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Abstract: A branch of artificial intelligence called machine learning is well-positioned as a prediction method that can take 
into consideration several influencing factors and complex inter-factor connections. Without being specifically trained to do 
so, these machine learning models have the ability to generalize, predict, and learn from data. Regression theory is a key topic 
in statistical modelling and machine learning. The main goal of this study is to compare the performance of several popular 
machine learning regression models for predicting the early-age compressive strength of concretes made from recycled concrete 
aggregates from a structure that demolished following the Sivrice-Elazig earthquake on January 24, 2020. Early-age concrete 
compressive strength is even more crucial due to factors like the fact that there are thousands of newly built structures in the 
aftermath of the earthquake, the quick manufacturing of these structures, and the completion of the project in the lowest amount 
of time. Determining the early-age concrete strength with high accuracy and in a useful manner is crucial for this reason. Seven 
different classical machine learning algorithms were employed in this study to achieve all of these goals. Early-age concrete 
compressive strength values were considered for 1 and 3 days. The relationship between the experimental results and the 
predicted outcomes of the employed algorithms was investigated, and a thorough comparison of these intelligent regression 
algorithms was conducted. Within the scope of sustainable development and circular economy goals, it is thought that this 
article will make significant contributions to the literature in terms of utilizing these waste materials and determining the early-
age compressive strengths of the concretes produced with high accuracy. 
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Agrega türlerinin ve farklı oranlarda kullanımının geri dönüştürülmüş agrega beton basınç 

dayanımına etkisinin makine öğrenmesi regresyon modellemesi uyarlanarak değerlendirilmesi 
 

Öz: Yapay zekanın makine öğrenimi olarak adlandırılan bir dalı, çeşitli etki faktörlerini ve karmaşık faktörler arası bağlantıları 
dikkate alabilen bir tahmin yöntemi olarak iyi bir konuma sahiptir. Bu makine öğrenimi modelleri, özel olarak eğitilmeksizin 
verileri genelleştirme, tahmin etme ve onlardan öğrenme becerisine sahiptir. Regresyon teorisi, istatistiksel modelleme ve 
makine öğreniminde kilit bir konudur. Bu çalışmanın temel amacı, 24 Ocak 2020'deki Sivrice-Elazığ depreminin ardından 
yıkılan bir binadan elde edilen geri dönüştürülmüş beton agregalarından üretilen betonların erken yaş basınç dayanımını tahmin 
etmek için birkaç popüler makine öğrenimi regresyon modelinin performansını karşılaştırmaktır. Deprem sonrasında yeni inşa 
edilen binlerce yapının olması, bu yapıların hızlı bir şekilde imal edilmesi ve projenin en kısa sürede tamamlanması gibi 
faktörler nedeniyle erken yaş basınç dayanımı daha da büyük önem taşımaktadır. Erken yaş beton dayanımının yüksek 
doğrulukla ve kullanışlı bir şekilde belirlenmesi bu nedenle çok önemlidir. Bu çalışmada tüm bu hedeflere ulaşmak için yedi 
farklı klasik makine öğrenimi algoritması kullanılmıştır. Erken yaş basınç dayanımı değerleri 1 ve 3 gün için dikkate alınmıştır. 
Deneysel sonuçlar ile kullanılan algoritmaların öngördüğü sonuçlar arasındaki ilişki incelenmiş ve bu akıllı regresyon 
algoritmalarının kapsamlı bir karşılaştırması yapılmıştır. Sürdürülebilir kalkınma ve döngüsel ekonomi hedefleri kapsamında 
bu atık malzemelerin değerlendirilmesi ve üretilen betonların erken yaş basınç dayanımlarının yüksek doğrulukla 
belirlenebilmesi açısından makalenin literatüre önemli katkılar sağlayacağı düşünülmektedir.  
 
Anahtar kelimeler: Basınç dayanımı, İnşaat ve yıkıntı atıkları, Makine öğrenme, Geri dönüşüm agregalı beton. 
 
1. Introduction 
 

The construction and industrial sector have a very important market worldwide, therefore, it is one of the 
sectors most affected by sustainability policies. The construction industry consumes approximately 50% of all 
natural resources and 40% of all energy, in addition to about 50% of all global waste streams [1,2]. In addition, 
the human population, the urban population, and the consequent increasing need for shelter bring about rapid 
urbanization and lead to large amounts of consumption. In rapid urbanization, large amounts of concrete are used 
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to construct new buildings and renew old buildings under the name of urban transformation projects. Concrete is 
the most widely used building material worldwide and consists mainly of cement, aggregate, and water [3,4]. 
When the basic components of concrete are examined, two main problems are encountered. The first is the 
environmental pollution caused by cement worldwide, and the second is the trend toward depletion of natural 
resources in parallel with the increase in concrete use [5–7]. 

