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Abstract 

 

The data extracted from various fields inherently consists of extremely correlated measurements in parallel with the exponential 

increase in the size of the data that need to be interpreted owing to the technological advances. This problem, called the 

multicollinearity, influences the performance of both statistical and machine learning algorithms. Statistical models proposed as 

a potential remedy to this problem have not been sufficiently evaluated in the literature. Therefore, a comprehensive comparison 

of statistical and machine learning models is required for addressing the multicollinearity problem. Statistical models (including 

Ridge, Liu, Lasso and Elastic Net regression) and the eight most important machine learning algorithms (including Cart, Knn, 

Mlp, MARS, Cubist, Svm, Bagging and XGBoost) are comprehensively compared by using two different healthcare datasets 

(including Body Fat and Cancer) having multicollinearity problem. The performance of the models is assessed through cross 

validation methods via root mean square error, mean absolute error and r-squared criteria. The results of the study revealed that 

statistical models outperformed machine learning models in terms of root mean square error, mean absolute error and r-squared 

criteria in both training and testing performance. Particularly the Liu regression often achieved better relative performance (up 

to 7.60% to 46.08% for Body Fat data set and up to 1.55% to 21.53% for Cancer data set on training performance and up to 

1.56% to 38.08% for Body Fat data set and up to 3.50% to 23.29% for Cancer data set on testing performance) among regression 

methods as well as compared to machine algorithms. Liu regression is mostly disregarded in the machine learning literature, but 

since it outperforms the most powerful and widely used machine learning algorithms, it appears to be a promising tool in almost 

all fields, especially for regression-based studies including data with multicollinearity problem. 
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1.  INTRODUCTION 

Mathematical modeling mainly involves the processes of 

prediction and inference using a set of explanatory variables 

(i.e. attributes) that are considered to have an effect on a 

particular (i.e. target) variable. Facilitated by technological 

advances, the data collection process has significantly 

increased the scale of the variables. There have emerged 

highly correlated measurements that are assessed in almost 

every field, especially in areas such as health, marketing and 

finance [1]. In big databases containing thousands of 

variables, it is inevitable that complex patterns of 

relationships between variables will be discovered. The 

relationship is considered reasonable to a certain extent, but 

if it is extreme, a phenomenon known in the statistical 

literature as multicollinearity (i.e. collinearity) arises [2]. 

The multicollinearity problem stands out as a problem that is 

encountered quite frequently in the increasing data size with 

the ease of data collection in real life problems but is 

generally under-emphasized [3]. However, mathematically, 

this problem causes both statistical and machine learning 

models to often yield inaccurate inferences and poor 

predictions (i.e. generalization ability). 

The approaches to multicollinearity problem have differed in 

the statistics and machine learning literatures. In the statistics 

literature, the focus has been on variable selection by 

stepwise methods or theoretically modification of the 

classical ordinary least squares (OLS) estimator (like ridge, 

Liu estimator) by adding a penalty term to it [3]. In the field 

of machine learning, particularly in the field of artificial 

neural networks, models have been proposed with the 

assumption that they are not affected by multicollinearity 

due to the complex architecture [3, 4]. In the literature, the 

ridge estimator has received considerable attention in 

comparisons, while its alternative, the Liu estimator, has 

been relatively ignored. Therefore, there is a lack of a 

comprehensive comparison between machine learning 

methods and Liu regression. 
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In this study, we have compared the widely known models 

in the statistics literature (including Liu regression) with the 

most important machine learning models in the 

multicollinearity problem and aimed to contribute the 

following insights to the literature: (i) In addition to the 

widely known ridge, lasso and elastic net regression models, 

the Liu regression model is also considered in this study,  (ii) 

it has been shown that statistical models can provide more 

effective results than complex machine learning models, (iii) 

the problem of multicollinearity has been demonstrated to be 

a problem that should not be ignored and can severely affect 

the performance of even the most powerful models. 

The general layout of the study is as follows: 

Section 2 presents the related studies on the subject. The 

problem of multicollinearity and possible diagnostic 

approaches are discussed in Section 3. The details about the 

models used in the study are explained in Section 4. The 

modelling process and experimental settings are covered in 

Section 5. The benchmarking results are reported in Section 

6. A summary of the conclusions from the study is outlined 

in Section 7. 

