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Sağlıklı-Virus bulaşmış-Bulaşıcılığı olmayan (SIR) salgın modelinin 

başlıca özellikleri, temel üreme sayısı olarak bilinen 𝑅0 parametresi 

tarafından belirlenir. Bu çalışmada, çeşitli Avrupa ülkeleri ve 

İstanbul'daki 2009 A(H1N1) pandemisi ile Almanya'nın federal 

eyaletlerindeki Covid-19 pandemisi olmak üzere iki farklı salgın için, 

𝑅0'ın temas oranlarına olan bağımlılığı araştırılmıştır. 2009 A(H1N1) 

pandemisine ait veriler, Hollanda da dahil olmak üzere yedi Avrupa 

ülkesi ve İstanbul için ele alınmış olup, bu ülkeler için temel üreme 

sayısının nüfus yoğunluğuna orantılı olduğu gösterilmiştir. Yüksek 

nüfus yoğunluklarına sahip olmaları nedeniyle Hollanda ve İstanbul’a 

ait 𝑅0 değerlerinin, literatürde kabul edilen aralıkların oldukça dışında 

kaldığı gözlemlenmiştir. Covid-19 pandemisi için  2020 yılının Şubat ve 

Haziran ayları arasındaki döneme ait Almanya federal eyaletlerinin 

verileri kullanılarak, toplumdaki heterojenliklerin nüfus yoğunluğunun 

etkilerini domine ettiği gösterilmiştir. Bu durum, sokağa çıkma yasağı 

ve seyahat kısıtlamaları gibi uygulamaların ev içi dinamiklerinin rolünü 

arttırması olasılığı ile açıklanmıştır.  
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 Essential properties of the standard Susceptible-Infected-Removed 

(SIR) model are characterized in terms of the parameter, 𝑅0, known as 

the basic reproduction number. In the present work, we investigate the 

dependency of 𝑅0 on contact rates in two distinct cases, the 2009 

A(H1N1) pandemic for European countries and Istanbul, and the Covid-

19 pandemic for the federal states of Germany. For the data from the 

2009 A(H1N1) pandemic, encompassing seven European countries 

(including the Netherlands) and Istanbul, Turkey, we show that the basic 

reproduction number  is proportional to the population density. We 

observe in particular that for the Netherlands and for Istanbul, high 

population densities may give rise to parameters that lie well outside the 

accepted ranges in the literature. Using the data covering the period 

between February and June 2020, during the Covid-19 pandemic in the 

federal states of Germany, we observe that inhomogeneities in a 

population dominate the effects of population density, possibly due to 
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the fact that curfew and travel restriction practices in force during that 

period enhance the role of household dynamics. 

To Cite: Dobie AP., Ahmetolan S., Bilge AH., Demirci A., Kaya BE. 2009 A (H1N1) ve COVID-19 Pandemilerinde Nüfus 

Yoğunluğunun ve Temas Oranının Rolü. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2024; 7(3): 1186-

1201. 

1. Introduction 

The 2009 A(H1N1) swine flu and the ongoing Covid-19, while being devastating outbreaks, provided 

valuable epidemiological data, including fatality rates, hospitalization records, and PCR test results, 

particularly relevant to the current Covid-19 pandemic. All these records reflect the number of cases 

with some proportionality constant, which can vary depending on the location and may also change over 

time. For instance, the number of fatalities related to a particular disease is undoubtedly influenced by 

the quality of the healthcare system. In addition, the strength of contacts in a society, denoted as “contact 

rate”, influences the number of cases.                                                                                                                                 

 While population density is known as one of the most important factors causing the spread of the disease 

(Chen and Li, 2020), research shows that due to socio-economic and cultural factors, more deaths are 

reported in sparsely populated areas than in densely populated areas, and this is strongly related to the 

contact rate. (Chen and Li, 2020; Hamidi et al., 2020). The crucial role of such factors is supported by 

studies that provide significant insights into the impact of such differences and of the age structure on 

the spread of COVID-19 cases. (Del Fava et. Al., 2020, Prem et. al., 2021). In addition to the primary 

influence of population density on contact rates, inhomogeneities in a society may lead to variations in 

the age structures and contact patterns and hence affect that rate.  

