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Abstract 

Gravity gradients are useful to characterize near mass anomalies since they are much more sensitive to short wavelength anomalies 
than gravitational accelerations. Estimating gravity gradients from surface gravity data is based on numerical implementations of 
solutions to geodetic boundary value problem for determination of disturbing potential. One of methods to solve this problem is least-
squares collocation which is basically based on data and a defined covariance function. This study deals with estimating gravity 
gradient tensor components from along track surface gravity anomaly data. The Least-Squares Collocation solution is based on a 
stationary local covariance function defined for the disturbing potential which allows upward continuation of the observations to a 
desired altitude. The modeling method is evaluated in using Earth Gravitational Model 2008(EGM2008) and real airborne gravity 
gradiometry data collected over Southern Texas, Oklahoma region. The results show that modeled gravity gradients estimated in both 
on the ground and at a certain altitude have basically good agreement with EGM08 gradients. Modeled gradients including horizontal 
components in the east-west direction exhibit some discrepancies in comparison to the airborne gradiometry data, which may be 
attributed to some measurement errors in the gradient data. 

Keywords: Least-squares collocation, Covariance matrix, Gravity gradient tensor  

 

Öz 

Gravite gradyentleri kısa dalga boylu anomalilere yerçekimi ivmelerinden daha fazla duyarlı oldukları için yüzeye yakın kütle 
anomalilerini belirlemede faydalıdırlar. Gravite Gradyentlerinin yüzey gravite anomalilerinden kestirimi bozucu potansiyelin 
belirlenmesinde jeodezik sınır değer problemi çözümlerinin sayısal uygulamalarına dayanmaktadır. Bu problemi çözmenin 
yöntemlerinden birisi temel olarak veriye ve tanımlanan bir kovaryans fonksiyonuna dayanan En Küçük Kareler Kollokasyonudur. 
Bu çalışma bir profil boyunca verilen yüzey gravite anomali verilerinden gravite gradyent tensör elemanlarının kestirimi ile ilgilidir. 
En küçük kareler kollokasyon çözümü gözlemlerin istenen bir yüksekliğe yukarı uzanımına imkan veren bozucu potansiyel için 
tanımlanmış bir durağan yerel kovaryans fonksiyonuna dayanır. Modelleme yöntemi Yer Gravite Modeli 2008 ve Güney Teksas 
Oklahoma bölgesi üzerinde toplanmış gerçek havadan gravite gradyometri verileri kullanılarak değerlendirilmiştir. Sonuçlar, hem 
yeryüzü üzerinde hem de belirli bir yükseklikte kestirilen modellenmiş gravite gradyentlerinin EGM08 gradyentleri ile uyumlu 
olduğunu göstermektedir. Doğu-batı yönündeki yatay bileşenleri içeren modellenmiş gradyentler, havadan gradyometre verilerine 
kıyasla bazı uyumsuzluklar göstermektedir; bu durum gradyent verilerindeki bazı ölçüm hatalarına bağlı olabilir.

Anahtar Kelimeler: Ek küçük kareler kollokasyon, Kovaryans matris, Gravite gradyent tensor  

 

1. Introduction 

According to Newton’s Law of Gravitation, the gravitational 
acceleration between two mass points attracting each other 
attenuates with the inverse of squared distance from attracting 
point to a source point. The spatial derivatives of the gravitational 
acceleration, namely gravity gradients, attenuate with the cube of 
inverse distance from the source point. Since derivatives of a 
function reveal its local properties, the effect of attenuation with 
altitude is compensated by differentiation [1]. Therefore, 
gravitational gradients become more sensitive to shallow 
structure mass anomalies than gravity [1]. As such, they have 
become useful tool to interpret near subsurface geologic 
structures. In addition, gradient measuring instruments provide 
multiple components of full gradient tensor. The use of gravity 
gradients dates back to the invention of Eotvos torsion balance 
instrument by Lorand von Eotvos in 1896. The use of instrument 
was primarily on for oil exploration [2]. With the advent of 

