -0.18895 
FP -0.54979 -0.83577 -0.39624 0.919002 -0.68756 -0.36414 
HI 0.914711 -0.40477 0.672854 -0.7405 -0.09561 -0.49825 
Y 1.000324 0.022769 1.000129 0.045553 0.998183 0.045559 

1000-GW -0.22927 0.974377 -0.89685 -0.44678 0.604722 0.400695 
Total   3.802343 -0.84829 2.397447 -1.98969 
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algorithms of the methods used in the program both 
makes it difficult to discover new methods and causes the 
preferred method to be chosen by trial and error or 
randomly. Our examples illustrate how the value for the 
angle of rotation was obtained. As a result, the angle of 
rotation that will increase the variance of the data is found 
with the help of formulas that depend on the parameter 
γ.  Since our example was solved manually, two factors 
were taken into account. Therefore, the results of 
equamax and varimax were the same. A clearer distinction 
is made by the varimax rotation when compared to the 
quartimax rotation, making it more suitable for this 
dataset. According to Wrigley et al. (1958), although 
varimax is better at reaching Thurstune's simple structure 
criterion, quartimax is more useful in terms of operation 
simplicity. In a study examining rotation methods, Saraçlı 
(2011) found that the Equamax results were closest to the 
Varimax values and the Quartimax results were the 
farthest to varimax. Karaman et al. (2017) reported that 
principal component analysis was the method that 
explains the total variance best in all analyzed steps, and 
according to the comparisons made in terms of factor 
loads, the principal component analysis yielded the 
highest factor load for each step. In this study, the 
principal component analysis method was used while 
calculating factor loads. Osborne (2015), reported that in 
the modern era of high-power computing, vertical 
rotations are probably not the best practice because 
oblique rotations can accurately model unrelated and 
correlated factors, whereas orthogonal rotations cannot 
effectively address correlated factors. Thus, it is reported 
that there is little cost to using oblique rotations, 
regardless of the underlying relationship of the factors.  
 
For three real datasets, Akhtar-Danesh (2017) used 
principal component and principal axis factoring methods 
for factor extraction, as well as varimax, equamax, and 
quartimax factor rotation techniques. Akhtar-Danesh 
(2017) compared these techniques according to the 
number of Q-types loaded on each factor, the number of 
distinctive expressions in each factor, and the excluded Q-
types and reported that there was not much difference 
between the principal component and the principal axis 
factoring factor inferences. The main findings of Akhtar-
Danesh (2017) were the emergence of a general factor 
and fewer excluded Q-types based on quartimax rotation. 
Another interesting finding was that there were fewer 
discriminative expressions for factors based on quartimax 
rotations than for varimax and equamax rotations and it 
was reported that these findings were not conclusive and 
that further analysis on more datasets was required. 
 
5. Conclusion 
 
In this study, explanations about rotation methods are 
given and how, and how much rotation each method 
performs is explained. Although some studies provide the 

criteria for the most commonly used rotation methods, it 
is not stated how many degrees of angle should be used 
based on these criteria. Rather than specifying the ideal 
method by subjecting a limited number of data to various 
methods and generalizing according to the results, 
knowing the basics of the methods, the researcher should 
choose the most appropriate method for the data. Since 
all calculations are made manually in the study, the 
calculation of a third factor requires repeating the same 
calculation steps many times. For this reason, calculations 
were done for only two factors. Similar calculation steps 
can be performed for more factors using the same 
algorithm. 
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