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Dual-Class Stocks: Can They Serve as Effective Predictors?

Veli SAFAK

Abstract

This paper investigates the three stocks of Kardemir Karabuk Iron Steel Industry Trade & Co. Inc. (Kardemir),
the 24th largest industrial company in Turkey, listed on the Borsa Istanbul under tickers KRDMA, KRDMB,
and KRDMD. Despite sharing identical attributes except for voting power, these stocks have displayed notable
price divergences over an extended period from January 2001 to July 2023. Through an extensive analysis,
this paper identifies and quantifies the price divergence patterns, revealing a compelling arbitrage opportunity
through pair trading with a maximum potential gain of 361.21%. Employing wavelet coherence analysis, this
study documents a strong coherence among the stock prices for the majority of the analysis period.
Additionally, it demonstrates that the use of a sliding-window approach in selecting the training set
significantly improves predictive performance based on 2,408 long short-term memory (LSTM) models.
Notably, the fixed-horizon approach is found to lead to a statistically significant underestimation of future
prices. Finally, the empirical findings emphasize that even when predictors exhibit strong coherence with the
target variable, they may adversely impact predictive performance.
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1. Introduction

The establishment of Kardemir, Turkey's inaugural integrated iron and steel factory, dates back to September
10, 1939, when it was initiated by Ismet Indnii, who served as Prime Minister during that time. This significant
step was part of the broader national industrialization efforts championed by the republic's founder, Mustafa Ke-
mal Atatiirk. The main activity subject of the company is the production and sale of all kinds of crude iron and
steel products, coke, and coke by-products. It was listed in the Borsa Istanbul on Jun 1, 1998, with 3 stocks: group
A (ticker: KRDMA), group B (ticker: KRDMB), and group D (ticker: KRDMD). The Group A shareholders have
the right to elect 4 members to the Board of Directors, the Group B shareholders have the right to elect 2 members
to the Board of Directors, and the Group D shareholders have the right to elect 1 member to the Board of Directors.
Apart from this voting privilege, there are no other privileges.

This stock structure with different voting privileges is known as dual-class stock structure. There is significant
cross-country evidence suggesting that investors pay a premium for stocks with voting privileges. The pioneering
empirical investigation in this domain was conducted by Lease, McConnell, and Mikkelson [37], who demon-
strated that higher vote shares in the United States are associated with a premium of approximately 5%. Horner
[28] examined dual-class stocks in Switzerland and observed a voting premium of merely about 1%. Zingales
[26] identified a substantial premium of roughly 80% in Italy. Smith and Amoako-Adu [3] detected a premium of
around 19% in Canada during the period 1988-1992, which closely resembles the premium documented in Swe-
den by Rydqvist [22] at 15%. Additionally, Megginson [48] provided evidence of a premium of around 13% in
the United Kingdom.

Voting premium is not the only interesting phenomenon about the dual-class structures. There is also evidence
suggesting that prices of dual-class stock also tend to exhibit high co-integration [1]. Since 2014, the relative price
ratio of GOOG (without voting power) and GOOGL (with voting power) ranged between 0.9459 and 1.05. Wu
[19] used the co-integration between GOOG and GOOGL and designed a pair trading strategy. Pair trading con-
stitutes a market-neutral tactic centered on the selection of stock pairs grounded in their relative prices or alterna-
tive indicators. The primary objective is to pinpoint pairs that exhibit a substantial level of correlation or cointe-
gration, indicative of their tendency for synchronized price movements. This strategy finds prevalent usage among
hedge funds and can be further refined through the assimilation of supplementary insights, such as volatility, anti-
persistence, or qualitative information derived from financial reports. Diverse methodologies, spanning statistical
assessments, machine learning algorithms, and genetic programming, can be employed to unearth lucrative pairs
and formulate trading cues. The efficacy of pair trading extends across various asset categories and market con-
ditions, with certain investigations intimating heightened effectiveness in periods of market decline [18], [25],
[9], [11], and [5].

