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ABSTRACT 
 

   In this study, viscous dampers are optimally placed between two adjacent structures with the aim of preventing 

pounding. Governing equations are derived in time domain for the optimization problem. Target damping ratios 

are obtained for the coupled system and used as active constraints in the numerical optimization stage. The 

damping coefficients of the dampers are chosen as design variables, and the sum of the damping coefficients is 

minimized under the constraints. An algorithm featuring numerical optimization and time history analysis is put 

forward to test the candidate optimal design under the earthquake loads of interest. The relative displacements 

are checked at all storey levels to ensure that they remain below the target values. Two 4-storey adjacent shear-

building models are used in numerical examples to validate the proposed method. The appropriate number and 

locations of linear viscous dampers between adjacent structures are determined, and their effects on structural 

behaviour are evaluated.  

 

   Keywords: Pounding, target damping ratio, added dampers, optimal passive control, prevent collision 

 

 

BİTİŞİK NİZAM YAPILARIN ÇARPIŞMASINI ÖNLEMEK İÇİN BİR 

HEDEF SÖNÜM ORANI VE RÖLATİF DEPLASMAN DÜŞÜNÜLEREK 

OPTİMUM SÖNÜMLEYİCİ YERLEŞİMİ 

 

ÖZ 
 

   Bu çalışmada, bitişik nizam iki yapı arasına, sönümleyiciler çarpışmayı önlemek için optimum olarak 

yerleştirilir. Optimizasyon problemi için yönetici denklemler zaman tanım alanında türetilir. Hedef sönüm oranı 

girişimli sistem için bulunur ve sayısal optimizasyon aşamasında aktif kısıtlamalar kullanılır. Sönümleyicilerin 

sönüm katsayıları tasarım değişkeni olarak seçilir ve sönüm katsayılarının toplamı kısıtlamalar altında minimize 

edilir. Deprem yükleri altında aday optimum tasarımı test etmek için zaman tanım alanında analizleri ve sayısal 

optimizasyonu içeren bir algoritma gösterilir. Bütün katlarda rölatif deplasmanların hedef değerlerin altına düşüp 

düşmediği kontrol edilir. Amaçlanan metodun geçerliliğini göstermek için 4 katlı bitişik nizam kayma 

çerçeveleri sayısal örnek olarak kullanılır. Bitişik yapıların arasına lineer viskoz sönümleyicilerin uygun yerleri 

ve sayıları hesaplanır ve onların yapısal davranış üzerindeki etkileri araştırılır.    

 

   Anahtar Kelimeler: Çekiçleme, hedef sönüm oranı, ek sönümleyiciler, optimum pasif kontrol, çekiçlemenin 

önlenmesi 
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1. INTRODUCTION  
 

   As development occurs, cities have grown increasingly crowded. This phenomenon has caused land values to 

increase and the construction of adjacent structures to become a necessity. The dynamic characteristics of 

entirely independent structures are generally different, and pounding effects may occur during earthquakes. 

Collisions may occur due to different storey levels of adjacent buildings and from their tilting to one side, which 

causes hitting of these adjacent structures. Collisions commonly are seen following earthquakes result in serious 

damage and collapses in problematic buildings. This problem can be solved by adopting new passive, active, or 

semi-active technological systems.  

   Collision of structures during earthquakes is an urgent problem that must be solved by engineers. The simplest 

way to prevent collisions is to construct buildings far apart from each other. Constructing adjacent buildings 

produces pounding issues. The dynamic characteristics of these structures differ because they are generally built 

at different times under different regulation terms using designs independent of each other. The out-of-phase 

characteristics of adjacent structures cause collision.  