Aggregates constitute 65-70% of the concrete volume and play a major role in the depletion of natural 
resources due to the increasing use of concrete [8]. This expanding consumption, and waste materials arising from 
the construction sector have led researchers to different study subjects [9]. Studies on the evaluation of construction 
and demolition wastes that are damaged or emerged as a result of earthquakes have an important place in this study 
area. The large amount of waste generated from demolished buildings and the storage of these wastes pose a great 
threat to the environment [10,11]. For this reason, evaluating these wastes is very important, and studies on the 
use of these wastes in concrete are becoming increasingly common. The 24 January 2020 Sivrice-Elazig 
earthquake that occurred in Turkey in recent years can be shown as a great example of this. Elazig and Malatya 
provinces were affected after the earthquake and the damage was concentrated in Elazig center. Tens of thousands 
of buildings across Elazig were examined and classified according to their damage status. After this earthquake, 
thousands of buildings were destroyed, and millions of tons of waste material emerged. Ulucan and Alyamac 
analyzed a typical building in detail in their study and estimated the approximate total amount of waste generated 
after the earthquake, taking into account the total number of demolished buildings [12]. In addition, to evaluate 
these wastes, a detailed laboratory study was carried out using recycled concrete aggregates (RCAs) obtained from 
a building destroyed after the earthquake on concrete and evaluated the mechanical, environmental, and economic 
properties of these aggregates. In another study, Ulucan and Alyamac examined in detail the advantages and 
disadvantages of using RCA in a high-rise building [13]. In their study, Kül et al. aimed to provide a solution for 
the conversion of construction and demolition waste (CDW) into building materials suitable for accelerated 
construction and housing in developing countries and disaster-prone areas [14]. Ilcan et al. evaluated the effects 
of incorporating industrial wastes into CDW-based geopolymer blends [15]. Ozcelikci et al. were developed non-
structural ultra-lightweight circular building insulation materials using significant amounts of CDW [16]. 

Researchers have offered solutions from different perspectives to different problems in order to reduce the 
negative effects, provide a sustainable life and obtain high-accuracy results. The increasing use of concrete in 
recent years makes it necessary to determine the quality and different properties of concrete with high accuracy 
[17,18]. So, it is very important to determine the compressive strength, which is one of concrete's most important 
mechanical properties, with high accuracy [19]. For this purpose, machine learning algorithms have been widely 
used in recent years [20]. In their study, Kandiri et al tried to predict the compressive strength of concretes 
containing ground granulated blast furnace slag by using hybridized multi-objective ANN and salp swarm 
algorithm [21]. Zhang et al proposed a method based on machine learning and metaheuristic algorithms to optimize 
concrete mixing ratios and compared this method with other methods [22]. Golafshani et al. used a multi-layer 
neural network, a radial basis function neural network and Harris hawks optimization algorithm to develop models 
that predict the concrete strength of concretes containing supplementary cementitious materials [23]. Tam et al. 
used artificial neural networks to predict the compressive strength of CO2 concrete. R square and average error 
values obtained as a result of this study gave very satisfactory results [24]. Amiri and Hatami used artificial neural 
networks to predict the mechanical and durability properties of concrete containing slag and RCA [25].  

Machine learning, a branch of artificial intelligence, is well-positioned as a prediction method capable of 
taking into account several determining factors and intricate inter-factor relationships. These machine learning 
models possess the capacity to generalize, predict, and learn from data without explicitly being programmed to do 
so. The subject of regression is crucial to statistical modelling and machine learning. It relates to modelling issues 
when we should predict the values of an additional variable based on the prior values of the predictors, which may 
contain one or more variables. The main goal of this study is to examine the prediction accuracy of the early-age 
compressive strength of concretes produced using RCAs obtained from a building that demolished after the 24 
January 2020 Sivrice-Elazig earthquake with different machine learning regression models. Early-age concrete 
strength values of 1 and 3 days, which are of great importance for the rapid construction of the new buildings after 
the earthquake and the accurate determination of the formwork stripping times, were considered. The relationship 
between the prediction results of the regression models and the experimental results was examined, and a detailed 
comparison of these models was made. This study made a comprehensive comparison of different machine 
learning algorithms that accurately predict the compressive strength of early-age concrete and reduce 
environmental pollution by using post-earthquake wastes. This paper also contributes to the literature by aiming 
to utilize waste materials and determine the early-age compressive strength of concrete with high accuracy in the 
context of sustainable development and circular economy goals. The main contributions of this paper are listed 
below: 
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• The effect of aggregate type and its use in different ratios on compressive strength was investigated in detail 
using intelligent regression models by designing concrete mixtures containing all-natural, all-recyclable and 
both natural and recycled concrete aggregates. 

• The problem of predicting the early age compressive strength of concretes made from RCAs is modelled as a 
regression problem.  

• Instead of a single method, seven different intelligent popular methods were adapted to find solutions for the 
focused problem. Seven of the most popular machine learning based regression models were applied to 
achieve better results all together for the first time. 
The remaining of this paper is organized as follows. The materials and methods are described in Section 2. 

The experiments and discussion about the obtained results are presented in Section 3 and the paper is finalized 
with possible future research directions in Section 4. 
 
2. Materials and method 
 
2.1. Materials 

 
In this study, CEM 1 42.5 R Portland cement obtained from the Elazig Seza cement factory was used. The 

chemical compositions of cement are given in Table 1. In order to examine the effect of aggregate type on concrete 
strength in concrete castings, natural concrete aggregates (NCAs) and RCAs were used. RCAs were obtained from 
concrete masses that emerged after demolishing a damaged building after the 24 January 2020 Sivrice-Elazig 
earthquake. Natural aggregates were obtained from the Elazig Çemişgezek region. Aggregates were classified as 
0-4 (fine), 4-16 (coarse 1), and 16-31.5 (coarse 2). The experiments carried out in the laboratory to determine the 
physical properties of these two different aggregate types and the results obtained are given in Table 2. CHRYSO 
Optima 280-SC3 was used as a water-reducing chemical additive in all concrete mixes. 
 