The academic interest in dual-class stock structure stems from the curiosity of understanding the stock prices.
Forecasting stock prices is a classic problem laying in the intersection of finance, computer science, and econom-
ics. Various methods have been developed and used to forecast future stock prices. Fundamental analysis based
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on companies’ financial statements and technical analysis based on various indicators formulated as functions of
past price action are cornerstones in quantitative finance.

In parallel to reductions in computation cost and increase in the volume of accessible data, researchers have
developed more sophisticated methods to forecast price action in foreign exchange and stock markets. In recent
years, deep learning algorithms have gained attraction among researchers. There are four major types of deep
learning algorithms: convolutional neural network, deep neural network, recurrent neural network, and long short-
term memory. While this paper exclusively employs LSTM models, it provides a brief overview of the other
methods. Additionally, it presents a list of studies utilizing methods not emphasized in this paper for reference.
For a more in-depth literature review, readers may refer to [47] and [54].

Convolutional neural networks (CNNs) are a class of deep neural networks specifically designed for processing
and analyzing visual data, such as images and videos. CNNs are characterized by their ability to automatically
learn hierarchical representations of features from input data. The key innovation of CNNs lies in the use of
convolutional layers, which apply convolutional operations to input data. These operations involve small, learna-
ble filters that scan the input in a systematic way, capturing local patterns and spatial relationships. This enables
the network to recognize low-level features, such as edges and textures, and progressively build more abstract and
complex representations through subsequent layers. Typically, CNN architectures consist of convolutional layers
followed by pooling layers, which downsample the spatial dimensions of the data, reducing computational com-
plexity. Fully connected layers are then employed to make predictions or classifications based on the learned
features. The strength of CNNs lies in their ability to automatically extract relevant features from raw input data,
making them highly effective in tasks such as image classification, object detection, and image segmentation. The
hierarchical feature learning in CNNs mimics the human visual system, contributing to their success in various
computer vision applications.

Numerous studies have explored CNNs in stock market prediction and explored various aspects, including
model comparisons, graph theory integration, technical indicator application, multi-indicator feature selection,
ensemble models, event-driven prediction, and unique architectural approaches. These studies contribute to ad-
vancing the utilization of deep learning techniques for enhanced stock market forecasting [10], [12], [13], [14],
[16], [20], [29], [30], [34], [35], [40], [42], [44], [49], [51], and [53].

Deep neural networks (DNNSs) represent a class of artificial neural networks characterized by their depth, in-
volving multiple layers of interconnected nodes or neurons. These networks are designed to automatically learn
hierarchical representations of features from input data, allowing them to capture intricate patterns and relation-
ships. The architecture of DNNs typically consists of an input layer, one or more hidden layers, and an output
layer. Each layer contains nodes that process information and pass it to subsequent layers, with weighted connec-
tions determining the strength of these interactions. The depth of DNNs facilitates the extraction of complex and
abstract features from raw input, enabling them to effectively model intricate relationships in data. Training DNNs
involves adjusting the weights of connections through backpropagation, where the network learns by minimizing
the difference between predicted and actual outputs. This iterative learning process enhances the network's ability
to generalize and make accurate predictions on new data. DNNs have demonstrated considerable success in vari-
ous domains, including image and speech recognition, natural language processing, and reinforcement learning.
Their capacity to automatically learn hierarchical representations contributes to their effectiveness in capturing
intricate patterns and solving complex tasks, making them a prominent tool in machine learning research.

Various studies have investigated the application of deep neural networks (DNNS) in stock market prediction.
One study utilized a DNN model with novel input features and a plunge filtering technique, demonstrating notable
profitability [52]. Another proposed a DNN model using the Boruta feature selection technique, outperforming
some other machine learning models [32]. Additionally, a study employed boosted approaches in a DNN model
to predict stock market crises, highlighting their relevance in price prediction [43]. Another research revealed the
superiority of DNNs over shallow neural networks and representative machine learning models [27]. Lastly, a
study on a deep factor model suggested a nonlinear relationship between stock returns and factors, outperforming
linear models and other machine learning methods [21].