   The nature of collision is highly complex and presents an engineering problem that remains difficult to 

address. Pounding of structures with great masses causes impact forces that cannot be predicted. These forces 

can pull down structures that are not going to collapse. Anagnostopoulos [1] provided an account of dangerous 

events owing to pounding. Several other reports on structural damage resulting from pounding of the adjacent 

structures have been published in the literature [2, 3]. Damage statistics has revealed that pounding occurred in 

over 330 collapsed or severely damaged structures; for at least 15% of these structures, pounding was the 

primary reason collapse and severe damage [4].  

   Various impact analytical models have been developed to define the structural response of adjacent structures 

during an earthquake [5]. Stavroulakis and Abdalla [6] provided optimal conditions by minimizing the potential 

energy of adjacent structures with the intent of resolving the separation distance between them under equivalent 

static horizontal forces. With the intent of determining the required separation distance and preventing pounding, 

Jeng et al. [7] advanced the Spectral Difference Method and Double Difference Combination rule based on 

random vibration theory. Lin [8] suggested a statistical method of the mean and standard deviation of the 

separation distance of adjacent buildings based on random vibration theory to prevent pounding. Valles and 

Reinhorn [9] worked on a pounding problem based on the pseudo energy radius; these researchers calculated the 

minimum separation distance and adopted a novel prevention technique to avoid pounding.  

   Luco and De Barros [10] calculated the optimal number of interconnecting dampers uniformly distributed over 

two structures to minimize the transfer function amplitude of the top displacement of the taller building. Zhang 

and Xu [11] found the optimal values of visco-elastic dampers to reduce the maximum seismic response to 

values below the random seismic response. Abdullah et al. [12] favoured a shared tuned mass damper attached to 

adjacent structures to avoid potential pounding and reduce the vibration of structures. Lin and Weng [13] 

considered pounding at the top storey level of a short building and determined the pounding probabilities of 

adjacent buildings separated by a minimum code-specified gap to prevent pounding. Zhu and Xu [14] introduced 

analytical formulas in an attempt to obtain the optimal parameters of Maxwell model defining fluid dampers 

used to link two adjacent structures. Zhu et al. [15] produced three control strategies indicating optimum passive 

control, active control, and semi-active control to prevent pounding. Aldemir and Aydin [16] also proposed an 

active control algorithm for adjacent structures. Kasai et al. [2] proposed a method called the “spectral difference 

(SPD) method,” which was based on the spectrum approach, and described simplified rules to predict the 

inelastic vibration phase. The group then verified the accuracy of the SPD method to explain the effects of 

various parameters on the relative displacement via a closed-form solution.  

   Damper elements are known to develop the seismic behaviour of the structures in which they are installed. The 

passive damping elements used most often for seismic control of structures is viscous and visco-elastic dampers. 

The pounding effect, which is due to out-of-phase vibrations, can be simulated. When the separation distance 

between adjacent structures is short, the high positive value of the relative displacement indicates increased 

pounding risk. The vibration characteristics of adjacent structures lead to changes in relative displacement 

between them. In this study, two adjacent structures are modelled as single degree-of-freedom systems. While 

the adjacent structures are not linked to structural elements, each building changes according to variations in 

their stiffness at every step of optimization. Linear time history analysis is conducted using the ground motion of 

the El Centro NS earthquake to obtain the maximum positive value of the relative displacement between 

adjacent structures. The relative displacement spectra are plotted according to the period ratios of the adjacent 

structures. These period ratios can cause pounding and are investigated.  

   Pounding risk is simulated by adopting a high value of the relative displacement response spectrum. In 

previous applications, a viscous damper was linked between adjacent structures to avoid structural pounding. 

The optimal damping and stiffness values of the passive coupling element are calculated according to the method 
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of Zhu et al. [15]. Time history analyses are conducted once more, and the maximum relative displacements are 

plotted by the period ratio of the adjacent structures in the case where adjacent structures are linked by a viscous 

damper. For different engineering disciplines, damping within a structural system may present different 

importance. Damping can mean only a reference note on a seismic or wind spectral plot, 5% damped spectra 

being the most commonly known parameter among the civil engineering community. For most structural 

engineers, damping refers to changes in overall stress within a structure that is subjected to shock and vibration. 