2.  RELATED WORKS 

In the context of multicollinearity, one of the first 

contributions in the statistical literature was made by James 

and Stein [5, 6], who proposed the Stein estimator based on 

equal shrinkage of the coefficients in the classical OLS 

model. Although this study is the foundation of shrinkage 

estimators, alternative estimators were required due to equal 

proportion shrinkage and the inability to handle coefficients 

with opposite sign. The most noteworthy contribution to this 

issue was presented by Hoerl and Kennard [7] by proposing 

the ridge estimator, which is based on shrinking towards zero 

instead of excluding correlated variables from the model by 

adding a penalty term to the classical OLS estimator. Since 

the choice of k in the Ridge estimator is quadratic and 

complex and that the Stein estimator shrinks all coefficients 

equally, there have been some disadvantages. Therefore, Liu 

[8] proposed the Liu estimator, which combines the Ridge 

and Stein estimator which is like Ridge but includes a 

penalty term in linear form as well as the Stein estimator 

properties. Stein, ridge and Liu estimators address the 

multicollinearity problem to a certain extent by shrinking the 

coefficients, but they do not have the ability to perform 

variable selection. The Least Absolute Shrinkage Selection 

Operator (Lasso), an alternative estimator that utilizes this 

capability, was proposed by Tibshirani [9]. The Lasso 

estimator can directly shrink variables to zero instead of 

shrinking them individually by keeping them in the model 

and thus making variable selection. To deal with the 

shortcomings of Lasso in the case of high dimensional and 

severe collinearity, Zou and Hastie [10] proposed a new 

estimator called elastic net, which is based on a process that 

incorporates both Ridge and Lasso simultaneously. 

The studies in the field of machine learning have mainly 

developed within the framework of models based on 

artificial neural networks. Garg and Tai [4] proposed a model 

called FA-ANN based on factor analysis and artificial neural 

networks to deal with multicollinearity. Li and Niu [11] 

introduced a new model called R-ELM for multicollinearity 

by incorporating ridge regression into the algorithm of an 

extreme learning machine which is a kind of a feed-forward 

neural network. Panduro and Torsen [12] suggested a two-

stage model consisting of principal component analysis and 

stepwise regression models to overcome the problem of 

multicollinearity. Dumancas and Bello [13] compared 

correlated lipid profile data with twelve different machine 

learning methods (including ridge, lasso, elastic net, extreme 

gradient boosting, support vector machines etc.). Kilinc et al. 

[14] conducted a simulation study comparing genetic 

algorithm and multivariate adaptive splines models as 

variable selection methods in the presence of 

multicollinearity. A novel approach of feature selection 

based on the idea of feature filters has been carried out by 

Katrutsa and Strijov [15], enabling feature selection without 

regard to the prediction model. A CNN-based approach has 

been proposed by Hoseinzade and Haratizadeh [16] to model 

the correlation between various features in stock market data. 

Kim et al. [17] presented a combination of principal 

component analysis and artificial neural networks for 

correlated and high dimensional data. Obite et al. [18] have 

compared artificial neural networks and classical least 

squares models by using real and simulated datasets. Hua 

[19] proposed a approach of efficient data preprocessing 

with undersampling and embedded feature selection to 

address the imbalance of traffic samples and derive the 

leading features of incoming flows. Qaraad [20] introduced 

a hybrid optimization model for Cancer Classification to 

regularize and select the most informative subset of variables 

in a high-dimensional domain. Bi et al. [21] proposed a 

heterogeneous phoneme identification system including 

partial least squares and support vector machines to improve 

the diagnostic tasks for phoneme pronunciation for 

correlation data. Abubakar et al. [22] performed a simulation 

study and compared multiple regression, ridge regression, 

stepwise regression and partial least squares regression 

methods on a multicorrelated data. Mahadi et al. [23] 

introduced a new and efficient technique utilizing the 

recursive least squares (RLS) algorithms with a time-varying 

regularization parameter to ensure robustness and improve 

performance. Kaneko [24] presented a new criterion, called 

cross-validated permutation feature importance, to assess the 

feature importance ability of a machine learning model, 

particularly in the presence of multicollinearity issues. Genç 

[25] proposed a new regularized extreme learning machine 

(ELM) algorithm, square-root lasso ELM (SQRTL-ELM), to 

deal with the shortcomings of the extreme learning machine, 

including the instability, weak generalizability, and over-

fitting in the case of multicollinearity. 

3.  OVERVIEW OF THE MULTICOLLINEARITY 

Multicollinearity refers to the near-linear dependencies 

among the explanatory (i.e. attribute) variables in a 

regression task. The reasons of this issue can be given as: (i) 

Data collection method, (ii) Constraints on model or 

population, (iii) Model identification errors and (iv) An over-

defined model [26]. 
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3.1.  The Consequences of Multicollinearity 

Multicollinearity can cause many serious problems, both 

theoretical and practical views [26, 27]. Montgomery et al. 

presented these problem as follows. 

 

i. The regression model yields coefficients with larger 

variances and covariances. 

ii. The absolute value of the coefficients can be 

obtained as larger. 

iii. Although there are exceptions, the model can often 

produce poorer predictions. 

3.2.  Multicollinearity Diagnostics 

In the literature, various approaches have been proposed to 

detect the multicollinearity. These approaches are mainly 

based on the information of the data structure. This 

information is extracted by calculating the 𝑿′𝑿 matrix which 

essentially represents the correlation matrix. The off-

diagonal elements of 𝑿′𝑿 matrix can provide us useful 

insights about the correlation level of explanatory variables. 

The common approaches based on this matrix are given as 

follows [26, 28]: 

3.2.1.  Calculation the Correlation Matrix 

For a given 𝑿 data matrix, the correlation matrix is obtained 

as follows: 

𝒓 = 𝑿′𝑿     ,     𝑟𝑖𝑗 ≠ 0                                                        (1) 

where 𝑟𝑖𝑗  represents to the off-diagonal elements of the 

matrix. If 𝑟𝑖𝑗  exceeds a threshold (usually 0.70), this means 

that the corresponding variables have highly correlated each 

other. It may be insufficient to define multicollinearity due 

to treating variables as pair. 