Recurrent neural networks (RNNSs) constitute a category of artificial neural networks specifically designed to
process sequential data by incorporating temporal dependencies. Unlike traditional feedforward neural networks,
RNNs possess internal memory mechanisms, allowing them to retain information about previous inputs and use
it to influence subsequent predictions. The architecture of RNNs includes recurrent connections that form loops,
enabling information to persist within the network over time. This inherent memory capacity makes RNNs well-
suited for tasks involving sequential patterns, such as natural language processing, time series prediction, and
speech recognition. However, traditional RNNs suffer from challenges like the vanishing gradient problem, which
hinders their ability to effectively capture long-range dependencies in sequential data. To address this limitation,
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variants like long short-term memory (LSTM) networks and gated recurrent unit (GRU) networks have been
developed. These architectures incorporate specialized memory cells and gating mechanisms, allowing for im-
proved information retention and flow through the network. The success of RNNs lies in their ability to model
and comprehend sequential dependencies, making them valuable tools in diverse applications. Despite their ef-
fectiveness, ongoing research aims to further enhance their capabilities and address remaining challenges to ad-
vance the field of sequential data analysis.

Several studies have explored RNNs for financial prediction. One introduced a CRNN model combining con-
volutional neural network and recursive neural network and demonstrated its outperformance relative to LSTM
and CNN maodels in forecasting Forex pairs' prices [24]. Another proposed a multi-task RNN model with Markov
Random Fields (MRF), employing a multi-multilayer perceptron (MMLP) for feature extraction without reliance
on technical indicators [6]. A study presented an RNN-Boost model incorporating technical indicators, sentiment
features, and Latent Dirichlet allocation (LDA) features, demonstrating superior performance over a single-RNN
model [46]. In a different approach, a Deep and Wide Neural Network (DWNN) model integrated CNN's convo-
lution layer into the RNN's hidden state transfer process, achieving a 30% reduction in prediction mean squared
error compared to a general RNN model [38]. Additionally, an Attention-based RNN (ARNN) with wavelet de-
noised input was proposed, combining autoregressive integrated moving average (ARIMA) and a RNN model
output for enhanced forecasting [55].

Overall, this paper presents results of three primary analyses. It begins by examining the historical voting
premium within Kardemir stocks. This analysis represents the first documentation of enduring discrepancies
among Kardemir stocks. The identification of such consistent differences provides traders with the potential to
strategically employ pair trading techniques in a profitable manner. The second analysis examines the coherence
between their daily returns through wavelet coherence analysis. While Kardemir stocks generally exhibit strong
coherence, there were prolonged instances where the coherence among them weakened. Finally, a comparative
analysis of LSTM models with different specifications is provided. The variations in specifications arise from
three sources: (i) the decision to use or not use dual stock prices as predictors, (ii) the number of lags employed
as predictors, and (iii) the selection of the training set. This final analysis does not intend to compare LSTM
models with various other machine learning models. Instead, it focuses on addressing two key questions:
Question 1: Can past dual-class stock prices effectively forecast future prices of each other?

Question 2: Does the use of longer price lags enhance forecast performance in LSTM models?

2. Methodology

2.1. Data and Variables

The data used in this study is based on daily high and low prices (in Turkish liras) for Kardemir stocks (tickers:
KRDMA, KRDMB, KRDMD) between Jan 2001 and July 2023. The sole data source is Bloomberg. To capture
the most likely intraday price, this study uses daily mid-prices. The daily mid-prices are calculated as follows:

HL = 0.5(high + low) 1)

The daily premium of Group i over Group j is calculated as the percentage difference between daily mid-prices
for Group i and daily mid-prices for Group j.

2.2. Wavelet Coherence Analysis

This paper uses the continuous wavelet transform (CWT) to quantify the magnitude, direction, and lead-lag
effects between Kardemir stocks. This approach has a number of advantages. First, it uncovers the dynamic rela-
tionship between these stocks, allowing me to distinguish between periods at which prices are linked. Secondly,
using the CWT, it is possible to identify changes in the direction of the relationship over time. Finally, the CWT
provides insights about the relationship between these stocks at different time horizons simultaneously.