Table 1. Chemical composition of Portland cement 
 

Chemical 
Properties CaO SiO2 Fe2O3 Al2O3 SO3 Na2O K2O MgO P2O5 Loss of ignition 

Cement 62.48 19.15 4.35 5.50 2.55 0.11 0.45 2.05 - 2.09 
 

Table 2. Physical properties of NCA and RCA 
 

Properties Fine Coarse 1 Coarse 2 
NCA RCA NCA RCA NCA RCA 

Los Angeles abrasion - - - - 15 23 
Specific gravity  2.66 2.48 2.69 2.69 2.71 2.73 
Water absorption (%) 1.5 9.8 1.3 4.2 1.2 3.6 

 
2.2. Experimental design and preparation of concrete mixtures 
 
 Within the scope of this study, a total of 45 different concrete series were produced to examine the effect of 
aggregate types on concrete strength in detail. Mixture designs consist of all natural aggregate, all recycled 
aggregate, and concrete mixtures containing both natural and RCA. In this direction, concrete series containing 3 
different aggregate designs in addition to 5 different water-to-cement ratios and 3 different cement dosages were 
prepared. It was expressed as natural aggregate concretes (NAC), recycled aggregate concretes (RAC), and 
recycled coarse aggregate concretes (RCAC). The prepared concrete series were subjected to compressive strength 
tests on the 1st and 3rd days, and early-age concrete strengths were obtained. Mixture amounts of these series are 
given in Table 3. 
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Table 3. Mix proportions of concrete mixtures (kg/m3) 
 

Mixture Code Cement Water NCA RCA Chemical 
Additive Fine Coarse 1 Coarse 2 Fine Coarse 1 Coarse 2 

NAC-1 300 90 642 649 872 - - - 7.8 
NAC-2 300 105 630 637 855 - - - 6.0 
NAC-3 300 120 618 625 839 - - - 4.2 
NAC-4 300 135 606 613 823 - - - 3.3 
NAC-5 300 150 594 601 807 - - - 1.5 
NAC-6 350 105 617 624 838 - - - 7.7 
NAC-7 350 123 603 610 819 - - - 5.3 
NAC-8 350 140 589 596 800 - - - 3.5 
NAC-9 350 158 575 582 781 - - - 2.5 
NAC-10 350 175 561 568 762 - - - 1.8 
NAC-11 400 120 592 599 805 - - - 9.2 
NAC-12 400 140 576 583 783 - - - 6.8 
NAC-13 400 160 560 567 761 - - - 4.0 
NAC-14 400 180 544 551 740 - - - 2.4 
NAC-15 400 200 528 534 718 - - - 1.2 
RAC-1 300 90 - - - 598 649 878 7.8 
RAC-2 300 105 - - - 587 637 862 6.9 
RAC-3 300 120 - - - 576 625 845 6.0 
RAC-4 300 135 - - - 565 613 829 3.3 
RAC-5 300 150 - - - 554 601 813 1.8 
RAC-6 350 105 - - - 575 624 844 7.0 
RAC-7 350 123 - - - 562 610 825 5.6 
RAC-8 350 140 - - - 549 596 806 2.5 
RAC-9 350 158 - - - 536 582 787 1.4 
RAC-10 350 175 - - - 523 568 768 1.1 
RAC-11 400 120 - - - 552 599 811 5.6 
RAC-12 400 140 - - - 537 583 789 4.0 
RAC-13 400 160 - - - 522 567 767 2.4 
RAC-14 400 180 - - - 508 551 745 1.2 
RAC-15 400 200 - - - 493 534 723 2.8 
RCAC-1 300 90 642 - - - 649 878 7.5 
RCAC-2 300 105 630 - - - 637 862 6.0 
RCAC-3 300 120 618 - - - 625 845 4.8 
RCAC-4 300 135 606 - - - 613 829 3.8 
RCAC-5 300 150 594 - - - 601 813 2.7 
RCAC-6 350 105 617 - - - 624 844 7.0 
RCAC-7 350 123 603 - - - 610 825 5.6 
RCAC-8 350 140 589 - - - 596 806 4.2 
RCAC-9 350 158 575 - - - 582 787 2.8 
RCAC-10 350 175 561 - - - 568 768 1.8 
RCAC-11 400 120 592 - - - 599 811 6.0 
RCAC-12 400 140 576 - - - 583 789 4.4 
RCAC-13 400 160 560 - - - 567 767 3.2 
RCAC-14 400 180 544 - - - 551 745 2.0 
RCAC-15 400 200 528 - - - 534 723 1.2 

 
2.3. The Machine Learning Methods Used 
 
 There are many machine learning algorithms in the literature today. According to the No Free Lunch Theorem  
[26], no machine learning (ML) algorithm can guarantee always finding the best solution for all problems. 
Therefore, in this study, the data obtained from the comprehensive laboratory experiments were analyzed with 
seven different ML regression algorithms that are well-known in the literature. These are Multiple Linear 
Regression, Support Vector Regression, Decision Tree Regression, Random Forest Regression, K-nearest 
neighbor regression and Feed Forward Neural Network Regression. The algorithm selections to be used in the 
study were chosen to take into account the characteristics of the data set and allow possible linear/nonlinear 
relationships to be modeled. The inclusion of Multiple Linear Regression serves as a basic foundation for capturing 
linear relationships between variables. Support Vector Regression expands our modeling capabilities by 
accommodating both linear and nonlinear models. Decision Tree Regression and Random Forest Regression were 
chosen to capture nonlinear relationships and complex interactions within the dataset. The ensemble structure of 
Random Forest helps reduce overfitting and improve generalization. K-nearest neighbor regression was chosen 
for its ability to capture local patterns, which is particularly valuable in scenarios that emphasize spatial 
dependencies. The inclusion of Feed Forward Neural Network Regression acknowledges the power of deep 
learning models in extracting complex, hierarchical features. This choice is especially important when dealing 
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with data that exhibits complex relationships that cannot be effectively captured by traditional algorithms. This 
section contains general information about the machine learning algorithms used in the study. 
 
