
Introduction
Lead (Pb) is a lustrous bluish-silver colored metal heavy
metal naturally present in human environment.[1,2]

According to Ahmed et al. (2013),[3] exposure to Pb is
unavoidable, as it occurs through many routes including
contaminated air, water, soil, food and consumer products.
Other sources of Pb are gasoline and house paint, which has
been extended to lead bullets, plumbing pipes, pewter

pitchers, storage batteries, toys and faucets.[4] Pb is com-
mercially important as it is used in the manufacture of Pb-
acid storage electrical batteries, production of fusible metal
alloys and foils, fabrication and synthesis of anti-friction
metals and solder.[5]

Despite the enormous efforts put in place by the gov-
ernment and international health organizations in the
developed and developing countries, exposure to PB per-
sists as one of the major health challenge.[6]
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Abstract

Objectives: Lead (Pb) is a neurotoxicant heavy metal ubiquitously present in the eco-system. The precise mechanism by
which Pb confers its deleterious effects on the cellular profile of the central nervous system remains unknown. The aim of
this study was to investigate the effect of Pb on the medial prefrontal cortex (mPFC) using histological, immunohistological
and morphological techniques.   

Methods: Thirthy juvenile male Wistar rats were used in this study. The rats were randomly assigned into three groups.
Group A served as the control group, Group B received 5 mg/kg Pb-nitrate (PbNO3) orally for 21 days, and Group C received
5 mg/kg PbNO3 and left for an additional 21 days to recover.  

Results: There was a significant decrease in the number of normal neurons in the mPFC of the PbNO3-treated rats. The num-
ber of degenerating neurons significantly increased in the PbNO3-treated groups compared with the control group. A
marked increase was observed in the number of astrocytic cell count in the PbNO3-treated groups compared with the con-
trol. The neuronal cells in the cytoarchitectural profile of the mPFC of the rats receiving PbNO3 showed marked neurode-
generative modification with features of distorted morphology, swollen and vacuolized cytoplasm, and features of either
pyknotic or karyorrhectic nuclei. The cytoarchitecture of the mPFC of the rats in the control group preserved the normal his-
tological outline suggestive of a normal and functional mPFC.    

Conclusion: Exposure to Pb ingestion can result in significant inflammatory responses in the cytoarchitectural profile of the
mPFC. Furthermore, 21 days of cessation of exposure to PbNO3 did not halt or reverse the deleterious effects of Pb on the
mPFC of the rats, suggesting that Pb persists in the central nervous system of the rats.  
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Pb is known to be a neurotoxicant that competes with
and impairs calcium ion signaling in nerve processes.[5,7,8] It
inhibits the differentiation of neurons, suppresses long-
term potentiation (LTP), alters the secretion of neuro-
transmitters,[9–11] and also triggers the production of β-
amyloid proteins.[12] Other deleterious effects of Pb also
include biochemical disruption,[13] cellular alterations,[7,14]

metabolic,[15] and subclinical aberrations which ultimately
lead to death in most cases.[16] An example of this is the
considerable number of children that died in the Zamfara
Pb poisoning in Nigeria. 

According to the descriptions of Liu et al.[17] and Liu et
al.,[18] tastrocytes and microglia are two of the four types of
glial cells in the brain that are involved in the activation
and regulation of the brain immunity in response to patho-
logical conditions.[17] In response to excitotoxicity, astro-
cytes and microglia enhance the production and release of
inflammatory cytokines, increase the generation of reac-
tive oxygen species, suppress the activities of antioxidants,
thereby resulting in cellular loss or injury in the central
nervous system (CNS).[19–22]

Although observations suggest that Pb is capable of
inducing cellular dysfunction in the cortical regions of the
brain, detailed mechanisms of actions remain largely
unknown. The aim of the study was to observe the effect of
Pb on the cytoarchitectural profile of the medial prefrontal
cortex (mPFC) following exposure to Pb-nitrate (PbNO3).

Materials and Methods
All experimental procedures were in accordance with the
guidelines for animal research outlined in the NIH
Guidelines for the Care and Use of Laboratory Animals
as approved by the Institute of Public Health, Obafemi
Awolowo University, Ile-Ife, Nigeria.