According to Torrence and Campo [7], the wavelet coefficients W, . associated with a time series f(t) are
calculated as:

n t—7
W=D OV |—] ©
where * represent the complex conjugate, € > 0 is the scale associated with the wavelet and t € [—a, a] is the
window locationand 1/« is the normalization factor. Here, the Morlet wavelet with wave number w, = 6 is used
following Grinsted et al. [2]. More specifically, the Morlet wavelet is formulated as:
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The cross-wavelet power spectrum is calculated as the product of two wavelet coefficients and represents the
common variation between two time series over time and scale. It is formulated as:

Wer(f, 9) = We (FWez(9). ()

Like the correlation, the wavelet squared coherency is defined by normalizing the smoothed cross-wavelet power
spectrum by the smoothed wavelet power spectrum associated with the individual time series:

2
- |0 (e W, 90|
Pir = 7 7 (6)
| (e WD) | (7 W)
where Q is the smoothing operator. By construction, p2. takes values between 0 and 1. It implies no comovement
when pZ, = 0, and perfect comovement when pZ, = 1. To identify statistically significant squared coherency
regions, the study uses a Monte-Carlo method with 1,000 iterations.
To uncover lead-lag effects, the following wavelet multi-scale phase is used:

NEICIGRIA))
(0 (= Weelr,90)) |

Here, 7 and R represent the imaginary and real components of the wavelet coefficients. Phase arrows are utilized
within wavelet coherence plots to depict the direction of simultaneous movement and the effects of leading or
lagging. Arrows pointing east (west) signify being in (out of) sync, while arrows pointing north (south) indicate
that one time series leads (lags) the other. When the phase arrow points in a northeast (southeast) direction, it
means that the two series are in sync, but the second one (or first one) leads the first one (or second one). Differing
outcomes are conveyed by arrows facing northwest and southwest.

gs,r(f: g) =tan™ (7)

2.3. Long Short-Term Memory (LSTM)

While training a recurrent neural network, each iteration receives an update proportional to the partial deriva-
tive of the error function with respect to its current weight. When the gradient is vanishingly small, the training
may slow and, in some cases, stops [39]. The long short-term memory technique [41] is developed as a potential
solution for the vanishing gradient problem. The LSTM approach is widely used in predicting stock prices because
of its capacity to recognize patterns and generate more accurate predictions compared to other methods [36], [17],
[33], [23], and [31].

An LSTM unit consists of a cell, and within this cell, there are three gates that manage the movement of
information and regulate the cell state. These gates include an input gate, an output gate, and a forget gate. The
LSTM units are then interconnected, forming a chain where each individual cell acts as a memory module within
the LSTM architecture. Figure 1 illustrates a standard LSTM architecture and Figure 2 shows a standard LSTM
cell architecture.

In Figure 2, i, iy, and o, respectively represent the forget gate, input gate, and output gate. Also, X; is the input,
hy is the output, Cy is the cell state, and Ct is the internal cell state. Based on the input, previous output, and previous
cell state (X, hy—q,and Cy_,); T, it, 0, Ci, Cy, and hy are calculated as follow:

fe = O'(Wf “[heq, Xe] + bf) 8
iy = o(W; - [he—1, X¢] + by) 9)
O = oW, * [he-1,X¢] + by) (10)
C; = tanh(W¢ - [hy—1, X¢] + be) (11)
Ce=1i C+fe Crs (12)

hs = o; X tanh(C) (13)

Here, o represents the sigmoid function and tanh represents the hyperbolic tangent function.
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Figure 2: LSTM Cell Architecture (source: [45])

An LSTM model, operating as a black-box method, has the potential to exhibit overfitting issues, diminishing
its effectiveness when applied to new, untrained data. To gauge the extent of overfitting, data is typically divided
into two subsets in the realm of machine learning: the training set and the validation set. The training set is utilized
for model development, while the validation set remains untouched during the training phase and serves to eval-
uate the model's predictive performance.