Experts frequently argue whether a structure should have 2%, 3%, or 4%, but not more than 5%, structural 

damping. 

   The concept of installing supplemental dampers within a structure proposes that these damping elements will 

absorb part of the input energy. The damping level of buildings can be increased to range from 20% to 40% by 

adding dampers. A supplemental damper is an element that can be added to a system to enable withstanding of 

forces resulting from vibrations and energy dissipation. Application of supplemental dampers has gone through 

various applications like from protection related structures to commercial applications on building structures and 

bridges exposed to seismic or wind loads. Fluid damping technology has been proven to be reliable and robust in 

all aspects of implementation to structures. A fluid viscous damper is one of the most well-known passive 

dampers currently available. Fluid viscous devices including a cylindrical piston immersed in a viscous fluid are 

broadly used in aerospace and the military, and they have been recently used in building applications [17]. The 

main characteristics of these devices are a linear viscous response obtained over a broad frequency range, 

insensitivity to temperature, and compactness in comparison with the stroke and output force they can produce. 

Absorption of energy by the damper occurs through movement of the piston in a highly viscous fluid. The output 

force of the damper is directly proportional to the velocity of the piston if the fluid is purely viscous. 

   When damper allocations are considered, several optimal damper procedures based on active control theories 

have been developed [18-26]. A number of optimal passive damper procedures have been published in the 

literature [12, 27-64].  

   In the Turkish Earthquake Code [65], the buildings do not include structural control systems. It needs a new 

regulation for controlled structures. The explanations in the Turkish Earthquake Code are given as follow: 

Earthquake Gaps, apart from the effect of temperature changes due to basic displacement and rotations due to 

different floor levels, the conditions for gap spaces to be left only for earthquake effects between building blocks 

or existing buildings and new buildings are stated below: 

   - Unless a more unfavourable result than next item is obtained, the gaps shall not be less than the squares root 

of the sum of the squares of the displacements obtained in adjacent blocks or buildings for each storey multiplied 

by the coefficient  defined below. The floor displacements to be taken into account will be the averages of the 

reduced (𝑢𝑖
(𝑥)

) displacements calculated in the nodes at which the columns or curtains are connected. If it is not 

possible to make an account for the existing old building, the location of the old building will not be taken 

smaller than the values calculated for the new building on the same floor. 

(a) If the floors of neighbouring buildings or building blocks are at the same level on all floors, =0.25 (R/I) 

shall be taken. 

(b) If the floors of neighbouring buildings or building blocks are of different levels, even on some floors, 

=0.5 (R/I) for the whole building shall be taken. 

   - The minimum amount of gap to be released shall be at least 30 mm up to 6 m height and at least 10 mm for 

every 3 m height after 6 m. 

   - The joints between the building blocks shall be arranged in such a way that the blocks in the earthquake can 

operate independently of each other in all directions. 

   - In the event that two separate blocks of building or a building are connected to each other by a different 

element and the like, the displacement capacity of the movable bearing on one of the blocks connected to the 

element is in the direction of the two earthquake orientations and directions, Shall be at least 1.5(R/I) times the 

sum of the absolute values of displacements calculated for reduced earthquake loads. 

   In this study, the placement of linear viscous dampers in two shear frames is modelled in an attempt to prevent 

collisions during earthquakes and improve the earthquake behaviours of the resulting structures. To this end, 

equations of the uncoupled and coupled motions of the adjacent structures are formed, and their behaviours with 

and without dampers are determined. Where to locate dampers and how many of them should be installed into a 

structure present an important problem. In this study, a target damping ratio developed by Aydın [31] is applied 

to observe the optimal damper distribution in shear frames, and an algorithm aiming to reach the target inter-

storey drift ratio is used in order to obtain the optimal distribution of dampers placed between adjacent 

structures. The proposed method shows that dampers placed at optimal positions between structures are able to 

reduce the relative displacement between adjacent buildings to the desired level and eliminate collision risk 

during earthquakes. 
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2. MATERIAL AND METHODS 
 

2.1. Formulation of the Problem 
 

   Consider two s-storey, adjacent shear frames with floor pounding at the same level (Figure 1). By adding fluid 

viscous dampers between the structures, their collision can be prevented. Equations of motion belonging to 

structures A and B are provided in uncoupled form in the case without added dampers. 