The crystal salt of PbNO3 (Carlo Erba, Milano, Italy)
was obtained from the Department of Biochemistry, Afe
Babalola University, Ado Ekiti, Nigeria. The salt was
dissolved in double distilled water and administered oral-
ly using metallic oral gavage. The solution was freshly
prepared before each administration. 

Thirty juvenile male Wistar rats (4 weeks old) weigh-
ing between 38 and 40 g were used for this study. The
rats were obtained from the Department of Pharmacy,
Obafemi Awolowo University, Ile-Ife, Nigeria. The rats
were allowed to acclimatize for two weeks in the Animal
Holdings of the Afe Babalola University, Ado-Ekiti,
Nigeriai and housed in stainless steel cages (48×28×20
cm) containing wood-shaving bedding. The beddings
were changed once a week. The room was maintained on
natural day/light cycle, at room temperature. The rats in
all groups were allowed free access to standard laborato-

ry rat pellet and clean drinking water was made available
in polycarbonate bottles ad libitum. 

Twenty-four hours after acclimatization, the thirty
juvenile rats (now weighing about 40–44 g) were random-
ly assigned into three groups designated as Group A
(n=10), Group B (n=10), and Group C (n=10). The rats in
Group A (control group) were treated with double distilled
water, the rats in Group B (PbNO3-treated) with 5
mg/kg[23] PbNO3 by oral gavage for 21 days, and the rats in
Group C (Pb-treated) were treated with 5 mg/kg of
PbNO3 and left for 21 days to recover before they were
sacrificed. No death of animal occurred during this study.
At the end of the study, 10 rats from each group were
exposed to an overdose of Nembutal (100 mg/kg, i.p.) and
transcardially perfused with 4% paraformaldehyde, fol-
lowed by 10% buffered formalin while the rats were in
inverted position. Brain samples were excised and post-
fixed in 10% formalin with 30% sucrose. The mPFC
(4.70–2.70 mm ventral and 4.70–2.70 mm dorsal to the
bregma) was identified using the atlas of Paxinos and
Watson,[24] under dissection microscope. Subsequently, the
mPFCs were paraffin-embedded and sectioned at 5 μm on
a microtome. 

The immunohistochemical demonstration of astrocytes
was performed according to the method of Ardalan et al.[25]

Briefly, floating sections were rinsed in tris buffer saline
(TBS) containing 0.1% Triton X-100 for 30 min followed
by blocking endogenous peroxidase  using 30% H2O2 and
methanol dissolved in TBS for a further 30 min. Antigen
retrieval was done by heating the sections in the retrieval
solution (Cat #S1699; Dako, Glostrup, Denmark) dissolved
in distilled water in the oven for 30 min. Thereafter, the
sections were rinsed three times in 1% bovine serum albu-
min (BSA) and 0.3% Triton-X in TBS solution for 10 min.
The sections were then incubated with a polyclonal rabbit
anti-GFAP (Cat #Z0334; Dako, Glostrup, Denmark) at
1:500 dilution with 1% BSA in TB buffer 50 mM overnight
at 4ºC, rinsed in TBS with 0.1% BSA and Triton X- 100
for 10 min, and then incubated with polyclonal secondary
goat anti-rabbit IgG antibody/HRP (Cat #P0448; Dako,
Glostrup, Denmark) at  1:200 dilution for 2 hours.
Subsequently, the sections were washed three times in TBS
for 10 minutes. The immunolabelling was performed using
3.3’-diaminobenzidine (DAB) solution for 1 minute.
Lastly, the sections were mounted on the gelatin-coated
slides and counterstained with 0.25% thionin solution
(T3387; Sigma-Aldrich, St. Louis, MO, USA).