Traditionally, practitioners have favored training their models on large datasets with numerous observations,
a practice grounded in the law of large numbers. However, this study posits that this conventional approach may
not be well-suited for forecasting financial variables. In essence, it argues that a model trained on the daily prices
of an asset spanning long periods (several lagged prices) may not perform as effectively as a model trained solely
on the more recent daily prices.

One potential reason for this discrepancy lies in the fact that a long-range training set encompasses both down-
ward and upward market trends. Such training data may not yield accurate predictions when applied to data sam-
pled during a trend in a single direction. Consequently, utilizing more recent data points as the training set may
lead to superior predictive performance.
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In this paper, the use of rolling training sets is proposed for predicting the next observation. In this scenario,
the 5,300™, 5,301, 5,302", 5,303, and 5,304 observations serve as the training set to forecast the 5,305™ ob-
servation when the training window is set to 5. This approach ensures that every observation is predicted based
on the most recent price action, rather than relying on price action from hundreds of days ago.

To test the effectiveness of this new approach, 2 training set rules are used:

Approach 1 (Fixed horizon): The entire dataset is divided into two mutually exclusive and collectively exhaustive
sets, namely a training set and a test set. The first 5,282 observations are used as the training set and the remaining
300 observations are used as the test set. In this case, all observations among the last 300 observations are used
for forecasting based on a single model developed by using the first 5,282 observations.

Approach 2 (Sliding window): For every observation among the last 300 observations, the prior 5, 10, 20, and 50
observations are used as the training set. In this approach, a model is trained to forecast the next observation for
each training window.

In total, 2,408 LSTM models with configurations above are trained to forecast the last 300 observations in the
sample. As a preprocessing step, a transformation on the daily mid-prices by subtracting 100 from each value and
then scaling the results by a factor of 1/100 is performed, resulting in the formula x/100-1. This scaling operation
has the effect of confining all observations within the range of -1 to 1, consistent with the range of tanh function
used in LSTM models. It's important to note that this scaling choice is based on the assumption that the daily mid-
prices will consistently remain below 100 Turkish Lira (TRY). The selection of this threshold is based on the
observation that all data points within the fixed-range training set are significantly lower than the chosen thresh-
old. Consequently, the study has intentionally refrained from constraining the model to only produce forecasts
that surpass the maximum value observed in the training set.

Finally, a deliberate decision was made to avoid using the conventional min-max scaling method. This choice
was driven by the understanding that min-max scaling assumes prior knowledge of the range of daily mid-prices
in the test set. However, in this context, the range of these mid-prices is considered unknown since they are the
very values we aim to forecast.

3. Results

3.1. Historical Premiums

Figure 3 shows that KRDMA was traded at a premium relative to KRDMB for 1,171 days out of a total of
5,582 days. In 2020, the premium of KRDMA over KRDMB was the strongest when KRDMA predominantly
traded at a premium for most of that year. Conversely, KRDMD consistently saw substantial discounts relative to
both KRDMA and KRDMB. For 4,360 days, KRDMA was traded at a premium. Similarly, KRDMB was traded
at a premium status for 4,318 days. Figure 1 also demonstrates a substantial decrease in premiums paid for
KRDMA and KRDMB over KRDMD, starting from 2018. A reversion occurred starting in 2021 for KRDMD
discounts. Since 2021, both KRDMA and KRDMB have consistently been traded at a discount relative to
KRDMD.

Summary statistics of these premiums are given in Table 1. It clearly shows that substantial premiums paid for
KRDMA and KRDMB over KRDMD between 2001 and 2023. At their heights these premiums reached 235.87%
and 361.21% respectively for KRMDA and KRDMB.