 

𝑴𝑨�̈�𝑨(𝒕) + 𝑪𝑨�̇�𝑨(𝒕) + 𝑲𝑨𝑼𝑨(𝒕) = 𝑴𝑨𝒓�̈�𝑔(𝑡)              (1) 

 

𝑴𝑩�̈�𝑩(𝒕) + 𝑪𝑩�̇�𝑩(𝒕) + 𝑲𝑩𝑼𝑩(𝒕) = 𝑴𝑩𝒓�̈�𝑔(𝑡)              (2) 

 

   In Figure 1, 𝑼𝑨(𝒕) and 𝑼𝑩(𝒕) stand for the displacement vectors and �̇�𝑨(𝒕) and �̇�𝑩(𝒕) stand for the velocity 

vectors of structures A and B, respectively. �̈�𝑨(𝒕) and �̈�𝑩(𝒕)stand for the acceleration vectors and �̈�𝑔 stands for 

the ground acceleration. In the same way, 𝑴𝑨 and 𝑴𝑩 are symbols for mass, 𝑪𝑨 and 𝑪𝑩 stand for structural 

damping, and 𝑲𝑨 and 𝑲𝑩 stand for the stiffness matrices of structures A and B, respectively. As well, r refers to 

the impact vector, the elements of which correspond to a degree of freedom of 1 in the direction of the 

earthquake motion. When the vibrations of structures A and B are modelled together, the equation of motion for 

the situation without dampers can be written as follows 

 

𝑴�̈�(𝒕) + 𝑪�̇�(𝒕) + 𝑲𝑼(𝒕) = 𝑴𝒓�̈�𝑔(𝑡)               (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Adjacent model structures 

 

   Here, the mass, structural damping, and stiffness matrices of a coupled system can be given as 

 

𝑴 = [
𝑀𝐴 0
0 𝑀𝐵

] 𝐾 = [
𝐾𝐴 0
0 𝐾𝐵

] 𝐶 = [
𝐶𝐴 0
0 𝐶𝐵

]              (4) 
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   The structural damping matrix, C can be calculated in proportion to only the mass matrix, only the stiffness 

matrix, or a linear combination of mass and the stiffness matrices. The equation of motion can be written as 

follows when dampers are placed between structures. 

 

𝑴�̈�(𝒕) + (𝑪 + 𝑪𝒂𝒅)�̇�(𝒕) + 𝑲𝑼(𝒕) = 𝑴𝒓�̈�𝑔(𝑡)              (5) 

 

where 𝑪𝒂𝒅  denotes the damping coefficient of the manufactured viscous damper. This type of damper is added 

to each storey in a shear building. 𝑪𝒂𝒅  is a non-proportional damping matrix that should be optimally designed 

to minimize a target. The matrix, 𝑪𝒂𝒅  can be decomposed into corresponding added viscous dampers and is 

written as 

 

𝑪𝒂𝒅 = 𝑐1𝑪𝟏 + 𝑐2𝑪𝟐 + ⋯ + 𝑐𝑠𝑪𝒔                (6) 

 

where 𝑐𝑖 (𝑖 = 1,2, … , 𝑠) corresponds to the damping coefficient of the ith added damper and 𝐂𝐢 (𝑖 = 1,2, … , 𝑠) 

signifies the location matrix of the ith added damper. The location matrix is also equal to the partial differential 

of 𝑪𝒂𝒅  regarding ith added damping coefficient of dampers as  

 