Images of the histological and immunohistochemical
sections were captured using Leica DM 3000 (Leica,
Wetzlar, Germany) with a cameroscope connected to a
computer interface. The resolution of the cameroscope
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was 14 mega pixels. Histological and immunohistochemi-
cal images were photomicrographed at different magnifi-
cations and were examined using the Image Analysis and
Processing for Java (Image J) program, public domain soft-
ware sponsored by the National Institute of Health (USA).
Normal neurons, degenerating neurons and astrocytes
were counted in ten different non-overlapping sections
from ten different rats in each group using high power field
objective microscope lens of 40x using Apache OpenOffice
Draw 3.4.1 (Apache Software Foundation, Forrest Hill,
MD, USA) and Image J (NIH, USA) software. The statis-
tical package GraphPad Prism Software (version 5.01; La
Jolla, CA, USA) was used for data analysis. Cell count data
were presented as mean±SD. Non-parametric data were
used directly in analysis using the Mann-Whitney U and
Kruskal-Wallis tests. Both Tukey’s test and one-way analy-
ses of variance (ANOVA) were used to compare the num-
bers of neurons, number of degenerating neurons, and
number of astrocytic counts across the study groups. 

Results
The number of normal neurons significantly decreased
in the PbNO3-treated rats (Group B) when compared
with the control group (p=0.0002) (Figure 1). After 21
days of recovery, the number of normal neurons in
Group C showed a significant decrease compared with
the control group (p=0.0002). However, there was no
significant difference in the number of normal neurons
between Group B and Group C, suggesting that there
was no improvement with recovery.

The number of degenerating neurons significantly
increased in rats in the PbNO3-treated group (Group B)
compared with the control group (p=0.0001) (Figure 2).
After 21 days of recovery, Group C also showed a
marked significant increase in the number of degenerat-
ing neurons when compared with the control group
(p=0.0001). On the other hand, there was also a signifi-
cant difference (p=0.007) in the number of degenerating
neurons between Group B and Group C.

The number of astrocytes showed a significant
increase in the PbNO3-treated group (Group B) com-
pared with the control group (p=0.0001) (Figure 3).
After 21 days of recovery, Group C also showed a signif-
icant increase in the number of astrocytes compared with
the control group (p=0.0001). In addition, there was a
significant decrease in the number of astrocytes between
Group B and Group C (p=0.0001).

We used Hematoxylin and Eosin stain to evaluate the
cytoarchitecture of the mPFC after treatment with PbNO3

(Figure 4). The control group showed neurons with nor-
mal appearance, prominent basophilic cytoplasm, and
small-sized neuroglia cells interspersed within the neuropil

(Figure 4a). PbNO3-treated group showed neurons with
distorted morphology, swollen and vacuolized cytoplasm,
and features of either pyknotic or karyorrhectic nuclei. Few
of the neurons appeared with faintly stained cytoplasm

Figure 1. The number of normal neurons in the mPFC of the rats in in
Groups A, B and C. *p<0.001; ns: non-significant.

†

†

Figure 2. The number of degenerating neurons in the mPFC of the rats
in Groups A, B and C. *p<0.01; †p<0.001.

†

†

Figure 3. Astrocytic cell count in the mPFC of the rats in Groups A, B and
C. *p<0.01; †p<0.001.



(Figure 4b). The recovery group showed similar cytoar-
chitectural outline to the PbNO3-treated; many neuronal
cells with prominent cytoplasmic vacuolation and frag-
mented cytoplasm, with active-appearing microglial cell
were observed (Figure 4c).

In the cresyl fast violet stained sections, distribution of
Nissl bodies in mPFC neurons was investigated (Figure 5).
The neurons in the control group were with no perineu-
ronal cavitation or vacuolation, the neuronal cells were with
darkly stained cytoplasm containing Nissl’s substances
(Figure 5a). In the PbNO3-treated group, mPFC neurons
showed features of chromatolysis, fragmented cytoplasm
and dispersed peri-nuclear Nissl deposits (Figure 5b). The
PbNO3-treated group and the recovery group showed sim-
ilar cytoarchitectural features (Figure 5c).

GFAP immunohistochemistry was used in this study to
demonstrate astrocytic reaction as immunologic response
to Pb exposure (Figure 6). A few GFAP immunoreactive
astrocytes along with a large number of neurons were

observed in the mPFCs of the control group (Figure 6a).
In the mPFCs of the PbNO3-treated group, a significant
increase was observed in the reactive astrocyte count com-
pared with the control. The astrocytes were reactive,
hypertrophied with their thick cytoskeletal processes
(Figure 6b). In the recovery group (Group C), there was
also a marked increase in the number of GFAP immunore-
active astrocytes compared with the control group, though
the number of the astrocytes was not significantly different
from the PbNO3-treated group (Figure 6c). The cytoplas-
mic processes of the astrocytes were seen with their com-
plex cytoplasmic dendritic patterns, as a feature suggestive
of inflammatory foci.