moving based gravity gradiometer survey system in 1970s, the 
usage of the gravity gradients in resource exploration has been 
brought to the fore and found its place in a wide range of 
application areas. Gravity gradients have been used to detect 
fault related geothermal resources by [3-4,5]. [6] used a 3D 
inversion of gravity gradients to explore mineral deposits. [7] 
explores mineral deposits and geothermal systems from airborne 
gravity gradiometry data and used tensor invariants to interpret 
lineaments.  [8] have modelled satellite- based gravity gradient 
data to interpret lithospheric structure. Gravity gradient tensor 
has been derived from gravity data by [9]. They derived gravity 
gradient tensor from gravity data using Fourier transform in 
frequency domain. [10] have derived gravity gradients from 
satellite altimetry data for bathymetry inversion.  [11,12] derived 
three algorithms based on Stokes integral, Least-Squares 
collocation and radial basis spline models from both regularly 
distributed surface gravity anomaly and elevation data in space 
domain to validate airborne gravity gradiometry survey data. 
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Their least-squares collocation method is based on a global 
covariance function.  In this study, full tensor gravity gradient 
components have been calculated from surface gravity anomaly 
data collected over Southern Oklahoma region. The purpose is to 
show the modelling method along with covariance matrices and 
evaluate it using real airborne gravity gradiometry survey data 
and EGM08 model. 

2. Materials and Methods 

Most common measurement in geophysics and geodesy is 
acceleration of gravity which is the first vertical derivatives of 
gravity potential, 𝑊. The gravity potential is approximated by 
normal gravity field, 𝑈 which is generated by an ellipsoid of 
revolution called normal ellipsoid rotating with the earth and 
including its mass. The normal gravity field and its gradients are 
known for a specific ellipsoid such as GRS80 or WGS84. The 
residual part is called disturbing potential, 𝑇 and defined by 
subtracting the normal gravity potential from the total gravity 
potential [13].  

𝑇 = 𝑊 − 𝑈 (1) 

In a local Cartesian coordinate system (𝑥, 𝑦, 𝑧) → (𝑥1, 𝑥2, 𝑥3), the 
gravity gradient disturbances being second order partial 
derivative of the disturbing potential, 𝛤 = [𝛤𝑗,𝑘], 𝑗, 𝑘 =1,2,3 is 

defined by [14] 

𝛤 =
𝜕2𝑇

𝜕𝑥𝑗𝜕𝑥𝑘
=

[
 
 
 
 
 
 

𝜕2𝑇
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 (2) 

2.1. Least-squares collocation 

Estimating gravity gradients from surface gravity anomalies is 
depend on solutions to the geodetic boundary value problem. 
Least-Squares Collocation is one method for the solution to the 
boundary value problem to solve disturbing potential, 𝑇. Using 
this solution to the disturbing potential, other gravimetric 
quantities can be expressed as linear functional of the disturbing 
potential, 𝑇. The minimum norm, minimum error variance least-
squares collocation solution for the disturbing potential is given 
by [15] 

�̂� = 𝐶𝑇,𝑠2
(𝐶𝑠2,𝑠2

+ 𝐷𝑛)
−1

ℓ (3) 

where observation vector (gravity anomalies) is given by ℓ =
𝑠2 + 𝑛 , 𝑛 observation noise vector,  𝐷𝑛 is observational noise, 
𝐶𝑠2,𝑠2

 is the covariance matrix of observed quantities, 𝐶𝑇,𝑠2
 is 

covariance matrix between the observed quantities and the 
disturbing potential. 

In plane approximation, gravity disturbance is equal to gravity 
anomaly, which is negative vertical derivative of the disturbing 
potential [14] 

𝛥𝑔 = 𝛿𝑔 = −
𝜕𝑇

𝜕𝑥3
 (4) 

By applying linear operators 𝐿1 = 𝜕2/𝜕𝑥𝑗𝜕𝑥𝑘   and 𝐿2 = −𝜕/𝜕𝑥3 

to the disturbing potential in equation 3, 𝑠2 = 𝐿2𝑇 , the least-
squares solution to the gradient disturbances are given by 

𝛤𝑗𝑘 = 𝐶(𝛤𝑗𝑘,𝛥𝑔)(𝐶(𝛥𝑔,𝛥𝑔) + 𝐷𝑛)
−1

∆𝑔 (5) 

Covariances related to the gravity gradient disturbances can be 
derived by applying law of error propagation of covariance model 
defined for the disturbing potential [16]. Assuming a stochastic 
process of the disturbing potential, covariance model for the 
disturbing potential is based on reciprocal distance model and 
given by [1] 

𝐶𝑇𝑇(𝑠; 𝑥3, 𝑥3′) =
𝜎2

√𝛼2𝑠2 + (1 + 𝛼(𝑥3 + 𝑥3′))
2

 
(6) 

where 𝑠 = √𝛥𝑥1
2 + 𝛥𝑥2

2; 𝛥𝑥1 = 𝑥1 − 𝑥1′;𝛥𝑥2 = 𝑥2 − 𝑥2′ are 
coordinate differences; 𝑥3, 𝑥3′are heights of the points; and 𝜎2, 𝛼 
are covariance model parameters. Since T is a potential, its 
covariance function enables to be upward-continued by the sum 
of altitude coordinates, 𝑥3 + 𝑥′3. The covariance function is based 
on assumption of ergodicity and thus stationary which means 
that the covariance function depends only on horizontal 
coordinate differences. By applying law of propagation of 
covariances to the equation (6), covariances between the gravity 
anomaly and the gravity gradient disturbances are derived by [1] 