𝑪𝒊 =
𝜕𝑪𝒂𝒅 

𝜕𝑐𝑖 
                  (7) 

 

   In the fundamental mode for a coupled system, the following equation can be written; 

 

2𝜁1 𝜔1 =
𝝓𝟏

𝑻(𝑪+𝑪𝒂𝒅 )𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

=
𝝓𝟏

𝑻𝑪𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

+
𝝓𝟏

𝑻𝑪𝒂𝒅 𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

              (8) 

 

where 𝜁1  is the damping ratio observed after dampers are inserted into the structure, 𝝓𝟏 denotes the normalized 

fundamental mode vector, and 𝜔1 signifies the undamped natural circular frequency of the coupled system. The 

first term on the right side of Equation (8) corresponds to the proportional damping matrix. No coupling exists 

between the first mode and any of the other modes. This situation is given as follows 

 
𝝓𝟏

𝑻𝑪𝝓𝒊 

𝝓𝟏
𝑻𝑴𝝓𝒊 

= {
2𝜁𝑠𝑡 𝜔1   𝑖 = 1
       0        𝑖 ≠ 1

                (9) 

 

where 𝜁𝑠𝑡  denotes the structural damping ratio for the fundamental mode. The second term on the right side of 

Equation (8) includes the non-proportional damping matrix. However, to simplify the damper design, we can 

conveniently assume that  

 
𝝓𝟏

𝑻𝑪𝒂𝒅 𝝓𝒊 

𝝓𝟏
𝑻𝑴𝝓𝒊 

= {
2𝜁𝑎𝑑𝜔1   𝑖 = 1

       0          𝑖 ≠ 1
              (10) 

 

where 𝜁𝑎𝑑 signifies the added damping ratio for the fundamental mode. By using Equations (9) and (10), 

Equation (8) can be rewritten as follows 

 

2𝜁1 𝜔1 = 2(𝜁𝑠𝑡 + 𝜁𝑎𝑑)𝜔1               (11) 

 

   Therefore, 

 

𝜁1 = 𝜁𝑠𝑡 + 𝜁𝑎𝑑                 (12) 

 

   The structural damping ratio 𝜁𝑠𝑡 is generally adopted for different types of structures. When the dampers are 

inserted into the structure, the parameter ζ1  signifies the desired value of the damping ratio. The parameter 𝜁𝑎𝑑  

occurring because of the effects of the added dampers is the added damping ratio. If we know the structural 

damping ratio and the desired total damping ratio, the desired 𝜁𝑎𝑑  can be determined from Equation (12). 

Therefore, the desired added damping ratio is calculated as follows 

 

𝜁𝑎𝑑 = 𝜁1 − 𝜁𝑠𝑡                 (13) 

 

   Equation (8) can be rewritten for the added damping ratio as  
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2𝜁𝑎𝑑 𝜔1 =
𝝓𝟏

𝑻𝑪𝒂𝒅 𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

= 𝑐1 
𝝓𝟏

𝑻𝑪𝟏 𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

+ 𝑐2 
𝝓𝟏

𝑻𝑪𝟐 𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

+ ⋯ + 𝑐𝑠 
𝝓𝟏

𝑻𝑪𝒔 𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

          (14) 

 

where the coefficient 𝜇𝑖  can be written as follows   

 

𝜇𝑖 =
𝝓𝟏

𝑻𝑪𝒊 𝝓𝟏 

𝝓𝟏
𝑻𝑴𝝓𝟏 

                (15) 

 

   By using Equations (14) and (15), the formula for the desired added damping ratio for the fundamental mode 

can be written as follows  

 

𝜁𝑎𝑑 =
1

2𝜔1 
(𝜇1 𝑐1 + 𝜇2 𝑐2 + ⋯ + 𝜇𝑠 𝑐𝑠 ) =

1

2𝜔1 
∑ 𝜇𝑖 𝑐𝑖 

𝑠
𝑖=1            (16) 