Discussion 
In this present study, evidence from the histological, his-
tochemical and immunohistochemical data showed that
21 days after exposure to PbNO3, the cellular profile of
the mPFC did not show any significant improvement.
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Figure 4. mPFC neurons in the (a) control, (b) PbNO3-treated, and
(c) PbNO3-treated recovery groups. Normal neurons with normal
appearance and with cytoplasm deeply stained with hematoxylin
(red arrow); distorted and swollen membrane, vacuolated and
degenerated neurons (double blue arrow); neurons with frag-
mented cytoplasm (yellow arrowhead) (Haematoxylene and Eosin
stain, ×200). [Color figure can be viewed in the online issue, which
is available at www. anatomy.org.tr]

a b

c
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Undoubtedly, Pb continues to affect humanity because
of its ubiquitous existence, extensive and wide industrial
use, as well as anthropogenic activities.[26] Pb has been
reported to cause significant neuronal damage in the
CNS.[27–29] Although the use of Pb has been significantly
reduced, Pb exposure continues to be a risk, because level
of Pb is constantly stable in the environment and no
unhazardous threshold for Pb exposure has been estab-
lished.[3,30] The effects of Pb are particularly damaging to
the developing nervous system, causing potentially irre-
versible learning and behavior deficits. 

Since astrocytes modulate the activities of neural circuit
in the healthy and diseased brain, examining astrocytic role
is key to the understanding the effect of neurotoxin in the
CNS.[31] In the brain and spinal cord, the normal anatomy
of astrocytes regulates important physiological functions
which include heterogeneous distribution of neurotrans-
mitters, maintenance of the extracellular balance of ions,
provision of energy metabolites to neurons, participation in

synaptic function and plasticity, and regulation of blood
flow.[32] On the other hand, as a result of the PbNO3-
induced neurotoxicity in this study, astrogliosis associated
with degenerative neurons and inflammatory processes
occurred in the mPFC of the rats. The biological process
that lead to astrogliosis are not fully known. However,
degenerating neurons have been suggested to be capable of
inducing astrogliosis, and astrogliosis has been used as an
indicating scale for evaluating neuronal damage.[33–36]

The present model of Pb-induced inflammation in the
cytoarchitectural profile of the mPFC in juvenile rats
exposed to PbNO3 might explain the irreversible neu-
ropathological and neurobehavioral anomalies associated
with Pb exposure.[3,37] The functional and structural integri-
ty of the CNS is prone to various forms of insults and tox-
ins that are capable of initiating cascades of deleterious
responses.[34] In this study, Pb exposure induced upregula-
tion of GFAP expression and also modified the structural
integrity of the neurons in the cytoarchitectural profile of
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Figure 5. Nissl substance staining in mPFC neurons of the (a) control,
(b) PbNO3-treated, and (c) PbNO3-treated recovery groups. In normal
neurons with no perineuronal vacuolation or cavitation, the Nissl sub-
stances were anatomically placed within the neurons and the neurons
were intact with their cytoplasmic contents (red arrow). Neurons with
features of chromatolysis, fragmented cytoplasm and peri-nuclear
Nissl deposits (white arrowhead); pyknotic neurons (black arrow);
neurons with ruptured membrane (yellow arrowhead) (Cresyl fast
violet staining, ×200). [Color figure can be viewed in the online issue,
which is available at www. anatomy.org.tr]
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the mPFC of juvenile rats. In a previous study, increase in
the expression level of GFAP in brain regions following
PbNO3 treatment was documented.[38] The astrocytic cell
count was augmented following PbNO3 treatment suggest-
ing that increased GFAP immunoreactivity can be an indi-
cation of the formation of gliosis as one of the mechanisms
by which Pb induces its adverse effects on the CNS. In the
CNS, astrocytes are abundant cells that provide support for
neurons, contribute to the formation and function of
synapses, thin-out synapses by phagocytosis, and partici-
pate in a wide range of homeostatic functions.[39–42]