2.3.1. Multiple Linear Regression (MLR) 
 
 Multi Linear Regression is a statistical method that fits a linear equation for data with one dependent (𝑦) and 
more than one independent variable (𝑥) [27]. The basic principle of MLR is to find the weights (𝛽) of the attributes 
(independent variables) that minimize the sum of squared errors (SSE) during the training process. During the 
training process, the estimation (𝑦$%) made by the MLR for the ith observation data is calculated by Equation (1). 
The error for this observation data is 𝜀% = (𝑦$% − 𝑦%). Equation (2) finds the SSE value for N training data. 
Minimizing SSE means finding the smallest hyperplane with a vertical offset. 
 
𝑦$% = 	𝛽, +	𝛽.𝑥%

(.) +	𝛽/𝑥%
(/) + ⋯+	𝛽1𝑥%

(1),								𝑚: 𝑇ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠                  (1) 
𝑆𝑆𝐸 =	∑ 𝜀%/D

%E.                                 (2) 
 
2.3.2. Multiple Polynomial Regression (MPR) 
 
 MPR is a special type of multiple linear regression. It is a frequently used method for data whose distribution 
is not completely linear [28]. In this method, the aim is to find a polynomial functional relationship between the 
independent variables and the dependent variable. As shown in Equation (3), the model can include linear, high-
order, and interaction forms of the independent variables. Although the dependent variables are not in linear form 
in the model, the parameters are in linear form. In addition to the coefficients of the independent variables 
estimated in this method, the degree of the polynomial is one of the main factors that make the SSE minimum. 
 
𝑦$% = 	𝛽, +	𝛽.𝑥%. + 𝛽/𝑥%/ +	𝛽F𝑥%./ + 𝛽G𝑥%// + 𝛽H𝑥%.𝑥%/ + ⋯	                                (3) 
 
2.3.3. Support Vector Regression (SVR) 
 
 The general purpose of linear regression methods is to minimize the SSE. Classical linear models are 
generally not concerned with determining the error level. The SVR method can achieve this using an objective 
function with a constraint [29]. The main purpose of SVR is to minimize the L2 form of hyperplane coefficients. 
The constraint of the objective function is that the estimation error remains within a certain margin (𝜀1IJ, 
maximum error). However, in practice, margin deviation (𝛿) can also increase the performance of the model. For 
this reason, margin deviation is usually added to the objective function. The general objective function and 
constraint function used in SVR are given in Equation (4) and (5). In SVR, it is tried to ensure that according to 
the values of the hyperparameters C and 𝜀1IJ,, the maximum number of training data remains within the margin 
limits of the hyperplane. 
 
min	( .

/
	‖𝛽‖/ + 𝐶∑ |𝛿%|D

%E. 	)                                                             (4) 
|𝑦$% − 𝑦%| < 	 𝜀1IJ +	 |𝛿%|	                                                (5) 
 

For complex data where linear separation is difficult, the SVR method uses kernel functions. Kernel functions 
increase the dimension of the input space and help find the most suitable hyperplane in the new dimensions to be 
formed. Although there are different kernel functions in the literature; Linear, RBF, and Polynomial kernel 
functions given in Equation (6), (7), and (8) are used in this study. 
 
𝐾T%U(𝑥%, 𝑥V) = 𝑥%𝑥V                                                                         (6) 
𝐾WXYZ𝑥%, 𝑥V[ = exp_−𝛾	a𝑥% −	𝑥Va

/
b 			𝛾 ∶ 	𝑡ℎ𝑒	𝑠𝑝𝑟𝑒𝑎𝑑	𝑜𝑓	𝑡ℎ𝑒	𝑘𝑒𝑟𝑛𝑒𝑙,	 𝛾 > 0                         (7) 

𝐾jkTZ𝑥%, 𝑥V[ = Z𝛼Z𝑥%𝑥V[ + 	𝜏[
n 	 𝛼: 𝑠𝑙𝑜𝑝𝑒		𝑑: 𝑝𝑜𝑙𝑦𝑛𝑜𝑚	𝑑𝑒𝑔𝑟𝑒𝑒			𝜏: 𝑡𝑟𝑎𝑑𝑒 − 𝑜𝑓𝑓	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟                (8) 

 
 
2.3.4. Decision Tree Regression (DTR) 
 
 Decision Tree [30], one of the supervised learning algorithms, is frequently used in both classification and 
regression problems. The basic principle is to iteratively divide the relevant data set into smaller sub-parts with if–
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else rules. In the resulting tree structure, conditions and results are expressed as condition (decision) nodes, and 
end nodes. The top condition node is called the root node. In DTR, it is important which attribute will be the 
condition node and how long the tree depth will be. Two basic parameters are taken into account while constructing 
the regression tree. The first of these is how homogeneous (impurity) the data is in each partition. 

In DTR, homogeneity is calculated with the standard deviation. The decision tree is tried to be created to 
include homogeneous instances of the dependent variable. For this reason, the condition node selection should be 
made by considering the decrease in standard deviation in each partitioning. For this, the Standard Deviation 
Reduction (SDR) value, which is dependent on the standard deviation decrease, is taken into account in each 
segmentation. SDR is the second important parameter in the creation of DTR. The attribute with a high SDR value 
is selected as the condition node. Equation (9) and (10) show how to calculate the SDR for an attribute. In the 
equations, 𝑦   and 𝑓 represent the dependent variable and an attribute of the training data, respectively. 𝑆(𝑦, 𝑓), 
are the sums of the probabilities of each value of the independent variable multiplied by the dependent-variable-
standard-deviation-value calculated with respect to the relevant independent variable. 
 