 

2.2. Definition of the Optimal Damper Problem for Adjacent Shear Buildings 
 

   Different objective and constraint functions are used in the optimal design of structures. Objective functions 

are used to minimize or maximize the total weight of a structure and or various behaviours. In this study, the 

objective function is chosen to minimize the total damping ratio of dampers placed between two structures; this 

function is defined as follows 

 

Min. 𝑓 = ∑ 𝑐𝑖 
𝑠
𝑖=1                (17) 

 

   The total damping coefficient of the added dampers is indicated by the cost function, which will be minimized 

in Equation (18). In terms of the added damping ratio, Equation (16) can be rewritten as an equality constraint as 

below 

 

𝜁𝑎𝑑 =
1

2𝜔1 
(𝜇1 𝑐1 + 𝜇2 𝑐2 + ⋯ + 𝜇𝑠 𝑐𝑠 =

1

2𝜔1 
∑ 𝜇𝑖 𝑐𝑖 

𝑛𝑠
𝑖=1            (18) 

 

where 𝜁𝑎𝑑  is a fixed damping ratio that can be given as the desired damping ratio. The fundamental natural 

circular frequency, 𝜇𝑖 , is a known parameter from the vibration characteristics of the structure. Either the 

objective function or the equality constraint is the linear function of the design parameters. When we take into 

account the inequality constraints on the upper and lower boundaries of the damping coefficients of every added 

damper, the following result is obtained 

 

0 ≤ 𝑐𝑖 ≤ 𝑐�̅�   (i = 1,2,…,s)             (19) 

 

where 𝑐�̅�  stands for the upper limit of the damping coefficient of the damper in the ithstorey. In practical 

applications, a damper capacity and size corresponding to the upper boundary of the added damper should be 

restricted because of commercial and manufacturing limitations. The effects of the upper limit values of the 

damping coefficients upon the proposed optimal damper problem were investigated and were presented as a set 

of optimal damper designs with respect to various upper limits of the dampers. All of optimal designs obtained 

from the proposed method satisfied the constraints of the RDs under El Centro earthquake. Designers can choose 

a solution among the sets of the optimal design. These optimal designs were discussed in terms of the cost 

function value, added damping value and RDs in section. The upper bound on each damping coefficient plays an 

important role in the proposed optimal damper design. The damper capacity and location in a storey is generally 

chosen among available dampers and their locations in practical applications.  

 

2.3. Proposed Algorithm 
 

   Many optimization tools have been developed to solve the damper optimization problem. Solving the proposed 

optimization problem is easy because the objective and constraint functions are simple and linear functions of 

the design variables. In this optimal damper problem, the numerical minimization module of Mathematica 5.0 

[66] is applied to calculate optimal damper coefficients under specific constraints to minimize the total damping 

cost. Three numerical minimization methods, i.e., Differential Evolution, Nelder Mead, and Simulated 

Annealing, which are well known in the optimization literature, are adopted to solve the optimization problem.  



ÖHÜ Müh. Bilim. Derg. / OHU J. Eng. Sci., 2017, 6(2): 581-592 

 

OPTIMAL DAMPER PLACEMENT TO PREVENT POUNDING OF ADJACENT STRUCTURES CONSIDERING 

A TARGET DAMPING RATIO AND RELATIVE DISPLACEMENT 

587 

   The procedure considering the optimal placement of added dampers in a shear-building frame is given as 

follows: 

Step 1. Read the input data to construct the stiffness matrix (K), and mass matrix (M), and then calculate the 

first natural circular frequency of the total system (ω1), the first mode vector, and the structural 

damping matrix (C). Select a design earthquake for linear time history analysis. Select an upper limit 

of the design variable, 𝑐�̅�. 

Step 2. At the beginning of the algorithm, iteration number=1. 