Table 1. Summary Statistics of Premiums

KRDMA over KRDMB KRDMA over KRDMD KRDMB over KRDMD
Minimum -59.70% -33.08% -33.21%
1%t Quartile -19.10% 5.99% 12.98%
Median -1.71% 35.47% 57.82%
Mean -10.30% 49.44% 75.73%
3rd Quartile 0.00% 73.51% 128.13%
Maximum 57.06% 235.87% 361.21%
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Figure 3: Historical Premiums

3.2. Wavelet Coherence Analysis

This section presents the dynamic relationship between daily returns (calculated as percentage change in daily
mid-prices) of Kardemir stocks by using the wavelet coherence technique explained above.
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Figure 4: Wavelet Coherence between KRDMA and KRDMB Daily Returns

As depicted in Figure 4, the coherence between the daily returns of KRDMA and KRDMB remained consist-
ently strong throughout the analyzed period, with only a few exceptions. The first notable deviation occurred in
2006, spanning periods 64 to 128, during which there was a clear lack of coherence between the daily return
patterns of the two stocks. The second significant divergence surfaced in 2012 and persisted for over two years.
During this period, the daily returns of KRDMA and KRDMB exhibited noticeable discrepancies. It's worth high-
lighting that over this time frame, the premium of KRDMA over KRDMB reached its lowest point, showing a
substantial decline of -59.64%. Importantly, the figure also emphasizes the absence of a substantial cause-and-
effect relationship between these two series. Instead, their temporal progression displayed synchronized move-
ments, without any prominent identifiable temporal precedence or lag.
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Figure 5: Wavelet Coherence between KRDMA and KRDMD Daily Returns

Figure 5 illustrates the results of the wavelet coherence analysis applied to the relationship between KRDMA
and KRDMD. Across most of the time span, from January 2001 to July 2023, the daily returns of these two stocks
displayed significant synchronization. It's worth noting that during this period, the coherence between the two
stocks was notably strong and consistent, contributing to their aligned behavior.

Valuable insights can be derived from the coherence patterns at various time scales. Specifically, between 2003
and 2008, as well as intermittently in the first quarter of 2012 and throughout 2014, the coherence associated with
longer cycles, particularly those spanning from 64 to 128 days, was relatively weak when compared to the coher-
ence observed within shorter cycles, ranging from 8 to 16 days. This observation underscores temporal variations
in the degree of synchronization across different scales, highlighting periods of heightened and diminished shared
behavior.

Moreover, a clear absence of coherence becomes evident in the latter part of 2020 across various time cycles.
During this specific period, the synchronization between the two stocks was notably absent. What's particularly
noteworthy is that this timeframe coincided with a substantial premium of over 75% attributed to KRDMA over
KRDMD. This convergence of factors highlights the potential interplay between coherence patterns and pre-
mium fluctuations, implying intricate dynamics at play in the relationship between these stock returns during
this period.
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Figure 6: Wavelet Coherence between KRDMB and KRDMD Daily Returns

The final wavelet coherence plot, depicted as Figure 6, reveals the weakest coherence observed among Karde-
mir stock returns, specifically between KRDMB and KRDMD. Notably, the coherence between the daily returns
of KRDMB and KRDMD was particularly weak, primarily spanning the years from 2012 to 2015. This period
coincided with a time when the premium paid for KRDMB over KRDMD reached its peak, skyrocketing to an
unprecedented level of 361.21%.

Across the broader time frame spanning from January 2001 to 2012, a robust coherence pattern was evident
among the daily returns of the three Kardemir stocks across various time cycles. This robust coherence paradigm
underwent a transformation, transitioning to a less robust coherence configuration from 2012 to 2015, only to
reemerge in 2016. Another episode of coherence weakness emerged towards the latter part of 2020, encompassing
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all Kardemir stocks within shorter cycles. Typically, the highest coherence was observed between KRDMA and
KRDMB.

Furthermore, the wavelet plots emphasize the absence of a clearly discernible leading or lagging relationship
between various Kardemir stocks. Notably, instances of significant divergence in the daily mid-prices of Kardemir
stocks coincided with the absence of coherence, particularly within longer cycles. This observation suggests a
potential complex interplay between coherence dynamics and price disparities in the long-term context.

3.3. Long Short-Term Memory (LSTM) Models

This section presents the predictive performance results obtained from a total of 2,408 LSTM models. These
models were trained with the specific goal of forecasting the daily mid-prices of the last 300 observations. To
evaluate the effectiveness of dual-class stocks as predictors for each other, two sets of models are employed.