𝑆𝐷𝑅(𝑦, 𝑓) = 𝑆𝑡𝑑(𝑦) − 𝑆(𝑦, 𝑓)                                         (9) 
𝑆(𝑦, 𝑓) = 	∑ 𝑃(𝑐)𝑆(𝑐)t∈v                                                 (10) 
 
2.3.5. Random Forest Regression (RFR) 
 
 Overfitting is among the common problems of decision tree algorithms. Random forest algorithms in which 
more than one decision tree is run can be used to overcome the overfitting problem. With this feature, the random 
forest algorithm is among a well-known ensemble method in the literature [23]. As shown in Equation (11), for 
the given feature set X, the estimate calculated by a random forest regression (RFR) method containing T DTRs is 
the average of T DTRs. 
 
𝑅𝐹𝑅jxyn	(𝑋) = 	

.
{
	∑ 𝐷𝑇𝑅%(𝑋){

%E.                                                        (11) 
 
2.3.6. K-Nearest Neighbours Regression (KNNR) 
 
 KNNR [31], a non-parametric technique, uses similarity (distance) information for prediction. The basic 
principle is to find the similarity (distance) with each data in the data set of the attribute (𝑋 = {𝑥., 𝑥/, . . 𝑥1}) to be 
estimated. The similarity value of 𝑋 with the jth data can be calculated with the Minkowski distance given in 
Equation (12). The distance found is called Manhattan distance in case of p=1, and Euclidean distance in case of 
p=2. Then, according to the calculated similarity values, the average of the dependent variables (𝑦) of the K nearest 
neighbour data gives the prediction value (Equation (13)). 
 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = �	∑ Za𝑥% −	𝑥%
(V)a[

j1
%E. �

�
�                                                      (12) 

𝐾𝑁𝑁𝑅jxyn	(𝑋) = 	
.
�
	∑ 𝑁𝑔%

�,						𝑁𝑔 ∈�
%E. 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠	𝑠𝑒𝑡	                                                  (13) 

 
2.3.7. Feedforward Neural Network Regression (FFNNR) 
 
 Artificial neural networks (ANNs) are a supervised learning method that has been used in the literature for 
many years. The basic components of ANNs are nodes (neurons) and layers containing nodes. ANNs models may 
differ according to the type of problem. In other words, different ANNs can contain different numbers of layers 
and nodes. Nodes can be connected to each other in different ways. ANN models that do not contain a cycle are 
called Feedforward Neural Networks (FFNNs). An FFNN node multiplies the values from the input attributes or 
previous layer nodes by weight coefficients (𝑤) and calculates their sum. An intercept (𝑏) value can be added to 
this total. Initially, 𝑤 and 𝑏 values are usually randomly determined. The value obtained as a result of these 
operations is then transferred to a non-linear function called the activation function (AF, 𝜎). Since the w and b 
values of the node also determine the output of AF, the behavior of each node in FFNN can be independent and 
different from each other. This causes the outputs of different nodes to be more dominant for different input values. 
The purpose of AF is to provide both non-linear and allow the model to be differentiable in order to determine the 
optimum weight and bias values. The output value (𝑛k��) of an FFNN node is found by Equation (14). 
 
𝑛k�� = 	𝜎(𝑏 +	∑ 𝑥%𝑤%1

%E. )                                                                 (14) 
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 The main purpose of FFNN is to find the optimum values of w and b for each node that will minimize the 
cost function (𝐶v) of the model. For this, a gradient decent-based optimization process is performed for a certain 
number of epochs. These operations are called back-propagation. The cost function used for regression in FFNN 
is as in Equation (15). 
 
𝐶v = 	

.
D
∑ (𝑦$% − 𝑦%)/D
%E. 	                                                                  (15) 

 
2.4. Data Set and its Characteristics 
 
 The structure of the data set used for artificial intelligence algorithms and the pre-processing process are 
important. Numerical, categorical, or ordinal-type values can be found in the data collected in engineering. Most 
of the time, heterogeneous data types need to be brought into a format that the algorithm to be used will evaluate. 
In addition, how much all the attributes in a data set affect the regression result is another issue that needs attention. 
In this section, the details of the data set obtained as a result of the experiments, the pre-processing process of the 
data set, and the quality analysis will be given. The 9 attributes considered in the data set, and the mixture amounts 
of these attributes are given in Table 3. Compressive strength tests were applied on the 1st and 3rd days of the 
concrete series prepared considering these mixing ratios, and the obtained strength values are given in Table 4. 
The designed laboratory studies contain 135 data for 9 attributes and each response value (fc,1 day and fc,3 days). 
The heatmaps showing the correlation relationship of the considered attributes are presented in Figure 1. 
Correlation relations of the attributes are given for fc,1 day in Figure 1.a and fc,3 days in Figure 1.b. Figures 1.a 
and 1.b clearly showed similar results. Figure 1.a pointed out that there was a negative correlation between fc,1 
day, and recycled fine, coarse 1, and coarse 2. The main reason for this situation was that RCAs have high water 
absorption capacity and low specific gravity values. The relationship between aggregates revealed a negative 
correlation between natural and recycled fine. For the natural fine used in this study, the water absorption was 
1.5%, and the specific gravity value was 2.66 g/cm3, while these values were 9.8% and 2.48 g/cm3 for recycled 
fine, respectively. Thus, the study's use of natural fine as fine aggregate showed positive effects on strength values. 
When the relationship between fc,3 days, and natural fine, coarse 1, and coarse 2 was examined, it was seen that 
there was a correlation of approximately 0.75. As the use of natural aggregate increased in the study, the increase 
in strength values confirmed this result. Again, Figure 1.b showed a negative correlation between natural coarse 
1-2 and recycled coarse 1-2. The mortar on the surface of the recycled aggregate caused low mechanical properties. 
Since all of the basic input attributes used in this study are numeric, no encoding was needed. However, since 
algorithms such as SVR and FNNR are sensitive to scale differences between attribute values, it is necessary to 
use normalized values. For this reason, both normalized and real-valued forms of the data set were used in the 
experiments. 70% of the data set was used for training and 30% for test data. 
 