In cases where social distancing measures are applied, demographic structures gain importance, and 

inhomogeneities in the population may lead to different contact rates within the same society. Thus, 

despite social distancing measures, co-residence of individuals from the same or different generations 

still have a noteworthy influence on the spread of the disease. (Esteve et. al., 2020). For example, 

individuals who are more susceptible to the disease, such as elderly people living in crowded multi-

generational households for socio-economic and cultural reasons may lead to an increase in the spread 

of the disease. (Mogi and Spijker, 2022). Reducing contact rate via restrictions slows down the death 

rates and accelerates the recovery process. even if the population density is very high, (Ibrahim et. al., 

2020). Thus, in cases where social distancing restrictions are applied in a homogeneous society, one 

would expect a decrease in the death rate proportional to the population density. However, the data of 

death rates for Covid-19 in the federal states of Germany displays a different pattern. 

In the present work we discuss the role of the contact rate on the number of cases and fatalities, based 

on data of 2009 A(H1N1) swine flu and the Covid-19 pandemics. Data under consideration for 2009 

A(H1N1) pandemic is the number of fatalities in Istanbul, Turkey, in seven European countries. Among 

these, the Netherlands and Istanbul, Turkey, are regions with considerably higher population densities. 

For these two cases, the parameters of the models describing the spread of the disease lie well outside 

the ranges reported in the literature, indicating the crucial role of the population density. Data for Covid-
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19 pandemic in federal states of Germany is used to display the relation of the social/ethnic structures 

of the federal states on the number of Covid-19 cases., showing that although the population density is 

a main ingredient of the contact rate, inhomogeneities in the society may also affect the contact rate, 

hence the number of fatalities. 

Numerous studies have focused on the 2009 A(H1N1) pandemic, examining its spread and 

characteristics. Some of these works were conducted at a country-specific level (Ergonul et. al., 2014; 

WHO, 2010; Tuite et. al., 2010), providing insights into the epidemic's progression within individual 

nations. Some works were based on the comparison of the characteristics of epidemic on transnational 

basis (WHO, 2009; Boëlle, 2011; Simonsen et. al., 2013; Bilge et. al., 2015; Samanlioglu and Bilge, 

2016). In these works, epidemiological parameters such as basic reproduction number, infectious period 

and incubation period are estimated.  

The basic reproduction number, the most crucial one among the epidemiological parameters, can be 

determined by the knowledge of the total proportion of individuals affected by the disease. This 

proportion can be measured by total fatalities, or total hospital referrals, or total positive cases. However, 

fatalities have a dependency on the healthcare systems, as analyzed for European countries during the 

2009 A(H1N1) pandemic (Bilge and Samanlioglu, 2018). Hospital referrals are influenced by the 

severity of the disease. In addition, the coverage of tests is heavily dependent on the availability of tests 

within a society and the testing policies in place. An alternative method for determining the basic 

reproduction number is fitting models to the time-evolution of the normalized fatality or hospitalization 

data and choosing parameters of the models that fit with the smallest error.  

The Basic Reproduction number, 𝑹𝟎 represents the product of the transmission rate (parameter 𝜷 in 

equation 1) and the mean duration of the infectious period (reciprocal of parameter 𝜸 in equation 1). 

The transmission rate 𝜷 is itself the product of the virulence of the virus and of the contact rate. 

Determining accurate contact rates within a society is a complex process (Prem et. al., 2017). At a first 

approximation, one may assume that the contact rate is proportional to the population density, but at a 

finer scale, inhomogeneities in the population may dominate variations in the contact rates.  

In our current study, we build upon the findings of our previous work analyzing the 2009 A(H1N1) data 

for Europe and for Istanbul. We utilize these results to demonstrate that the basic reproduction number 

fits to linear regression in terms of the population density, as expected, providing further proof of the 

validity of the standard SIR model. These results also indicate that the parameter 𝑹𝟎 can be much higher 

than the values reported in the literature in cases of extreme population densities.  