3.2.2.  Variance Inflation Factor 

Variance inflation factor (VIF) is based on the inverse of 𝑿′𝑿 

matrix. The off-diagonal elements of this inverse matrix 

provide a more useful and powerful information about the 

multicollinearity level and calculated as follows: 

𝑉𝐼𝐹𝑗 = 𝐶𝑖𝑗 = (1 − 𝑅𝑗
2)

−1
                                                  (2) 

where 𝑅𝑗
2 is the coefficient of determination calculated via 

the regression of 𝑥𝑗 over the remain 𝑝 − 1 variables. As the 

value of VIF depending on each variable increases, the 

severity of the multicollinearity increases. As a common 

practice, VIF values exceeding 5 or 10 provide strong 

evidence of a poor model in terms of generalization and 

estimation abilities [26]. 

3.2.3.  Eigenvalues Analysis 

The eigenvalues analysis is an alternative and beneficial 

approach to VIF or correlation-based approaches. It is 

mainly based on the decomposition the 𝑿′𝑿 matrix into two-

different matrix including the eigenvalues and eigenvectors. 

This decomposition is defined as: 

𝑿′𝑿 = 𝑻𝜦𝑻′                                                                       (3) 

where 𝜦𝒑𝒙𝒑 is the diagonal matrix, whose diagonal elements 

correspond to the eigenvalues (𝜆𝑖 , 𝑖 = 1,2, … , 𝑝) of 𝑿′𝑿 

matrix and 𝑻𝒑𝒙𝒑 is the orthogonal matrix whose columns 

correspond to the eigenvectors of 𝑿′𝑿 matrix. The presence 

of small-valued eigenvalues may be evidence of the 

existence of multicollinearity between the columns of the 

data. Instead of focusing each eigenvalue, condition number 

(CN) which is basically a representation of the spread of 

eigenvalues is commonly used and calculated as follows: 

𝐶𝑁 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
                                                                         (4) 

where 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 correspond to the maximum and 

minimum eigenvalues obtained via 𝑻𝜦𝑻′ eigen 

decomposition, respectively. For further details on this 

decomposition, please refer to Strang [29]. 

As a common practice, where a 𝐶𝑁 exceeding 1000 provides 

evidence for the existence of a severe multicollinearity, 

100 <  𝐶𝑁 <  1000 shows strong multicollinearity among 

the columns (i.e. variables) of data matrix [26]. 

3.3.  Solutions to Multicollinearity 

Various methods have been proposed in the literature to deal 

with the multicollinearity. Although the first recommended 

approach is to collect additional data, this may not always be 

possible due to the economic reasons or being impossible. 

The second is to use alternative approaches (like ridge, liu, 

lasso and elastic net regression) that do not rely on the 

calculation of least squares. Third, it is to redefine the model 

by creating new or groups of variables depending on the 

multi-correlated variables [26]. Finally, various pre-

processing methods including centering, scaling, 

normalization, and standardization are applied as more 

common approaches for multicollinearity or other problems 

(like outliers) in the field of machine learning.  For this study, 

we will focus on alternative models (like ridge, liu, lasso and 

elastic net regression). 

4.  THE OVERVIEW OF MODELS 

4.1.  Regression Models 

Regression analysis is one of the major areas in machine 

learning and has been widely used for different learning tasks 

in various disciplines due to some superior properties like 

simplicity, interpretability and easy integrability. In a 

classical linear regression model can be expressed in a matrix 

notation as 

𝒚 = 𝑿𝜷 + 𝜺       ,      𝑖 = 1,2, … , 𝑛                                      (5) 

where 𝒚 is an (𝑛 × 1) vector of the response variable, 𝑿 is 

an (𝑛 × 𝑝) matrix of explanatory variables, 𝜷 is a (𝑝 × 1) 
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vector of coefficients to be estimated and 𝜺 is a (𝑛 × 1) 

vector of random errors. 

The �̂� via OLS estimator can be obtained by using simple 

algebra as 

�̂�𝑂𝐿𝑆 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚                                                        (6) 

The ridge estimator, which is the most well-known and used 

in machine learning and data-oriented studies as an 

alternative to the OLS estimator, is proposed by Hoerl and 

Kennard [7] is defined as follows: 

�̂�𝑅 = (𝑿𝑇𝑿 + 𝑘𝑰𝑝)
−1

𝑿𝑇𝒚      ,     𝑘 ≥ 0                            (7) 

where 𝑘 is called as ridge tuning parameter and 𝐼𝑝 shows the 

identity matrix of dimension 𝑝. Ridge estimator deals with 

the multicollinearity problem by adding a small positive term 

(𝑘) to the diagonal elements of 𝑿𝑇𝑿 matrix. For a positive 

optimal 𝑘 value, the ridge estimator may provide better 

results than ordinary least squares. In short, ridge estimator 

improves OLS in terms of prediction accuracy and stability 

of coefficients for a certain amount of increasing on the bias. 