3. Experiments 
 
 In this study, “fc,1” and “fc,3” values were tried to be estimated according to the relevant input attributes. For 
this, seven different machine learning algorithms were used. Although there are different metrics for the evaluation 
of the regression results, R-squared (𝑅/) and Mean Squared Error (MSE), which are frequently used in the 
literature, were taken into account in this study. 𝑅/, given in Equation (16), which is stronger against outliers, 
gives an idea about the variance ratio for the dependent variable. As can be seen from Equation (17), MSE shows 
the mean squared difference between the prediction and the true value. 
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Table 4. The features in the data set and response values 
 

Mixture Code 
fc,1 day fc,3 days 
Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 

NAC-1 33.2 33.9 34.2 39.8 40.1 40.2 
NAC-2 30.9 30.4 30.0 37.0 36.7 37.0 
NAC-3 25.2 25.9 25.7 33.7 34.5 33.8 
NAC-4 20.7 20.7 21.1 28.6 28.8 29.1 
NAC-5 17.2 17.2 17.4 24.2 24.6 24.8 
NAC-6 36.4 36.6 36.7 43.3 44.0 43.3 
NAC-7 33.2 33.1 33.5 40.3 40.4 40.6 
NAC-8 28.7 29.0 28.7 37.1 37.5 37.3 
NAC-9 25.0 24.8 24.9 33.1 34.0 33.5 
NAC-10 19.3 19.7 20.7 27.7 28.5 28.7 
NAC-11 39.5 40.0 39.8 46.5 46.9 46.9 
NAC-12 36.5 36.3 36.1 44.1 43.5 44.0 
NAC-13 32.8 32.9 32.4 41.8 41.1 41.5 
NAC-14 28.5 28.1 28.4 37.1 37.3 36.6 
NAC-15 23.7 24.4 24.3 33.0 32.3 33.2 
RAC-1 19.1 18.6 18.3 23.4 23.5 23.5 
RAC-2 16.5 16.1 16.9 21.6 21.3 21.2 
RAC-3 14.1 14.6 14.9 19.8 19.9 20.3 
RAC-4 12.3 12.6 13.0 17.5 17.5 17.9 
RAC-5 10.6 10.1 10.4 14.7 14.2 14.8 
RAC-6 21.9 21.2 21.1 25.8 25.9 25.4 
RAC-7 18.3 17.6 18.3 23.0 22.8 23.3 
RAC-8 16.1 15.7 15.6 20.0 19.8 20.4 
RAC-9 13.8 13.9 14.3 18.9 18.7 18.4 
RAC-10 12.0 12.6 11.7 16.9 17.1 17.1 
RAC-11 23.4 23.3 24.0 28.3 28.1 28.6 
RAC-12 20.4 20.5 20.0 24.9 24.1 24.2 
RAC-13 18.0 17.8 17.9 22.8 22.2 22.9 
RAC-14 15.1 15.8 15.6 20.0 20.3 20.7 
RAC-15 13.6 13.5 13.9 18.7 18.8 18.1 
RCAC-1 25.5 25.3 24.8 31.4 32.1 31.2 
RCAC-2 23.3 23.4 23.1 28.9 28.2 28.6 
RCAC-3 21.1 21.1 20.9 26.4 26.7 26.0 
RCAC-4 19.6 19.6 19.0 24.8 24.2 24.3 
RCAC-5 17.7 17.8 17.5 21.7 22.3 21.9 
RCAC-6 29.3 29.4 29.2 34.8 34.9 34.1 
RCAC-7 26.9 26.2 26.8 31.5 31.1 31.9 
RCAC-8 23.9 23.2 23.5 28.6 28.6 29.0 
RCAC-9 21.7 21.2 21.3 26.1 26.4 26.1 
RCAC-10 19.5 19.3 19.2 23.7 23.8 23.5 
RCAC-11 32.5 32.1 32.6 37.5 37.0 37.2 
RCAC-12 29.9 29.9 29.1 34.5 34.4 34.4 
RCAC-13 26.1 26.8 26.4 31.8 31.2 31.0 
RCAC-14 23.3 23.6 23.3 28.3 28.2 27.9 
RCAC-15 21.3 21.4 21.2 25.4 25.5 25.2 
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Figure 1. The heatmap of the data set according to fc,1 day and fc,3 days 
 
In the equations; 𝑦, 𝑦$, 𝑦�	, and 𝑁 represent the true value, the prediction, the true value mean, and the total number 
of data in the data set, respectively. A high (close to 1) 𝑅/ and low MSE value shows high model performance. In 
general, a good regression model should aim for a high R² (indicating a good proportion of explained variance) 
and a low MSE (indicating accurate predictions). A high (close to 1) 𝑅/ and low (close to 1) MSE value shows 
high model performance. A higher R² suggests a better-fitting model, but a high R² alone does not guarantee a 
model's correctness or practical significance. On the other hand, MSE is a useful metric for assessing the overall 
accuracy of the model. When these two metrics are evaluated together, a more objective assessment can be made. 
In addition, the correlation between the prediction results and the actual results is also discussed in the experimental 
results. 
 

𝑅/ = 	1 −	∑ (���	�$�)�
�
���
∑ (���	��)��
���

                                        (16) 
 
𝑀𝑆𝐸 =	 .