The second case that we analyze is the variation of total Covid-19 cases during the first wave of the 

pandemic, in various federal states of Germany. In this case, we observed that the burden of the epidemic 

is relatively insensitive to the population density, possibly due to strict restrictions that were effective 

particularly during the first wave. On the other hand, the variation of the ratio of total cases is correlated 

with the ratio of foreign population, as an indication of the household structure that is more relevant at 

times of curfew. 
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In comparison to the 2009 A(H1N1) pandemic, the Covid-19 pandemic has presented an extensive 

amount of epidemic data due to its widespread and global impact. However, it is worth noting that, apart 

from the initial stages, strict measures of various kinds have been implemented in almost all countries 

to control and mitigate the spread of Covid-19. These measures have significantly influenced the 

dynamics of the pandemic. Given this context, the 2009 A(H1N1) data, despite its relative simplicity, 

remains a valuable resource for modeling the spread of an epidemic in an uncontrolled population. The 

data captures the dynamics of an epidemic in a population without the strict measures and interventions 

that have been implemented during the Covid-19 pandemic. This allows researchers to gain insights into 

the natural course of an epidemic in a population without the influence of extensive control measures, 

providing a useful point of reference for understanding and modeling the spread of infectious diseases. 

The article is organized as follows. In Section 2, we outline the mathematical models used for the 

standard SIR (Susceptible-Infected-Removed) model. Section 3 is devoted to the discussion of the role 

of population density on the contact rates, hence on 𝑹𝟎, presenting the results obtained from analyzing 

two specific pandemics, specifically for the Netherlands in Section 3.1 and for Istanbul, Turkey in 

Section 3.2. In Section 4, we shift our focus to the 2020 Covid-19 pandemic in Germany, with the aim 

of investigating the role of heterogeneities in a population.  Finally, in Section 5, we present our 

concluding remarks, summarizing the key findings from our study and discussing their implications.  

 
2. Material and Methods 

Compartment models in epidemiology are fundamental for the dynamics of the spread of a disease 

within a population (Kermack and McKendrick, 1927; Hethcote and Tudor, 1980). In these models the 

population is divided into compartments. The Susceptible-Infectious-Removed (SIR) and Susceptible-

Exposed-Infectious-Removed (SEIR) models are prototypes of such models, commonly used to describe 

the spread of epidemics caused by a particular strain of infectious agent that primarily spreads through 

direct contact. In these models, individuals are initially categorized as susceptible to the disease. Upon 

contact with an infected individual, susceptible individuals transition to the infectious state. If the 

infecting agent has an incubation period, individuals who are infected but not yet infectious are placed 

in the "Exposed" compartment. During this incubation period, individuals cannot transmit the infection 

to others. Once the incubation period is over, individuals move to the "Infectious" compartment, where 

they can transmit the infection to susceptible individuals. Individuals in the "Infectious" compartment 

either recover from the infection or experience fatal outcomes within the infectious period. In either 

case, they are considered "removed" from the population, as they gain permanent immunity or are no 

longer able to transmit the infection.  

The SIR epidemic model without vital dynamics is defined by  

𝑺𝑰𝑹:  
𝒅𝑺

𝒅𝒕
= −𝜷𝑺𝑰,  

𝒅𝑰

𝒅𝒕
= 𝜷𝑺𝑰 − 𝜸𝑰,   

𝒅𝑹

𝒅𝒕
= 𝜸𝑰                                    

(1) 
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where  𝜷, 𝑻 = 𝟏/𝜸  refer to the disease transmission rate and to the mean duration of infection period 

respectively. The ratio, 𝜷/𝜸, corresponds to the basic reproduction number 𝑹𝟎. As the sum of the 

righthand sides of these equations is zero, with appropriate normalization, one can choose 𝑺 + 𝑰 + 𝑹 =1. 

The SEIR model involves in addition an incubation period. In previous work (Bilge et. al., 2015), we 

have shown that for relatively low 𝑹𝟎 values, diseases obeying the SEIR model can be well 

approximated by the SIR model, and in the following, we will restrict our work to the SIR model. 

We also note that, as presented in (Bilge et. al., 2015), the parameter 𝑹𝟎 can be determined from the 

knowledge of a single quantity, the final values of removed individuals at the end of epidemic, that we 

denote as 𝑹𝒇. However, due to the lack of information on the exact values of fatality and hospitalization 

rates, in practice, we cannot use this information to evaluate 𝑹𝟎. In fact, in the case of the 2009 A(H1N1) 

data, we have shown that fatality rates are in general correlated with health indices published by 

international organizations (Samanlioglu and Bilge, 2016), indicating the need to use more sophisticated 

methods. When working with data from different countries, we normalize epidemic data, and we 

estimate parameters by fitting models to the time evolution of the data. This approach, although more 

time-consuming, is well-suited for studying data from countries with diverse healthcare practices.  