Liu estimator was proposed by Liu [8] as an alternative to 

the ridge-type estimator to deal with multicollinearity. 

Although the idea behind the Liu estimator is similar in terms 

of shrinking the estimated with a small constant (i.e. Liu 

tuning parameter), the form of Liu tuning parameter in Liu 

estimator has a linear form, unlike the non-linear form in 

ridge estimator. The result of this situation is to be able to 

calculate easier and faster the Liu tuning parameter than the 

ridge tuning parameter. Another advantage of the Liu 

estimator over the ridge estimator is to be able to select the 

appropriate tuning parameter. The general form of the Liu 

estimator is given as 

�̂�𝐿𝑖𝑢
(𝑑)

= (𝑿𝑇𝑿 + 𝑰𝑝)
−1

(𝑿𝑇𝒚 + 𝑑�̂�)   , 0 < 𝑑 < 1            (8) 

where 𝑑 refers to the Liu tuning parameter and �̂� is the OLS 

estimator. 

The least absolute shrinkage and selection operator (Lasso) 

is proposed by Tibshirani [9] in order to obtain a more 

predictive and sparse solution than OLS and ridge by 

carrying out variable selection. Lasso estimator is defined as 

�̂�𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜷

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 𝛽𝑗)

2𝑁
𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      ∑ |𝛽𝑗|
𝑝
𝑗=1 ≤ 𝑡

             (9) 

where 𝑡 corresponds to the bound on the sum of the absolute 

values of coefficients and corresponding the upper limit of 

maximum size for expanding. 

�̂�𝐿𝑎𝑠𝑠𝑜 can be also written in Lagrangian form as: 

�̂�𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜷

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 𝛽𝑗)

2𝑁
𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑝

𝑗=1     (10) 

where 𝜆 is the Lagrangian multiplier. 

Zou and Hastie [10] proposed the elastic net as a 

regularization and variable selection method. In the elastic 

net, the superiorities of both ridge and Lasso methods have 

been used in a unified model. Thus, an effective variable 

selection process can be carried out by considering the 

grouping effect (the relationships between variables). The 

naive elastic net estimator proposed by Zou and Hastie [8] is 

defined on a standardized data set as follows: 

�̂�𝐸𝑁𝑒𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜷

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 𝛽𝑗)

2𝑁
𝑖=1 + 𝜆1 ∑ |𝛽𝑗|

𝑝
𝑗=1 + 𝜆2 ∑ 𝛽𝑗

2𝑝
𝑗=1     (11) 

where 𝜆1 and 𝜆2 are the non-negative constants 

corresponding to the size of the 𝐿1 norm of the coefficients 

and the size of 𝐿2 norm of the coefficients, respectively. The 

solution can be written as a constrained form of the 

optimization problem as 

�̂�𝐸𝑁𝑒𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜷

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 𝛽𝑗)

2𝑁
𝑖=1           

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    [(1 − 𝛼) ∑ |𝛽𝑗|
𝑝
𝑗=1 + 𝛼 ∑ 𝛽𝑗

2𝑝
𝑗=1 ] ≤ 𝑡

   (12) 

where 𝛼 ∈ [0,1] and determines the closeness of the solution 

of the ridge or lasso estimators. For 𝛼 = 1, the solution is 

equivalent to the ridge solution, and with 𝛼 = 0, the solution 

is reduced to the lasso solution. 

4.2.  Machine Learning Models 

The machine learning models evaluated in this study can be 

divided into three subgroups: (i) Tree-based (CART, 

Bagging, Random Forests, Extreme Gradient Boosting), (ii) 

Kernel-based (Support Vector Machines), (iii) Instance-

based (KNN), (iv) Splines-based (Cubist, MARS) and (v) 

Neural Networks-Based (Multilayer Perceptron). This 

section presents the main characteristics of each of these 

algorithms. 

4.3.  K-Nearest Neighbor (KNN) 

K-Nearest Neighbors [30, 31] regression is a popular non-

parametric supervised machine learning approach used for 

predicting continuous target variable based on the similarity 

of data points in a feature (i.e. attributes) space. It is based 

on identifying the k nearest neighbors to a given point and 

averaging the values of these neighbors to determine the 

prediction value of that point. This procedure can inherently 

be adapted easily to both classification and regression tasks. 

KNN regression requires the selection of the distance metric 

and the hyperparameter k (number of neighbors) which are 

generally found via cross-validation techniques. The local 

neighborhood of data points in the feature space is 

considered by the algorithm in an effort to minimize 

prediction error. 