D
	∑ (𝑦% −	𝑦$%)/D

%E.                           (17) 
 
3.1. MLR Experiments 
 
 The first ML algorithm used is MLR. Figure 2 shows the model developed using MLR and the effects of the 
parameters used in the model on the compressive strength. Since the main purpose of the study is to examine the 
effects of RCAs, only the effects of RCAs are given as variables in the figures. For example, Figure 2.a shows the 
effect of fine RCA on the strength values and the relationship between the actual values and the predicted values. 
Similarly, Figure 2.d shows the effect of fine RCA on fc,3 days. Figure 2.g and 2.h show the correlation between 
actual and predicted values in MLR analyses for fc,1 day, and fc,3 days. On the lower right side of Figure 2, the R2 
and MSE values of the model and parameters are given in detail. In MLR analyses for fc,1 day R2 and MSE were 
0.970 and 1.763, respectively, while the values of these metrics for fc,3 days data were 0.984 and 1.119, 
respectively. MLR was succeeded in obtaining successful results in both datasets. The correlation value between 
actual values and estimates is 0.985 for fc,1 day and 0.993 for fc,3 days. Detailed evaluation of MLR performance 
together with other methods will be presented in the discussion section. 
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Figure 2. Prediction results on compressive strength of models and parameters developed using MLR. 

 
3.2. Polynomial Regression Experiments 
 
 The second ML algorithm used is polynomial regression analysis. While performing the polynomial 
regression analysis, the best result was tried to be achieved by using different polynomial degrees. R2 and MSE 
results obtained for degrees from 1 to 8 are shared in Table 5. 
 

Table 5. Polynomial regression analysis results for different polynomial degrees 
 

     Degree     
Class  1 2 3 4 5 6 7 8 

fc,1 day R2 0.970 0.982 0.993 0.997 0.997 >> -1000 >> -1000 >> -1000 
MSE 1.763 1.047 0.429 0.170 0.171 654 929 973 

fc,3 days R2 0.984 0.998 0.997 0.998 0.998 >> -1000 >> -1000 >> -1000 
MSE 1.119 0.174 0.203 0.148 0.149 >> 1000 >> 1000 >> 1000 

 
 
3.3. SVR Experiments 
 
 The third ML algorithm used is the SVR method. Three types of estimation algorithms, linear, polynomial 
and RBF regression, were used while performing this analysis. Normalized values of data sets were used in the 
analysis. The R2 and MSE values obtained as a result of the analyses are given in Table 6. The best R2 and MSE 
values for both datasets were obtained with SVR using the polynomial kernel function, albeit with a small 
difference. The metric values of fc for 1 day are 0.995 and 0.005, respectively, while fc is 0.998 and 0.003 for 3 
days. The lowest performance for both datasets was obtained in SVR using the linear kernel. Figure 4 shows the 
detailed prediction results on the compressive strength of the model developed using the SVR method and the 
parameters used in the model. 
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Figure 3. Prediction results on compressive strength of model developed using polynomial regression and the 

relevant parameters. 
 
 
 

Table 6. SVR regression analysis results for different kernels 
 

Class Kernel R2 MSE 

fc,1 day 
Linear 0.970 0.034 
Polynomial 0.995 0.005 
RBF 0.995 0.006 

fc,3 days 
Linear 0.985 0.003 
Polynomial 0.998 0.003 
RBF 0.996 0.003 

 
 
3.4. DTR Experiments 
 
 The fourth ML algorithm used is the DTR method. Looking at the graphs of data set attributes and prediction 
results given in Figure 5, it is seen that the error increases even more in predictions where the true value is greater 
than 25. In particular, the prediction errors between 25-35 were higher. 
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Figure 4. Compressive strength prediction results of models developed with SVR algorithm and its parameters. 

 

 
Figure 5. Compressive strength prediction results of models developed with DTR algorithm and its parameters. 
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3.5. RFR Experiments 
 
 In the predictions using the RF method, firstly, experiments were carried out for different tree numbers and 
the effect of the number of trees on the prediction results was examined. The metric results obtained are shared 
in Table 7. The increase in the number of trees was not a factor in increasing the performance. The best R2 and 
MSE values for fc, 1-day data were 0.916 and 4.891, respectively, and these values were obtained in the 2-tree 
RFR model. For these data, the increase in the number of trees affected the performance negatively. The best R2 
and MSE values in experiments for fc,3 days were 0.975 and 1.805, respectively. These results were captured 
with the 10-tree RFR model. 
 

Table 7. RFR regression analysis results for different tree numbers 
 

 Tree Number 
Class  2 3 5 10 20 30 

fc,1 day 
R2 0.916 0.870 0.908 0.891 0.893 0.910 
MSE 4.891 7.885 5.375 6.355 6.255 5.26 

fc,3 days 
R2 0.932 0.911 0.951 0.975 0.937 0.949 
MSE 4.869 6.309 3.474 1.805 4.476 3.66 

 

 
Figure 6. Compressive strength prediction results of models developed with RFR algorithm and its parameters. 

 
3.6. KNN Experiments 
 
 The KNN regression experiments were carried out for 2 to 10 neighbours. The metric results of these values 
are given in Table 8. As can be seen in Figure 7, the prediction errors are relatively noticeable at the values 
where the actual value is less than 25. 
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Table 8. KNN regression results for different neighbour numbers 
 

 Neighbour Number 
Class  2 3 4 5 6 7 8 9 10 

fc,1 day 
R2 0.957 0.965 0.949 0.942 0.946 0.924 0.914 0.907 0.910 
MSE 0.050 0.041 0.060 0.067 0.063 0.089 0.101 0.108 0.104 

fc,3 days 
R2 0.973 0.978 0.965 0.960 0.961 0.945 0.939 0.932 0.937 
MSE 0.031 0.025 0.040 0.045 0.044 0.062 0.068 0.077 0.071 

 

 
Figure 7. Compressive strength prediction results of models developed with KNN algorithm and its parameters. 
 