One of the pivotal role of astrocytes is to respond to
injury via an intricate process known as reactive gliosis,
which causes cellular damage or loss of normal neuropro-
tective functions in the CNS following injury, trauma, or
disease.[43]

In this study, marked damage was be observed in the
cytoarchitecture of the mPFC dissected in the rats treated
with PbNO3 (Figures 4b and 5b). Similar neurodegener-
ative features were also present in mPFCs of the recovery

group (Figures 4c and 5c). These outcomes are similar to
the neuropathological observations documented in previ-
ous studies.[44,45]

In a healthy CNS, calcium ions regulate a large num-
ber of cellular processes such as cell growth, differentia-
tion, and synaptic activity. Although physiological
increase in the levels of intracellular Ca2+ are typically cru-
cial to cellular processes, excessive and irregular influx of
Ca2+, and any other Ca2+ release from intracellular com-
partments, can impair Ca2+-regulatory mechanisms and
result in cell death.[27] Considering the significantly
increased number of astrocytes in the mPFCs of the
PbNO3-treated and the recovery groups (Figures 6b and
6c), another possible justification is that, exposure to
PbNO3 might have impaired the regulatory function of
calcium on neuronal cell integrity and inhibited several
intracellular biological activities.[46]

Neuronal cell death contributes to the basic neu-
ropathology of various degenerative disorders of the
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Figure 6. GFAP simmunohistochemical staining of neurons in the mPFC
in the (a) control, (b) PbNO3-treated, and (c) PbNO3-treated recovery
groups. Few astrocytes  were observed in a (white dotted circle), and
numerous GFAP immunoreactive astrocytes in b and c. (GFAP immuno-
histochemical staining, ×200). [Color figure can be viewed in the online
issue, which is available at www. anatomy.org.tr]
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CNS.[47,48] In this study, Pb increased cell death in the
PFC of the PbNO3-treated rats compared with the con-
trol. This partly shows the response adopted by the neu-
rons of the PFC in the Pb-treated rats, thus implying a
definite response based on the extent of the insult which
entirely relies on the cellular and genetic composition.
On the other hand, it is possible that this might have
occurred as a result of neuronal plasticity often seen in
the different regions of the CNS due to the alteration in
the ratio of DNA to RNA.[49]

Nissl staining is a quick and easy screen for neurode-
generation and the morphology of the dying neurons can
be suggestive of apoptosis. Consistent with the integrity of
cresyl fast violet as a marker of apoptosis, we observed in
degenerating neurons peripheral deposits of Nissl sub-
stances with features of chromatolysis, suggesting that the
neurons are undergoing apoptotic process. This result
corroborates with the study of Dribben et al.[50]

Withdrawing the rats from further exposure to Pb did
not bring any form of significant improvement in the
cytoarchitectural profile of the mPFC of the rats com-
pared with the control (Figures 4a, 4c, 5a, 5c, 6a and 6c).
This effect in Group C may be due to the fact that Pb
might not be completely metabolized and eliminated off
by the excretory system of the rats in this group, as this
could further generate excitotoxic characteristics in the
neurons.[51] It may as well be suggested that these observed
alterations in the cellular integrity are due to excess Pb
stored in the interneuronal spaces that inhibits oxygen uti-
lization, thus reducing the production of the required level
of ATP through the electron transport chain and modify-
ing the morphology of the neuron to compensate for the
available amount of energy present.[52,53]

Withdrawing the rats from further exposure to Pb did
not bring any form of significant improvement in the
cytoarchitecture of the mPFC compared with the control
group (Figures 4a versus 4c; 5a versus 5c; 6a versus 6c).
This is in agreement with earlier studies that suggested that
cellular improvement from Pb exposure was never com-
plete.[37,50]

Conclusion
Exposure to Pb confers deleterious and toxic effects on
the cellular profile of the mPFC in juvenile male rats.
Furthermore, 21 days withdrawal from further exposure
to Pb does not restore the cytoarchitecture of the mPFC.  
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