The results presented in Section 3, on the dependency of 𝑹𝟎 on the population density uses the values 

of 𝑹𝟎 evaluated from the time evolution of cumulative fatalities in different countries. On the other 

hand, in Section 4, as we study variations in 𝑹𝟎 in various districts of the same country, with equally 

well health practices, we use the total number of cases in each district, to estimate 𝑹𝟎 from its 

correspondence with 𝑹𝒇. 

3. Results and Discussion 

3.1. The 2009 A(H1N1) Pandemic in Europe 

In a previous work (Samanlioglu and Bilge, 2016), an analysis of weekly fatality data from 13 European 

countries was performed using reports from the European Centre for Disease Prevention and Control 

(ECDC) (ECDC, 2010). Data from the Czech Republic, France, Germany, the Netherlands, Norway, 

Romania, and Sweden were used for this analysis, and results reported in (Samanlioglu and Bilge, 2016), 

are summarized in Table 1. The method mentioned above was initially applied to analyze the 2009 

A(H1N1) pandemic, and later, extended to study the Covid-19 pandemic (Ahmetolan et. al., 2020).  
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Table 1. Population density and the Basic Reproduction Number 𝑅0 for 7 European countries. 

Country Population Density 𝑹𝟎 

Czech Republic 132.72 1.5963 

France 100.01 2.0118 

Germany 229.68 2.7454 

The Netherlands 396.99 4.0000 

Norway 12.45 1.5782 

Romania 90.18 1.4806 

Sweden 20.57 1.5782 

 

The estimated values reported in (Samanlioglu and Bilge, 2016), for 2009 A(H1N1) pandemic generally 

fell within the ranges reported in the existing literature. However, the values obtained for the 

Netherlands deviated from these ranges, and we refrained from reporting our findings for the 

Netherlands in that publication. Similarly, the method was also applied to analyze daily hospitalization 

and fatality reports collected from major hospitals in Istanbul during the same pandemic, and the 

estimated parameter values for this case were also found to be outside the ranges reported in the 

literature. These results seemed to suggest unique characteristics of the epidemics in the Netherlands 

and Istanbul, which may warrant further investigation of the role of population density in understanding 

the dynamics and impact of the respective pandemics in regions with different population dynamics. In 

Sections 3.1 and 3.2, we present the results of our analysis for the estimation of epidemic parameters for 

2009 A(H1N1) pandemic in the Netherlands and in Istanbul, Turkey, respectively. 

In Table 1 and Figure 1, we present the dependency of 𝑹𝟎 on the population density, based on the 

estimates given in (Samanlioglu and Bilge, 2016). 

 

Figure 1. 𝑅0 versus populaton density for European countries. Parameters are computed using the time evolution 

of normalized data. 
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A plot of 𝑅0, as determined from the time evolution of the weekly fatality data is shown in Figure 1 

above, together with a linear regression line. We describe below the analysis of the data for the 

Netherlands, in greater detail. 

3.1.1. Determination of Epidemic Parameters for the Netherlands Data 

In a previous study (Samanlioglu and Bilge, 2016), an examination of weekly fatality data for 13 

European countries was performed using reports from the European Centre for Disease Prevention and 

Control (ECDC). The Netherlands was considered for the analysis of vaccination coverage etc, but its 

data was found to contain errors and was subsequently excluded from the time domain analysis in 

(Samanlioglu and Bilge, 2016). In this section, we will focus on analyzing the data specifically for the 

Netherlands. Firstly, we will correct any obvious errors present in the data. Subsequently, we will 

explore and assess various models to determine the best fit based on various error criteria. It is important 

to note that in all cases studied, the calculated value of 𝑅0 for the Netherlands was found to be larger 

than the values reported in the existing literature. This discrepancy highlights the unique characteristics 

and dynamics of the epidemic in the Netherlands. For reference, the weekly fatality data for the 

Netherlands can be found in (Samanlioglu and Bilge, 2016). 

Figure 2 illustrates the change in the total fatality numbers in weeks, based on the corrected data from 

the ECDC weekly reports for the Netherlands.  

 

Figure 2. Cumulative number of fatalities for the 2009 A(H1N1) epidemic in the Netherlands, based on data 

Table A, corrected for obvious reporting errors in the data. 