Step 3. Calculate a new target added damping ratio from the equation 𝜁𝑎𝑑
𝑛𝑒𝑤 = 𝜁𝑎𝑑

𝑜𝑙𝑑 + 0.01. Consider 𝜁𝑎𝑑
𝑜𝑙𝑑 = 0 

in the first iteration. 𝜁𝑎𝑑 is increased by 1% for every iteration in this study.  

Step 4. Minimize the cost function defined in Equation (17) in accordance with the constraints of Equations 

(18)–(19). Adopt the numerical minimization module of Mathematica 5.0 (Wolfram Research 2003) 

to solve the linear optimization problem by conducting three different methods, i.e., Differential 

Evolution, Nelder Mead, and Simulated Annealing. Find a candidate optimal damper design.  

Step 5. Test the candidate optimal damper design achieved in Step 4 by conducting time history analysis and 

calculating the peak relative displacements for all storeys as 𝑅𝐷𝑖 = {𝑈𝐴𝑖(𝑡) − 𝑈𝐵𝑖(𝑡)}𝑝𝑒𝑎𝑘 for i=1,…s, 

where 𝑈𝐴𝑖(𝑡) signifies the displacement of the i
th

 storey in structure A. Stop the iteration if all Relative 

Displacements (RDs) calculated in this step are below the allowable level (assumed to be 0.05 m in 

this study). Otherwise, return to Step 3, increase the iteration number (as iteration number=iteration 

number+1) and compute a new target added damping ratio. 

   This paper is concerned only elastic shear building structures. Moreover, the elastic behavior is taken into 

account in the study. In case of the strong earthquake, it should be used nonlinear time history analyses. May be, 

a nonlinear time history analyses under the strong earthquakes can be added to the snap back test stage in the 

proposed algorithm. In this paper, El Centro (NS) earthquake record is used only. The effects of the selected 

design earthquakes considering the proposed method should be investigated. It can be apply new earthquake data 

to the examples provided in the paper.  

   If all the design variables attain to the upper limit in Step 4 and any one of RD (calculated in Step 5) is not 

below the allowable level, optimization will not satisfy convergence in Step 4. In this case, one should return to 

Step 1 and to increase upper limit of the design variables. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Numerical Example 
 

   Figure 2 shows two 4-storey structures and the dampers placed between them. The storey rigidity and mass of 

structure A are uniformly chosen as 3.0×10
7
 N/m and 3.2×10

4
 kg, respectively, while the storey rigidity and 

mass of structure B are uniformly chosen as 1.0×10
7
 N/m and 6.4×10

4
 kg, respectively. The ratio of periods for 

A and B are determined to be 2.45. Differences in the dynamic characteristics of the structures cause out-of-

phase behaviours during earthquakes and, in turn, collisions. Dampers are added at each storey level as depicted 

in the figure, and the optimal designs of these dampers are found using the proposed algorithm. 

 

 
 

Figure 2. Addition of dampers to each 

storey level of structures A and B 
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   Separate optimal designs are found in the case where the upper limit of the constraint of the damping 

coefficient at each storey is 𝑐̅ = 2.5  𝑥 105 Ns/m, 𝑐̅ = 3.0 𝑥 105 Ns/m, 𝑐̅ = 3.5 𝑥 105 Ns/m, 𝑐̅ = 4.0 𝑥 105 

Ns/m, 𝑐̅ = 5.0 𝑥 105 Ns/m, and 𝑐̅ = 6.0 𝑥 105 Ns/m. In Figure 3, only the changes in cost function at the 1
st
, 

10
th

, 20
th

, and 38
th

 steps of optimization are given for an upper limit of the damping coefficient of 𝑐̅ = 3.5 𝑥 105 

Ns/m. Changes among three methods are shown. The values of the minimum target function in a step can be 

seen in the algorithm when the graphs are viewed. Optimal results obtained from the three methods validate the 

proposed approach. 