4.4.  Support Vector Machines (SVM) 

Support Vector Machines [32, 33] regression is a robust and 

flexible machine learning technique and has a goal to 

discover a hyperplane that maximizes the distance between 

the data points and the regression line. It performs this 

maximization step with observations called support vectors, 
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which represent a very small subset of observations. SVM 

assumes a hyperplane as follows: 

𝑓(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏                                                           (13) 

where 𝑓(𝑥) corresponds to the target, 𝑤 for the weight vector 

determining the direction of the hyperplane, 𝑥 for the feature 

vector and 𝑏 is the bias term used for the location of 

hyperplane. The objective function is defined as: 

min
𝑤,𝑏,ϵ

 
1

2
||𝑤||

2
+ 𝐶 ∑ ϵ𝑖

𝑛
𝑖=1                                                  (14) 

with subject to the constraints: 

𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ ϵ𝑖     , ϵ𝑖 ≥ 0    ,   𝑖 = 1, … , 𝑛             (15) 

The trade-off between maximizing the margin and 

minimizing the error is determined by the hyperparameter C. 

SVM also gives the capability to explore possible non-linear 

relationships by transforming the data into a higher 

dimensional space with various functions called kernel 

functions (linear, polynomial, radial basis etc.). 

4.5.  Classification and Regression Trees (CART) 

The Classification and Regression Trees [34] algorithm is 

well-known and fundamental machine learning algorithm 

that is a member of the decision tree family. In the context of 

regression, CART builds a binary tree structure where each 

internal node indicates an evaluation based on a particular 

attribute and each leaf node provides a prediction for the 

target variable. 

The objective of CART regression is to split the feature space 

in such a way that the resulting tree minimizes the sum of 

squared differences between the predicted and actual target 

values. This recursive partitioning procedure is carried out 

until predefined stopping requirements have been met, such 

as a maximum tree depth or a specified number of data points 

in each leaf node. 

4.6.  Bagging 

Bootstrap aggregation [35], often known as bagging, is an 

ensemble learning technique that seeks to enhance the 

prediction performance and robustness of regression models 

by the combination of numerous base models. Using 

bootstrapped subsets of the original training data, a set of 

separate and independently trained regression models—

often decision trees (i.e. CART) or linear regressors—is built 

in bagging regression. These subsets are generated through 

random sampling with replacement, allowing certain data 

points to be included more than once while leaving out 

others. The predictions of these basis models are then 

combined to provide the final prediction. Each base model is 

trained on one specific subset. 

4.7.  Random Forests (RF) 

The concept of bagging is extended to decision trees by the 

efficient ensemble learning technique known as Random 

Forests [36]. Random Forests employs a group of decision 

tree regressors in the context of regression to generate 

accurate predictions. Similar to Bagging, multiple decision 

trees are built independently on bootstrapped subsets of the 

training data. Different from the bagging, only a random 

subset of attributes is taken into consideration for splitting at 

each split node of a tree. The final regression prediction is 

calculated by averaging the predictions of all the individual 

and decorrelated trees. 

The strength of random forests regression algorithm appears 

in its ability to combine the interpretability of decision trees 

with the predictive power of ensemble learning. Each 

decision tree in the ensemble discovers a certain amount of 

the patterns in the data, and the predictions from every single 

tree collectively generate a more precise and stable 

prediction for the target variable. 

4.8.  Extreme Gradient Boosting (XGBoost) 

The XGBoost [37] is a fundamental and state-of-the-art 

machine learning algorithms which can be used for both 

regression and classification tasks. It builds an ensemble of 

decision trees in a sequential manner (referring to the 

boosting), with each new tree being built to address the errors 

of the previous trees. Gradient descent optimization is 

employed to minimize the specific loss function (such as 

mean squared error) in each tree. 

In order to improve model performance and training 

effectiveness, XGBoost incorporates a variety of novel 

strategies, such as a regularized objective function weighted 

quantile sketching and optimal feature splitting. With the 

comprehensive flexibility, XGBoost allows over 

hyperparameters, practitioners can customize the model's 

performance to achieve more versatile, robust and scalable 

results. 

4.9.  Cubist 

The Cubist [38-40] algorithm for regression is a cutting-edge 

and effective algorithm that does exceptionally in capturing 

complex non-linear relationships in data while providing 

interpretability models. It integrates components of rule-

based modeling and regression trees to produce a hybrid 

ensemble of regression model. It utilizes an innovative 

approach through the development of several models 

(including linear regressions, decision trees or rule-based 

learners), each of which focuses on various aspects of the 

structure of the data. In this way, Cubist stands out as a 

practical tool due to its interpretability and accurate 

predictions. 

4.10. The Multivariate Adaptive Regression Splines 

(MARS) 

MARS [41] is based on generating the piecewise-linear 

models via the elements of linear regression and decision 

trees. By splitting the input space into pieces and fitting 

linear models within each piece, MARS models have the 

ability to capture non-linear relationships. The approach can 

adaptively build the complexity of the model according to 

the data by selecting appropriate features and generating 
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basis functions via a forward and backward stepwise 

procedure. These features enhance the algorithm's ability to 

deal with noisy outliers and outliers and to capture 

interactions between attributes. 

4.11. Multilayer Perceptron (MLP) 

The MLP [42] algorithm is an artificial neural network 

architecture extending the principles of feedforward neural 

networks to capture complex relationships between input 

features and target variable. Each layer is in capable of 

handling and modifying the input data, and it is constructed 

up of several interconnected layers of artificial neurons. In 

order to minimize the difference between the predicted and 

actual target values, the network learns the ability to adjust 

its internal parameters, such as weights and biases, during 

training. 