In the first set of models, the prediction models did not incorporate the historical price movements of dual
stocks as lagged variables when forecasting future mid-prices. In contrast, the second set of models was designed
to include lagged dual-class stock mid-prices as factors for predicting future mid-prices. For these lagged varia-
bles, two options are considered: using 4 lags and 9 lags of daily mid-prices. All these models were trained fol-
lowing one of the training-set rules outlined above. In summary, there are three significant distinctions among
these specifications:

Criterion 1: Inclusion of dual-class stock prices as predictors (Possible values: Yes or No).

Criterion 2: The choice of the number of lags of previous stock prices as predictors (Possible values: 4 or 9).
Criterion 3: Selection of the training set (Possible values: The first 5,282 observations, the most recent 5 observa-
tions, the most recent 10 observations, the most recent 20 observations, or the most recent 50 observations).

To evaluate and compare their predictive performance, three key metrics are employed: root mean squared
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Lower metric values
indicate better predictive performance. These statistics for all models are reported in Tables 3-5. In Table 2, the
results of t-tests based on the null hypothesis suggesting that the mean prediction error is zero are presented. The
table displays mean prediction errors and p-values (in parentheses) associated with these t-tests.

Table 2 reveals that using a fixed-range training set, as opposed to a sliding window, consistently leads to
underprediction, except for KRDMB with 4 lags and dual-class stock prices. Supporting this finding, Tables 3-5
show that the model employing a 5-day training window outperforms others across all predictive performance
metrics. This finding aligns with the thesis against extended training periods in financial data forecasting and is
consistent with prior research on investor and managerial myopia [15], [4], [8], and [50].

It's worth highlighting that the validation set, comprising the last 300 data points, coincided with a period
marked by strong coherence between the daily returns of KRDMA, KRDMB, and KRDMD. Despite this robust
coherence, the inclusion of dual stocks as predictors did not yield any noticeable additional insights into future
stock prices. In fact, there is often a modest decline in accuracy as illustrated in Tables 3-5.

4. Conclusions

In this study, a case of dual-class stock structure on Borsa Istanbul was examined. This case is marked by a
distinctive characteristic: prolonged disparities among three stocks, namely KRDMA, KRDMB, and KRDMD.
These disparities reached staggering heights, with differentials soaring as high as 361.21%. To put this into per-
spective, consider that the most significant divergence observed between GOOG and GOOGL on NASDAQ has
been approximately 5% since 2005. This stark contrast highlights that arbitrage opportunities between KRDMA,
KRDMB, and KRDMD may present greater profit potential.

Moreover, this study also sheds light on the fact that even when there exists a strong coherence between dual-
class stock prices, these prices may not necessarily serve as reliable predictors for future price movements of each
other. Lastly, the study offers substantial empirical evidence supporting the practice of favoring shorter training
periods over extended ones, contrary to the common practice of employing larger training sets with numerous
observations and lags.

Overall, these findings underscore the importance of exercising caution when choosing training sets and pre-
dictors while training LSTM models. The inclusion of additional predictors, even those strongly coherent with
the target variable, and the extension of training sets to encompass past values in financial time series have the
potential to diminish predictive performance, ultimately resulting in poor forecasting.
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Table 2. T-test Results

Lag=4

Lag=9

Training Window =5

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

KRDMA

KRDMB

KRDMD

0.020 (0.639)
0.021 (0.603)

0.026 (0.573)

0.034 (0.474)
0.030 (0.487)

0.025 (0.603)

0.025 (0.595)
0.019 (0.658)

0.030 (0.548)

0.034 (0.466)
0.015 (0.736)

0.035 (0.484)

Training Window = 10

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

KRDMA

KRDMB

KRDMD

0.038 (0.467)
0.052 (0.294)

0.048 (0.377)

0.031 (0.585)
0.027 (0.594)

0.033 (0.584)

-0.003 (0.963)
0.017 (0.764)

0.031 (0.629)

0.451 (0.049)
-0.001 (0.991)

0.008 (0.904)

Training Window = 20

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

KRDMA

KRDMB

KRDMD

0.097 (0.149)
0.087 (0.199)