𝐶(𝛥𝑔,𝛥𝑔) =
3𝜎2𝛼2

𝑀5 2⁄ (2𝛽2 − 𝛼2𝑠2)  (7) 

𝐶(𝛤11,𝛥𝑔) = −
3𝜎2𝛼3𝛽

𝑀7 2⁄
(−𝛽2 − 𝛼2𝑠2 + 5𝛼2𝛥𝑥1

2) (8) 

𝐶(𝛤22,𝛥𝑔) = −
3𝜎2𝛼3𝛽

𝑀7 2⁄ (−𝛽2 − 𝛼2𝑠2 + 5𝛼2𝛥𝑥2
2)  (9) 

𝐶(𝛤33,𝛥𝑔) =
3𝜎2𝛼3𝛽

𝑀7 2⁄ (−2𝛽2 + 3𝛼2𝑠2)  (10) 

𝐶(𝛤13,𝛥𝑔) =
3𝜎2𝛼4𝛥𝑥1

𝑀7 2⁄
(−4𝛽2 + 𝛼2𝑠2) (11) 

𝐶(𝛤12,𝛥𝑔) = −
15𝜎2𝛼5𝛽

𝑀7 2⁄ 𝛥𝑥1𝛥𝑥2    (12) 

𝐶(𝛤23,𝛥𝑔) =
3𝜎2𝛼4𝛥𝑥2

𝑀7 2⁄ (−4𝛽2 + 𝛼2𝑠2)  (13) 

where 𝛽 = 1 + 𝛼(𝑥3 + 𝑥3′) and 𝑀 = 𝛽2 + 𝛼2𝑠2. 

Using the covariance function for the disturbing potential, [14] 
estimates geoid undulation from the gravity anomaly data given 
along track in frequency domain.  

 

Figure 1. Geometry of the data points adapted from [14] 

Here the problem is adapted to estimate the gravity gradient 
disturbances in space domain. Suppose that there are regularly 
distributed points along tracks being parallel each other and 

b1 
b2 
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𝑝ℓ 

𝑝′𝑛,𝑗 
Δx2 
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having coordinates, 𝑝𝑛,𝑗
′ = (𝑛𝛥𝑥1, 𝑗𝛥𝑥2), where 𝛥𝑥1 is the 

distance between points along tracks, n is number of points along 
tracks, 𝑛 = 0, . . . . 𝑁 − 1, 𝛥𝑥2 is the distance between tracks and 
the number of tracks is denoted by 𝑗 = 0,… . . , 𝐽 − 1. The gradient 
disturbances are estimated at the points located at 𝑝ℓ = (ℓ𝛥𝑥1 +
𝑏1, 𝑏2). The computation points have same along distance with 
observation points, but they have displacement from the j=0 
track and from measurements along tracks. The displacement 
vector is defined by 𝒃 = (𝑏1   𝑏2)

𝑇. Observations are collected in 
𝐽 × 1 vector including nth measurement along all tracks, 

𝛥𝑔𝑛 = [𝛥𝑔(𝑝′𝑛,0) ⋯ 𝛥𝑔(𝑝′𝑛,𝐽−1)]
𝑇

 (14) 

The cross- covariance matrix is defined by 

𝐶𝛥𝑔,𝛤𝑗,𝑘
(𝑝, 𝑝′) = 

= [

𝐶𝛥𝑔,𝛤𝑗,𝑘
(𝑝ℓ, 𝑝′𝑛) 𝐶𝛥𝑔,𝛤𝑗,𝑘

(𝑝ℓ, 𝑝′𝑛+1) ⋯

𝐶𝛥𝑔,𝛤𝑗,𝑘
(𝑝ℓ+1, 𝑝′𝑛) 𝐶𝛥𝑔,𝛤𝑗,𝑘

(𝑝ℓ+1, 𝑝′𝑛) ⋯

⋮ ⋮ ⋮

] 
(15) 

where 𝐶𝛥𝑔,𝛤𝑗,𝑘
(𝑝ℓ, 𝑝′𝑛) includes 1 × 𝐽 row vectors that represent 

elements of covariances between estimation point located at 𝑝ℓ 
and the elements of 𝛥𝑔𝑛 located at 𝑝′𝑛 . Auto-covariance matrix 
is defined by 