5.  EXPERIMENTEL PROCESS AND SETTINGS 

5.1.  Data Description 

In the study, two different datasets (Body Fat and Cancer) 

are utilized for the model comparison. The Body Fat set 

originally shared by Johnson [43] and downloaded a 

commonly used database [44] for machine learning studies. 

The data set includes thirteen anthropometric measurements 

as explanatory variables and body fat percentage as the 

response variable belong to 252 individuals. Cancer data was 

retrieved from a publicly available database [45] to estimate 

the percentage of mortality due to cancer based on ten 

different variables belonging to 3047 individuals. 

The datasets are investigated for multicollinearity by using 

the diagnostic methods presented in Section 3 and results are 

given in Tables 1-2. According to the results of Body Fat 

data, it can be said that there is a problem of multicollinearity 

in the data due to the presence of variables (weight, abdomen 

and hip) below the tolerance value of 0.1 and above the VIF 

value of 5. In addition, the condition value (CN:527.95) 

corresponds to a strong level of multicollinearity. Likewise, 

a similar interpretation can be drawn for the Cancer data as 

the condition number is 1265.84 and the VIF values 

calculated for some variables (such as avgAnnCount, 

popEst2015, PercentMarried) is greater than 5. The 

correlation analysis results given in Figures 1-2 also support 

the findings that there are high relationships between the 

variables. 

Table 1. The results of multi-collinearity diagnostics of the Body Fat data 

Variables Tolerance VIF Symbol Eigenvalue Condition Index CN 

Age 0.4444 2.2505 𝜆1 0.0732 13.7779 527.9409 

Weight 0.0298 33.5093 𝜆2 0.0206 25.9354  

Height 0.5972 1.6746 𝜆3 0.0038 60.3083  

Neck 0.2312 4.3245 𝜆4 0.0031 66.8449  

Chest 0.1057 9.4609 𝜆5 0.0026 73.0770  

Abdomen 0.0850 11.7671 𝜆6 0.0020 82.5060  

Hip 0.0676 14.7965 𝜆7 0.0016 93.7259  

Thigh 0.1286 7.7779 𝜆8 0.0012 107.3558  

Knee 0.2168 4.6121 𝜆9 0.0008 134.3121  

Ankle 0.5241 1.9080 𝜆10 0.0006 148.5825  

Biceps 0.2763 3.6197 𝜆11 0.0006 155.0220  

Forearm 0.4561 2.1925 𝜆12 0.0005 172.3598  

Wrist 0.2961 3.3775 𝜆13 0.0001 316.5741  

 

Table 2. The results of multi-collinearity diagnostics of the Cancer data 

Variables Tolerance VIF Symbol Eigenvalue Condition Index CN 

avgAnnCount 0.129 7.73 𝜆1 1.6456 2.2701 1265.8461 

incidenceRate 0.935 1.07 𝜆2 0.4700 4.2478  

medianIncome 0.276 3.63 𝜆3 0.1823 6.8209  

popEst2015 0.130 7.71 𝜆4 0.0973 9.3374  

povertyPercent 0.208 4.81 𝜆5 0.0623 11.6623  

MedianAge 0.993 1.01 𝜆6 0.0262 17.9836  

AvgHouseholdSize 0.809 1.24 𝜆7 0.0204 20.4101  

PercentMarried 0.161 6.20 𝜆8 0.0124 26.1204  

PctMarriedHouseholds 0.186 5.39 𝜆9 0.0022 61.5450  

BirthRate 0.944 1.06 𝜆10 0.0013 81.0914  
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Figure 1. The correlation values between attributes for Body 

Fat data 

 

 
Figure 2. The correlation values between attributes for 

Cancer data 

5.2.  Performance Metrics 

In regressional studies of machine learning, the most 

common performance metrics can be given as (i) Root mean 

squared error, (ii) Mean absolute error and (iii) R square (the 

coefficient of determination). Each of this metric is 

calculated based on the difference between the target value 
(𝑡𝑖) and the predicted value (𝑦𝑖) by the model as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑡𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                                             (16) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑡𝑖 − 𝑦𝑖|𝑛

𝑖=1                                                     (17) 

𝑅2 = 1 −
∑ (𝑡𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑡𝑖−𝑡̅)2𝑛
𝑖=1

                                                        (18) 

Among these metrics, while lower value of RMSE or MAE 

indicates a better model, higher values of 𝑅2 provides a more 

explainable model. Due to the nature of the mathematical 

definition, the range of RMSE or MAE is [0, ∞] and [0, 1] 
for 𝑅2. 

5.3.  Preprocessing and Parameter Tuning 

In the study, the data were preprocessed before performing 

an analysis. Initially, the data was centered to smooth out the 

high variability in the data structure. The data set is split into 

approximately seventy five percent as training data and 

twenty-five percent as test data. Statistical and machine 

learning models were built on the training data and the 

generalization performance was measured on the test data. 