To further analyze the data, the normalized total fatality numbers for the Netherlands were fitted to 

the 𝑅(𝑡) curves obtained by numerical solutions of the SIR model with parameters over a reasonably 

wide range, and models within an “acceptable” error range were selected. For the Netherlands data, 



1193 

 

parameter ranges were chosen as, 1.5 ≤ 𝑅0 ≤ 8  in steps of 0.1 for the Basic Reproduction Number,  

2 ≤ 𝑇 ≤ 20 in steps of 1 days for the mean duration of the infectious period, and  𝐼(0) = 10−𝑘 where 

1 ≤ 𝑘 ≤ 10  in steps of 0.2 for the initial value for 𝐼(𝑡). With these parameter values, different 

simulations were compared. In order to select the best fitting model, two error criteria have been used: 

𝐸1, which covers the entire observation period, and 𝐸2, which gives more weight on the initial phase of 

the epidemic. The time intervals taken into account for each error criterion are determined as 0 − 56 

weeks for 𝐸1 and 0 − 29 weeks for 𝐸2, respectively. Error thresholds are set as the error levels of 

“acceptable” models and they are chosen as 𝐸1 < 0.1 and 𝐸2 < 0.19. The intervals corresponding to the 

“acceptable” error values are 2.9 − 4.2 for 𝑹𝟎, 3 − 5 days for 𝑇 and 10−7-10−9 for 𝑰𝟎. It is also 

observed that high 𝑹𝟎 values correspond to low total error while low 𝑅0 values correspond to high errors 

in the initial phases. Even though the infectious period interval for the Netherlands lies within reasonable 

bounds of influenza epidemics, the intervals observed for 𝑹𝟎 the Netherlands cases are outside the 

expected ranges for flu type epidemics. As the values for the mean duration of the infectious period is 

within the ranges in the literature, we may conclude that discrepancy of the values reported in the 

literature for 𝑅0 and the ones obtained in our work is not caused by computational errors, but it reflects 

the characteristics of the epidemic in that country. 

3.1.2. Determination of Epidemic Parameters for the Istanbul Data 

In this section, we focus on determining the parameters of the SIR model for the 2009 A(H1N1) 

epidemic in Istanbul, Turkey. A further support for the dependency of R0 on the population density is 

provided by the analysis of the 2009 A(H1N1) data collected in Istanbul. Istanbul, the most densely 

populated city in Turkey, with a population of 12.92 millions and with a population density of 2431 

persons/km2, in 2009 (Source: Turkish Statistical Institute), serves as an important case study.  

In the context of an extensive survey on the 2009 A(H1N1) epidemic (Ergonul et. al., 2014), information 

on (adult) patients referred to major hospitals in Istanbul, Turkey, were collected. The available data for 

this analysis consists of hospital records collected from six major state hospitals during the period of 

May 2009 to February 2010 (Ergonul et. al., 2014). To ensure consistency in the analysis, the first wave 

of the epidemic, which occurred between June 2009 and September 2009 and had no fatalities, is 

excluded from the dataset. Therefore, the analysis is based on a 200-day period spanning from 

September 1, 2009, to February 28, 2010. The data for the second wave of the epidemic consist of 869 

cases of hospital referrals and the date of fatality of 46 patients. This dataset includes information such 

as the date of referral to the hospital, the date when symptoms started (as reported by the patient), the 

discharge date (which coincides with the referral date if the patient was not hospitalized), the date of 

transfer to the intensive care unit (if applicable), and the date of fatality. In Figure 3, we present the raw 

data for hospital referrals and cumulative fatalities. 

Through the analysis of this data, we will obtain model parameters that once again fell outside the typical 

ranges reported in the literature. The consistent pattern of high R0 values observed in both the 
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Netherlands and Istanbul highlights the significant role of population density in understanding the 

dynamics of epidemic spread. The findings of Istanbul provide additional evidence for the influence of 

population density on disease transmission, emphasizing its importance in analyzing and interpreting 

epidemic patterns. 