 

 
 

Figure 3. Change in objective function during optimization for the constraint 𝑐̅ = 3𝑥105 

Ns/m 

 

 
 

Figure 4. Changes in relative displacement according to the 

iteration steps and damping ratio during the optimization process 

for the constraint 𝑐̅ = 3 𝑥 105 Ns/m 

 

   In the algorithm given in Section 4, optimal designs are found in accordance with different upper constraint 

values of damping coefficients by using El Centro (NS) earthquake acceleration records. Changes in the iteration 
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phases of the relative displacement and added damping ratio of each storey between buildings are shown in 

Figure 4 for the constraint 𝑐̅ = 3 𝑥 105 Ns/m. The results obtained are below the target of 0.05 m. 

 

 
 

Figure 5. Optimal distributions of dampers and relative displacement profiles 

corresponding to these distributions for constraints of 𝑐̅ = 2.5 𝑥 105 Ns/m, 

𝑐̅ = 3 𝑥 105 Ns/m, 𝑐̅ = 3.5 𝑥 105 Ns/m, 𝑐̅ = 4 𝑥 105 Ns/m, 𝑐̅ = 5 𝑥 105 

Ns/m, and 𝑐̅ = 6 𝑥 105 Ns/m 

 

   The optimal distributions of dampers and the relative displacement profiles corresponding to these 

displacements are shown in Figure 5 for constraints 𝑐̅ = 2.5 𝑥 105 Ns/m, 𝑐̅ = 3 𝑥 105 Ns/m, 𝑐̅ = 3.5 𝑥 105 

Ns/m, 𝑐̅ = 4 𝑥 105 Ns/m, 𝑐̅ = 5 𝑥 105 Ns/m, and 𝑐̅ = 6 𝑥 105 Ns/m; these values are obtained from the El 

Centro earthquake. Changes in the damping coefficients of optimal designs corresponding to different constraint 

situations, the target functions corresponding to these designs, and the resulting damping ratios are given in 

Table 1. When the distribution of dampers is examined, increases in 𝑐̅ value cause the optimal distribution to 

increase. In all relative displacement profiles for all optimal designs in Figure 5, the target relative displacement 

(0.05 m) is not achieved. 

 

Table 1. Changes in the damping coefficients of optimal designs corresponding to different constraint 

situations, the target functions corresponding to these designs, and the resulting damping ratios for 4-

storey adjacent buildings 

 

Upper Limit of 

Damping Coefficient 

Ns/m (10
5
) 

Optimal Damping Coefficient 

Ns/m 

Minimum Value 

of Cost Function 

Ns/m 

Target Added 

Damping Ratio 

(%) 

�̅�𝒊 c1 c2 c3 
c4 

 
∑ 𝒄𝒊

𝟒

𝒊=𝟏

 ad 

2.5 0 169771 250000 250000 669771 40 

3.0 0 0 245530 300000 545530 38 

3.5 0 0 164203 350000 514203 37 

4.0 0 0 99547 400000 499547 37 

5.0 0 0 20244.8 500000 520245 40 

6.0 0 0 0 515656 515656 40 
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4. CONCLUSIONS 
 

   In this work, addition of optimal linear viscous dampers between structures is investigated with the aim of 

preventing the collision of two adjacent buildings featuring the same levels and numbers of floors during an 

earthquake. In the proposed method, dampers are placed between layers of the shear frames of adjacent 

buildings. The algorithm put forth aims to ensure that the relative displacement measured at different storey 

levels reaches a specific level. Performing that, a candidate optimum, under upper limit value given for each one 

of the dampers and under target damping ratio, is found in every step and target given for relative displacements 

is tested by conducting time history analysis. When the target values are achieved, the algorithm is stopped. 

Four-storey adjacent shear frames are chosen as numerical examples, and the proposed method is conducted. 

Some parametrical modifications are also investigated, and effectiveness of the proposed method is 

demonstrated. 
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