During the training of the models, five-times ten-fold cross 

validation technique was used. The training performance of 

the models was calculated separately for each of the cross-

validation data and the overall average was computed. A grid 

search space of twenty parameters was utilized to determine 

the model parameters. The details of parameters are given in 

Table 3. Each possible combination of parameters was 

trained by cross validating the models and the models with 

the best parameters were extracted. The performance 

(RMSE, MAE and R-Square values) of each model on the 

test data was calculated using the optimum parameter values. 

Table 3. The ranges of parameters corresponding to each 

model 

Model Range of Parameters 

CART cost-complexity: [-10, -1] 

min_n: [2, 40] 

Cubist committees: [1, 100] 

neighbors: [0, 9] 

Elastic Net penalty: [-10, 0] 

KNN neighbors: [1, 15] 

dist_power: [0.1, 2] 

Lasso penalty: [-10, 0] 

Liu d: [0, 1] 

MARS prod_degree: [1, 2] 

MLP hidden_units: [1, 10] 

penalty: [-10, 0] 

epochs: [10, 1000] 

RF mtry: [1, 13] 

min_n: [2, 40] 

Ridge penalty: [-10, 0] 

SVM (Poly) cost: [-10, 5] 

degree: [1, 3] 

SVM (Radial) cost: [-10, 5] 

rbf_sigma: [-10, 0] 

XGBoost trees: [1, 2000] 

min_n: [2, 40] 

tree_depth: [1, 15] 

learn_rate: [-3, -0.5] 

loss_reduction: [-10, 1.5] 

sample_size: [0.1, 1] 
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Table 4. Performance comparisons of models corresponding 

to the train data set 

Model Data RMSE Mae 𝐑𝟐 

Bagging (CART) Body Fat 4.672 3.956 0.683 

 Cancer 8.176 6.144 0.458 

CART Body Fat 5.343 4.357 0.643 

 Cancer 8.987 6.807 0.370 

Cubist Body Fat 4.525 3.795 0.763 

 Cancer 8.095 6.118 0.468 

Elastic Net Body Fat 4.446 3.694 0.773 

 Cancer 8.360 6.388 0.444 

KNN Body Fat 5.072 4.169 0.689 

 Cancer 8.427 6.360 0.427 

Lasso Body Fat 4.451 3.677 0.773 

 Cancer 8.374 6.409 0.431 

Liu Body Fat 4.111 3.398 0.818 

 Cancer 7.825 6.007 0.512 

MARS Body Fat 4.423 3.506 0.715 

 Cancer 8.138 6.093 0.463 

MLP Body Fat 6.005 4.814 0.500 

 Cancer 9.971 7.634 0.182 

RF Body Fat 4.640 3.846 0.735 

 Cancer 8.010 6.018 0.482 

Ridge Body Fat 4.668 3.756 0.686 

 Cancer 8.373 6.413 0.431 

SVM (Poly) Body Fat 4.599 3.832 0.760 

 Cancer 8.252 6.159 0.447 

SVM (Radial) Body Fat 4.668 3.664 0.699 

 Cancer 8.467 6.458 0.429 

XGBoost Body Fat 4.736 3.901 0.725 

 Cancer 7.949 5.966 0.488 

Table 5. Performance comparisons of models corresponding 

to the testing data set 

Model Data RMSE Mae 𝐑𝟐 

Bagging (CART) Body Fat 4.690 3.861 0.730 

 Cancer 8.372 6.227 0.437 

CART Body Fat 5.855 4.942 0.547 

 Cancer 9.037 6.892 0.363 

Cubist Body Fat 4.708 3.834 0.680 

 Cancer 8.530 6.328 0.421 

Elastic Net Body Fat 4.530 3.569 0.701 

 Cancer 9.000 6.668 0.364 

KNN Body Fat 5.071 4.251 0.634 

 Cancer 8.611 6.501 0.406 

Lasso Body Fat 4.511 3.547 0.704 

 Cancer 8.999 6.670 0.363 

Liu Body Fat 4.442 3.581 0.789 

 Cancer 7.968 6.174 0.432 

MARS Body Fat 4.895 3.969 0.722 

 Cancer 8.586 6.340 0.417 

MLP Body Fat 6.134 4.956 0.545 

 Cancer 10.386 7.875 0.135 

RF Body Fat 4.6325 3.912 0.689 

 Cancer 8.257 6.182 0.452 

Ridge Body Fat 4.689 3.816 0.750 

 Cancer 8.971 6.664 0.363 

SVM (Poly) Body Fat 4.708 3.849 0.680 

 Cancer 8.808 6.667 0.380 

SVM (Radial) Body Fat 4.782 3.939 0.725 

 Cancer 9.160 6.513 0.342 

XGBoost Body Fat 4.9579 4.006 0.661 

 Cancer 8.340 6.188 0.443 

 
Figure 3. The visual representation of testing RMSE results for Body Fat and Cancer data sets 

Hasan Yıldırım

The Multicollinearity Effect on the Performance of Machine Learning Algorithms: Case Examples in Healthcare Modelling

Academic Platform Journal of Engineering and Smart Systems (APJESS) 12(3), 68-80, 2024 75



 

 

 
Figure 4. The visual representation of testing MAE results for Body Fat and Cancer data sets 

 

 
Figure 5. The visual representation of testing R-squared results for Body Fat and Cancer data sets 

 

6.  RESULTS 

This section presents the results of thirteen different models 

including statistical and machine learning models. The 

comparison results of these models for two datasets are given 

in Table 4 for training data and Table 5 for test data. A visual 

representation of the performance values corresponding to 

the test data is given in Figures 3-5. 