Our analysis starts with the following ranges: 1.5 ≤ 𝑹𝟎 ≤ 8  (0.1 steps), 2 ≤ 𝑻 ≤ 20 (1 steps) and 1 ≤

𝑘 ≤ 10  (0.2 steps) where 𝑰(𝟎) = 10−𝑘 and we use the least squares error norm as the performance 

criteria, computed as follows. Assume that we want to obtain the error in modeling data represented by 

the column vector X, by a theoretical model represented by the column vector Y, both of length n. In 

matrix notation, the least squares error can be conveniently computed by √(𝑋 − 𝑌)𝑡(𝑋 − 𝑌). Here we 

will be interested in the relative error, hence we define the error E as  

E= √(𝑋 − 𝑌)𝑡(𝑋 − 𝑌) / √𝑋𝑡𝑋   

where the superscript t denotes the transpose. 

To take into account extended hospitalization periods, we compute least squares errors for the beginning 

(𝐸1: 0 − 80 days) and for the intermediate (𝐸2: 81 − 100 days) periods. The error thresholds are chosen  

𝐸1 < 0.04 and 𝐸2 < 0.13. 

73 different simulations for the parameter intervals and the error bounds are also compared. The intervals 

corresponding to the minimum error values are 4.2-5.4 for 𝑹𝟎, 13-15 for 𝑻 and 10−7 − 10−8.8 for 𝑰𝟎. It 

is also observed that high 𝑹𝟎 values correspond to low total error while low 𝑹𝟎 values correspond to 

high errors in the initial phases. 

 

 

Figure 3. The daily number of referrals to hospitals and cumulative number of fatalities for the 2009 A(H1N1) 

epidemic in Istanbul, Turkey. The scatter in the number of daily referral to hospitals indicates that the 

hospitalization rate varies during the epidemic. The asymmetry of the incidence curve is still observable. The 

fatalities shown here are adjusted to at most 15 days after referral to the hospital (left panel). The duration of 

symptoms prior to hospitalization (light color) and the duration of hospitalization prior to death (dark color) for 

the fatalities during the epidemic in Istanbul are shown in the right panel. 
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To summarize our findings for the 2009 A(H1N1) for Istanbul, Turkey and for the Netherlands, the 

epidemic parameters 𝑹𝟎  and 𝑻 (mean duration of the epidemic) are found to be in the ranges 4.2 − 5.4, 

13 − 15 days and 2.9 − 4.2, 3 − 5 days, respectively. The values for 𝑹𝟎  which fall outside the usual 

influenza epidemic parameter values are interpreted by the high population density of both regions. The 

mean duration of the epidemic for the Netherlands is the same with the values in the literature for other 

European countires. Larger values of 𝑻 for Istanbul may be tied to the failure of taking into account 

extended hospitalization periods. 

3.2. The Covid-19 in Germany 

In this section, the focus is on studying the Covid-19 data for Germany, from February to June 2020. 

This time frame captures the early stages and initial spread of the Covid-19 pandemic in Germany, and 

it can be considered as the first wave of the epidemic. The data consist of total cases for the federal 

states, and it can be interpreted as the final value of the removed individuals at the end of the first wave. 

As the same health care practices were effective over the whole country, we may assume that the 

proportionality constant between confirmed cases and total infections is the same for all states, therefore 

total number of cases represents the final value of removed individuals 𝑹𝒇, in each state with the same 

proportionality constant. Furthermore, as the original virus was dominant during that period, variations 

in 𝑹𝟎 arise from variations in the contact rate only. Thus, the scatter plot of the total number of cases 

versus the contact rate should follow the variation of 𝑹𝒇 versus 𝑹𝟎  after appropriate scalings. 

Total population, foreign population, total cases, population densities and relevant ratios for the federal 

states are given below in Table 2. 

In Figure 4 above, we present the scatter plot of the ratio of total cases with respect to population density. 

In this plot, we clearly see a cluster structure; the 3 city-states, Berlin, Hannover and Bremen, and the 

other states form 2 clusters, but unlike the 2009 A(H1N1) data for European countries, there is no 

obvious dependency on the population density.  
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Figure 4. Percentage of cases versus population density. 

On the other hand, the scatter plot of case ratios versus the ratio of foreign population, shown on Figure 

5, displays a functional dependency. The 3 city-states still appear to form a separate cluster, and data of 

Bavaria seems to be an outlier. 

We aim to quantify the relation between 𝑹𝟎 and the population density and the density of the foreign 

population as observed in Figure 4 and Figure 5. Recall that 𝑹𝟎 is known to be in the form  𝑹𝟎 = 𝝂 𝑪 𝑻  

where ν is the the virulence of the virus, 𝑪 is the contact rate and 𝑻 is the duration of the infectious 

period. Since ν and 𝑻 are invariants of our data, the variation in 𝑹𝟎 is directly proportional to 𝑪.  