3.7. FFNNR Experiments 
 
 The last regression algorithm used in this study is FFNNR [32]. It can be seen from Figure 8 that the fc,3 days 
predictions were more successful. However, FFNN models have many hyper-parameters that affect the result. 
Although optimizing these parameters is the subject of another study, we observed the effect of different LR values 
of the model developed. The metric results obtained in these additional tests are given in Figure 9. In the analyses, 
R2 and MSE values were observed according to LR change. The most successful LR values were found to be 0.089 
for fc,1 day, and 0.078 for fc,3 days. The best R2 and MSE values obtained were also captured with these LRs. 
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Figure 8. Compressive strength prediction results of models developed with FFNNR algorithm and its 

parameters. 
 

 
 

Figure 9. The results of R2 and model errors for different LRs. 
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4. Discussion 
 

The performance of the MLR method is high in both data sets. It is also possible to examine the strength value 
predicts of RCA in terms of attributes. For example, the actual and predicted values of fc,1 day were compared 
according to the r_fine, r_coarse1 and r_coarse2 attributes. As can be seen in these comparisons, the performance 
was even higher at values greater than zero for these attributes. The prediction errors often occurred on data where 
these metric values were 0. In both data sets, the prediction performance of all values where the r_fine parameter 
was different from zero was more successful than the non-zero values of the other parameters. Prediction errors 
were generally between 25-35.  In the polynomial regression experiments, the best R2 value for 𝑓t, 1	 day was 0.997 
and the MSE value was 0.170. These values were 0.998 and 0.148 for fc,3 days, respectively. The most successful 
value for 𝑓t, 1	day was obtained when the polynomial degree was 4. Increasing the degree of polynomial initially 
increased the performance, but after the 6th order, the performance deteriorated. A similar situation was observed 
for 𝑓t, 3. In both fc,1 day and fc,3 day experiments, the correlation value reached a very high value of 0.999. In both 
data sets, the prediction performance of all values where the r_fine parameter was different from zero was more 
successful than the non-zero values of the other parameters. Prediction errors were generally between 25-35.  

In SVR, the correlation value for fc,1 is 0.998, while fc,3 is 0.999. fc performs are better at non-zero r_fine 
values in the 3-days data set. Prediction errors occurred while fc,3 days was generally between 25-35, and fc,1 day 
was below 25. Besides, in experiments with the DT model, R2 values of RCAs for fc,1 day and fc,3 day were 0.968-
0.887, and MSE values were 1.880-8.081, respectively. These results were lower than the previously used models. 
However, the correlation values were 0.986 for fc,1 day, and 0.948 for fc,3 day. In RFR, increasing the number of 
trees for the data sets did not have a clear effect on the result. Compared to DT, performance decreased for fc,1 
day and increased for fc,3 day. However, overall performance was poor compared to other methods. According to 
the prediction results of fc,1 day and fc,3 days, the correlation values were 0.961 and 0.989, respectively. Looking 
at the prediction comparisons, it was seen that the prediction errors are at the points where the true value was 
between 25-35. The best R2 and MSE values of K-NN for both fc,1 day and fc,3 days were obtained by evaluating 
the 3 nearest neighbors. As a result of fc,1 day experiments, the best R2, and MSE values are 0.965-0.050, while 
these values for fc,3 days were 0.978-0.025. The increase in the number of neighbours negatively affected the 
performance. The correlations between the predicted and actual values of the fc,1 day, and fc,3 days experiments 
were 0.989 and 0.993, respectively. R2 and MSE values obtained in regression analyses with two-layer FFNNR, 
each containing 30 nodes, were 0.981-0.022 for fc,1 day and 0.998-0.020 for fc,3 days. The correlation results for 
both data sets were 0.994 and 0.999 respectively. Accordingly, the results of the FFNNR analysis for fc,3 days 
were more successful. 
 Observed variability in performance between different machine learning algorithms on the same dataset can 
be attributed to a variety of factors that reflect the inherent complexities and nuances associated with the 
algorithms and dataset. When the results are analyzed, it is seen that there is a non-linear relationship in the data 
set. In such data spaces, the performance of models such as Polynomial Regression and SVR may come to the 
forefront. In general, although a certain success was achieved in all models, the nonlinear relationship was 
captured even better with Polynomial Regression, SVR and FFNNR. 
 
5. Conclusions 

This study aimed to adapt seven different well-known machine learning regression algorithms, rather than a 
single method, to predict with high accuracy the early wet compressive strength of concrete mixtures containing 
different proportions of recycled concrete aggregates. This paper is also unique in that it simultaneously predicts 
the early age compressive strength of concrete produced using construction demolition waste using seven different 
machine methods. The reduction of environmental pollution and the effect of recycled concrete aggregates on 
strength by enabling waste materials to be reduced, recycled, and reused by using post-earthquake recycled 
concrete aggregates were examined in detail. 

While the best performance for fc, 1 day was given by Polynomial regression, SVR, and FFNNR, respectively, 
in the experiments, these three methods achieved approximately the same success in the fc,3 days experiments. In 
general, the 4th order Polynomial regression model stands out as the most appropriate model. The lowest 
performance for fc,1 day was observed in RFR analysis, and the lowest performance for fc,3 days was observed in 
DTR. Especially considering that thousands of new buildings were built after the earthquake in Elazig, it becomes 
even more important to estimate the early-age compressive strength using different machine learning algorithms. 
It is thought that evaluating these wastes, which arise in terms of sustainable development and circular economy, 
will provide significant environmental and economic gains by reducing the consumption of natural resources and 
reusing these materials. The authors will focus on metaheuristic optimization-based machine learning methods in 
their future studies in order to obtain better results in terms of different metrics. 
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