0.137 (0.075)

0.139 (0.044)
0.041 (0.535)

0.050 (0.544)

0.009 (0.907)
0.121 (0.118)

0.097 (0.247)

0.064 (0.451)
0.094 (0.241)

-0.015 (0.857)

Training Window = 50

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

KRDMA

KRDMB

KRDMD

0.038 (0.655)
0.123 (0.130)

0.062 (0.461)

0.117 (0.165)
0.134 (0.105)

0.215 (0.025)

0.035 (0.710)
0.167 (0.073)

0.239 (0.014)

0.171 (0.114)
-0.022 (0.815)

0.257 (0.024)

Fixed Horizon

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

KRDMA

KRDMB

KRDMD

-0.122 (0.009)
-0.167 (<0.001)

-0.210 (<0.001)

-0.126 (0.010)
0.074 (0.099)

-0.328 (<0.001)

-0.635 (<0.001)
-0.399 (<0.001)

-0.742 (<0.001)

-0.166 (0.005)
-0.343 (<0.001)

-0.378 (<0.001)
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Table 3. KRDMA Predictive Performance Results

Lag=4

Lag=9

Training Window =5

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.7433

0.5077

3.387

0.8106

0.5466

3.6617

0.8006

0.5578

3.7375

0.8080

0.5575

3.7516

Training Window = 10

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.9027

0.6230

4.2066

0.9698

0.6745

4.5580

1.0020

0.7044

4.8132

1.1226

0.7667

5.2047

Training Window = 20

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

1.1606

0.8411

5.7301

1.1915

0.7863

5.3693

1.4265

0.9940

6.8049

1.4671

1.0660

7.3317

Training Window = 50

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

1.4709

1.1134

8.0633

1.4571

1.0881

7.7143

1.6515

1.2367

8.9525

1.8731

1.3784

9.8199

Fixed Horizon

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.8173

0.5873

3.9752

0.8510

0.6132

4.1735

1.1949

0.9246

6.3747

1.0517

0.7664

5.2103
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Table 4. KRDMB Predictive Performance Results

Lag=4

Lag=9

Training Window =5

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.6834

0.4601

3.2067

0.7567

0.4995

3.4693

0.7440

0.5047

3.5233

0.7757

0.5251

3.6607

Training Window = 10

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.8587

0.5756

4.0155

0.8917

0.6030

4.2513

1.0084

0.6862

4.8465

1.0299

0.7005

4.9389

Training Window = 20

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

1.1757

0.7796

5.4603

1.1435

0.7850

5.5653

1.3400

0.8755

6.2216

1.3932

0.9492

6.6879

Training Window = 50

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

1.4014

1.0322

7.6067

1.4328

1.0424

7.6053

1.6128

1.2265

9.0592

1.6676

1.2750

9.5743

Fixed Horizon

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.7612

0.5407

3.8301

0.7824

0.5490

3.9241

0.9884

0.7306

5.2094

0.9943

0.7220

5.0590
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Table 5. KRDMD Predictive Performance Results

Lag=4

Lag=9

Training Window =5

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.7910

0.5608

3.4491

0.8321

0.5811

3.5723

0.8596

0.6050

3.7123

0.8564

0.6117

3.7537

Training Window = 10

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.9408

0.6584

4.0577

1.0293

0.7155

4.4043

1.1151

0.7678

4.7642

1.1721

0.8209

5.0716

Training Window = 20

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

1.3288

0.9194

5.6409

1.4243

1.0142

6.3443

1.4513

1.0385

6.4796

1.4485

1.0465

6.5548

Training Window = 50

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

1.4489

1.1061

7.1237

1.6598

1.2782

8.1918

1.6948

1.2880

8.1252

1.9712

1.5104

9.7193

Fixed Horizon

Dual-Stock = No

Dual-Stock = Yes

Dual-Stock = No

Dual-Stock = Yes

RMSE

MAE

MAPE

0.8730

0.6322

3.9094

0.9280

0.6894

4.2723

1.2142

0.9765

6.3353

1.1088

0.8100

5.0450
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