When the training performances of the models are evaluated 

for Body Fat data, the Liu regression model corresponding 

to the optimal parameter found as 𝑑 = 0.78 (RMSE=4.111, 

MAE=3.398 and R-square=0.818) performed the best in 

each of the three performance criteria for this type of data 

set. In general, statistical models tend to perform better than 

machine learning models. The MLP, KNN and CART 

models showed the poorest performances, respectively. 
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Regarding the training performances for cancer data, Liu 

regression stands out in the RMSE (7.825) and R-square 

(0.512) criteria with 𝑑 = 0.86 parameter value, while 

XGBoost is the best algorithm in the MAE (5.966) criterion. 

MLP and CART methods perform the weakest. 

According to the test results, regression model was found to 

be the best model based on RMSE (4.442) and R-square 

(0.789) values, while Lasso regression model in the MAE 

(3.547) criterion. Liu, Lasso and Elastic Net regression 

models performed relatively close to each other but better 

than the remaining algorithms. Similar to the training 

performance, CART, KNN and MLP models showed weaker 

performance on the test data. Liu regression is superior to 

other algorithms in RMSE (7.968) and MAE (6.174) criteria 

in cancer data, whereas Random Forest algorithm has more 

generalizable performance with respect to R-square (0.452) 

value only. The SVM (with Radial kernel) and MLP 

algorithms were found to be the relatively weakest 

algorithms in the test performances. 

 
Figure 6. The scatter plot of observed and predicted value 

based on Liu regression testing results for Body Fat data 

 

 
Figure 7. The scatter plot of observed and predicted value 

based on Liu regression testing results for Cancer data 

The scatter plot generated to assess the fit between the 

predicted values of the Liu regression model and the actual 

response values is presented in Figure 6. According to this 

plot, it can be stated that the model predicts the actual 

response sufficiently well and provides values that are close 

to the actual values. The scatter plot provided in Figure 7 for 

cancer data confirms the similar interpretation and indicates 

that there is a strong fit between actual mortality rates and 

model predictions. 

In the literature, it can be noted that the studies conducted on 

the body fat data are mainly along two directions: (i) Only 

statistics-oriented studies [46-47] and (ii) Studies based on a 

subset or different set of the data [48-51]. 

However, the results of the study reveal encouraging 

findings compared to the directly relevant studies in the 

literature. In the study conducted by Uçar et al. [52], our 

study produced better results compared to the comparison 

including artificial neural networks, support vector machines 

and decision trees algorithms (minimum RMSE=4.264 and 

R2=0.616). Additionally, the proposed approach is superior 

(RMSE=4.6384, MAE=3.6974) in comparison to the study 

carried out by Shao [53], applying multiple linear regression, 

artificial neural networks, MARS and support vector 

machines algorithms on the same data (RMSE=4.6384, 

MAE=3.6974). 

The application of machine learning algorithms in cancer 

research is widespread, with a focus on cancer prognosis and 

prediction, incidence rates and survival prediction. Carrizosa 

et al. [54] developed a novel tree based linear regression 

model on the identical data, only focusing on hierarchical 

categorical variables. This study is not directly comparable 

as it does not incorporate different algorithms, but the 

prominent algorithm types are similar to some alternative 

studies [55-58]. However, it can be said that Liu regression 

is a promising and powerful alternative for future studies as 

it is one of the first examples of Liu regression in cancer 

studies as far as we know [59-60]. 

7.  CONCLUSION AND FUTURE WORKS 

In this study, the problem of multicollinearity is addressed, 

and comparative results of statistical and machine learning 

models based on two different healthcare datasets are 

presented. The models were trained using the cross-

validation method and their generalization and prediction 

performances were assessed on an independent test data set. 

The results of the study show that statistical models 

outperform for the data set suffering from multicollinearity 

problem, particularly Liu regression, complex machine 

learning models in both training and testing performance. 

However, the study encounters two key limitations. Firstly, 

it is critical that the degree of multicollinearity (weak, strong 

or extreme) is correctly identified and taken into account in 

the comparison process. Secondly, the tuning parameters 

(penalty parameters) of statistical methodologies have the 

potential to affect model performances by choosing them 

more accurately through analytical approaches rather than 

searching within a certain range. A more extensive study 
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taking into account these two limitations may yield valuable 

results in the forthcoming studies. 

Consequently, the choice of the appropriate method is 

critical, given that the problem of multicollinearity is 

widespread in real-life applications. Therefore, it can be 

concluded that statistical models are powerful tools with 

effective solutions to the problem of multicollinearity. 
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