We aim to obtain a bilinear model for the contact rate, hence for  𝑅0, since it is a constant multiple of 𝐶, 

in the form, 

   𝑅′0  =  𝐶0  +  𝐶1 (population density) + 𝐶2 (ratio of foreign population)                                                    (2) 

where 𝐶0, 𝐶1 and 𝐶2 are constants to be determined and 𝑅′0 denotes the least squares estimate of  𝑅0.  For 

this purpose we proceed as follows. 

𝑅0 and the final proportion of removed individuals obey the formula  𝑹𝟎 = −𝒍𝒏(𝟏 − 𝑹𝒇)/𝑹𝒇, as given 

by equation 2. In this formula, we replace 𝑹𝟎  by 𝝂 𝑪 𝑻 to obtain  

      𝝂 𝑪 𝑻 = −𝒍𝒏(𝟏 − 𝑹𝒇)/𝑹𝒇                                                                                                                         (3) 
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Figure 5. Percentage of cases versus the ratio of foreign population. 

Table 2. Demographic information and Covid-19 case records for the federal states of Germany. 

Province Population Foreign 

Ratio of 

Foreign 

Population 

Total 

Cases 

Percentage 

of Total 

Cases 

Population 

Density 

Baden-Württemberg 11069533 1885925 0.1704 35620 0.3218 310 

Bavaria 13076721 2051505 0.1569 48400 0.3701 185 

Berlin 3644826 848400 0.2328 8220 0.2255 4,086 

Brandenburg 2511917 149540 0.0595 3429 0.1365 85 

Bremen 682986 140330 0.2055 1662 0.2433 1,630 

Hamburg 1841179 328375 0.1784 5201 0.2825 2,439 

Hesse 6265809 1163800 0.1857 10795 0.1723 297 

Lower Saxony 7982448 895490 0.1122 13535 0.1696 168 

Mecklenburg-Vorpommern  1609675 87410 0.0543 802 0.0498 69 

North Rhine-Westphalia 17932651 2815800 0.1570 43066 0.2402 526 

Rhineland-Palatinate 4084844 532230 0.1303 6996 0.1713 206 

Saarland 990509 134350 0.1356 2806 0.2833 386 

Saxony 2208321 244415 0.1107 5448 0.2467 221 

Saxony-Anhalt 4077937 127670 0.0313 1871 0.0459 108 

Schleswig-Holstein 2896712 286270 0.0988 3154 0.1089 183 

Thuringia 2143145 126270 0.0589 3254 0.1518 133 

 

https://en.wikipedia.org/wiki/Baden-W%C3%BCrttemberg
https://en.wikipedia.org/wiki/Bavaria
https://en.wikipedia.org/wiki/Berlin
https://en.wikipedia.org/wiki/Brandenburg
https://en.wikipedia.org/wiki/Bremen
https://en.wikipedia.org/wiki/Hamburg
https://en.wikipedia.org/wiki/Hesse
https://en.wikipedia.org/wiki/Lower_Saxony
https://en.wikipedia.org/wiki/Mecklenburg-Vorpommern
https://en.wikipedia.org/wiki/North_Rhine-Westphalia
https://en.wikipedia.org/wiki/Rhineland-Palatinate
https://en.wikipedia.org/wiki/Saarland
https://en.wikipedia.org/wiki/Saxony
https://en.wikipedia.org/wiki/Saxony-Anhalt
https://en.wikipedia.org/wiki/Schleswig-Holstein
https://en.wikipedia.org/wiki/Thuringia
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Based on the assumption that 𝑹𝒇 and 𝑪 are proportional to case ratios and contact rates, respectively, 

we anticipate that they will obey the same functional relationship up to scalings, as described by equation 

3. Consequently, we seek to establish a bilinear regression that relates 𝐶 as defined above, where 𝑹𝒇 is 

replaced by a constant multiple k of case ratios. To ensure consistency, the proportionality constant k 

needs to be selected in a manner that allows the percentage of total cases, multiplied by k, to fall within 

reasonable ranges. Additionally, the estimated values of 𝑹𝟎 should be consistent with the values reported 

in the existing literature. Considering these factors, we have chosen the value of k to be 2. 

Bilinear regression after excluding Bavaria and 3 cities (Berlin, Hannover and Bremen) discloses the 

following parameters:  

                    C0=   0.9997,   C1=    0.4785,   C2=   1.3771. 

The parameter C2, which represents the effect of the ratio of the foreign population in a state, carries 

more weight in the bilinear regression analysis compared to the population density. This suggests that 

the presence of foreign population has a significant influence on the contact rates and, consequently, the 

spread of the epidemic. 

Figure 6.  𝑹𝒇 versus 𝑹𝟎. Theoretical (blue curve), regression (red data points). 
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In Figure 6, the solid line represents the curve of 𝑹𝒇 versus 𝑹𝟎, as computed from equation 2. The dots 

on this curve represent the pairs (𝑹𝟎, 𝑹𝒇) obtained by replacing 𝑹𝒇 with the total case ratio multiplied 

by a constant factor k, with k =2. The data points marked with (*) correspond to the pairs (𝑹𝒇, 𝑹𝟎
′ ), 

where 𝑹𝒇  is as previously defined, and  𝑹𝟎
′  represents the estimated value for 𝑹𝟎 obtained through the 

least squares regression. Additionally, the data points marked with (o) represent the estimates for Berlin, 

Bremen, Hamburg, and Bavaria, derived from the model. As expected, the model tends to overestimate 

𝑹𝟎 for Berlin, Bremen, and Hamburg, while underestimating it for Bavaria. These observations 

demonstrate the comparison between the computed values from the model and the estimated values 

obtained through regression. The deviations between the model estimates and the actual values highlight 

the variations in the epidemic dynamics and the influence of specific factors in different regions. 

4. Conclusions 

This article aims to illustrate the role of population density and the contact rates on the basic reproduction 

number. The effect of the population density is discussed via 2 cases, the data for the 2009 A(H1N1) 

epidemic in Istanbul and the Netherlands, while the effect of contact rates is analyzed for the Covid-19 

data for the federal states of Germany. 

To determine the epidemic parameters for the Istanbul data, we compare the normalized cumulative 

fatality data with the solutions of the SIR model. To obtain the best-fitting model, two different error 

criteria are employed. Parameter for best fitting models deviate from the typical values associated with 

influenza epidemics. Specifically, the minimum error values for the Istanbul data correspond to  4.2 −

5.4 and 13 − 15 for 𝑹𝟎, and 𝑻 respectively. These findings suggest that the 2009 A(H1N1) epidemic in 

Istanbul exhibits unique characteristics and differs from the usual patterns observed in influenza 

epidemics. 

Similarly, we perform the same analysis to the Netherlands, with a similar population density. We 

compare the normalized cumulative fatality numbers from the weekly reports by the ECDC with the 

solutions obtained from the SIR model. Using the same error criteria employed for the Istanbul analysis, 

we determine the best-fitting model for the Netherlands. As a result, the minimum error values for the 

Netherlands data correspond to the parameter ranges of 2.9-4.2 for 𝑹𝟎, 3-5 for 𝑻, and 10−7-10−9 for 𝑰𝟎. 

These parameter ranges, similar to those found for Istanbul, deviate from the typical parameter values 

associated with influenza epidemics. 

We note that variations in the contact rate cannot be solely attributed to population density. Cultural 

differences and societal factors can also play a significant role in shaping the strength of interactions 

within a community which may also affect the contact rate, hence the Basic Reproduction Number 𝑹𝟎. 

To highlight this point, we extend our analysis to include the Covid-19 data for the federal states of 

Germany during the period from February to June 2020. In this analysis, as the quality of the health care 

is uniform overall Germany, we assume that the proportionality constant between confirmed cases and 
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total infections remains the same across all federal states. Using the method of determining 𝑹𝟎 from 𝑹𝒇, 

we investigate the relationship between these parameters and various factors. Notably, we find that there 

is no evident dependency on population density, which contrasts with our observations from the 2009 

A(H1N1) data for European countries. Instead, our analysis reveals that the ratio of the foreign 

population within a state holds more weight in the regression analysis compared to population density. 

This suggests that demographic factors, such as the presence of foreign inhabitants, exert a significant 

influence on the contact rate and consequently impact the determination of 𝑅0. 
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