𝐶𝛥𝑔,𝛥𝑔(𝑝′, 𝑝′) = 

= [

𝐶𝛥𝑔,𝛥𝑔(𝑝′𝑚, 𝑝′𝑛) 𝐶𝛥𝑔,𝛥𝑔(𝑝′𝑚, 𝑝′𝑛+1) ⋯

𝐶𝛥𝑔,𝛥𝑔(𝑝′𝑚+1, 𝑝′𝑛) 𝐶𝛥𝑔,𝛥𝑔(𝑝′𝑚+1, 𝑝′𝑛) ⋯

⋮ ⋮ ⋮

] 
(16) 

where 𝐶𝛥𝑔,𝛥𝑔(𝑝′𝑚, 𝑝′𝑛) includes 𝐽 × 𝐽 matrices that represent 

covariances among elements of 𝛥𝑔𝑛 and 𝛥𝑔𝑚 located at track 
points, 𝑝′𝑛  and  𝑝′𝑚 . 

3. Results and Dicussion 

The study area lies in the Wichita uplift region of the Southern 
Oklahoma Aulacogen that is characterized by a failed rift arm 
located in Oklahoma and Texas region in US [17]. The region is 
bounded by major fault zones to the south, Waurika Munster -
North Fork-Altus-Burch faults that separate the uplift from Hollis 
basin and to the north, Mountain view fault and Meers fault are 
the major fault segments that separate the uplift from Anadarko 
basin (figure 2) [18].  

 

Figure 2. Geologic map of the Wichita uplift region extracted 
from map (plate I) by [18] 

Many seismic studies have been performed in the area due to 
bearing one of major oil fields in the US. The region is also special 
in terms of having strong gravity signatures with moderate 
terrain effects. Therefore, the first gravity gradiometer survey 
system (GGSS) was flown over Texas/Oklahoma region in 1987 
which allows the aircraft to fly low on the ground [19].

 

The elevation of the topography in the region (Figure 3.d) ranges 
from 148 m to 786 m. The mean elevation of the area is 395m. 
Figure 3.a demonstrates complete Bouguer gravity anomaly data 
of the region that are downloaded from USGS website and the real 
airborne gradiometric survey profile superimposed on it.  The 
data set that generates the complete Bouguer anomaly grid was 
compiled from the gravity databases obtained from the National 

Geophysical Data Center and from the USGS and from several 
university theses. The data were interpolated to a 2km × 2km 
regular grid data. Figure 3.c demonstrates the Complete Bouguer 
gravity anomaly data along track T31. The region has gravity 
highs (50-80 mGal) trending south-east to north-west with an 
elongated structure. [20] indicates that these gravity highs are 
assumed to be caused by density variations in the upper crust. 
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The region also has the second largest gravity anomaly after the 
mid- continent rift in the US. Modeled gravity gradient 

disturbances are computed along profile T31 from free air 
gravity anomalies (Figure 3.e). 

 
Figure 3.a) Complete Bouguer gravity anomaly map of Southern Oklahoma downloaded from USGS website 
(https://pubs.usgs.gov/ds/2006/232/data/) b) Gravity anomaly data distribution of the Wichita uplift region c) Complete Bouguer 
gravity anomaly along track T31 d) Topographic map of the area generated from shuttle radar topography mission (SRTM) e) Free 
air gravity anomaly data of the region. 

Table 1. Reciprocal distance PSD parameters. 

j 𝜎2[m4/s4] 𝛼[1/m] 

1 210-5 10-3 

2 10-4 610-4 

3 7.510-4 310-4 

4 1.4210-2 1.5110-4 

5 7.510-1 4.510-5 

6 3.6101 1.4510-5 

7 7.78102 4.910-6 

8 3.5103 7.710-7 

9 1.1105 4.1610-7 

Covariance model parameters, 𝐽, 𝜎𝑗
2 , 𝛼𝑗 are determined from by 

fitting empirical determination of power spectral density (PSD) 
of the gravitational field data [15]. One set of model parameters 
derived in Texas/Oklahoma region is given in Table 1.  

As shown in Figure 3.a), a single track(T31) gravity anomaly data 
is given between latitudes 33.71𝑜 ≤ 𝜙 ≤ 36.21𝑜 and longitude at 
𝜆 = −98.8635𝑜. Modeled gradients are computed on the points 
along this track. The length of the observation track(T31) is about 
278 km including 𝑁 =140 points. Along track distance between 
points is about 2 km. To compute gradient disturbances on the 
ground level, the altitude of points is set to zero, 𝑥3 = 𝑥′3 = 0. It 
is assumed that the observations are uncorrelated and have equal 
variance. The accuracy of the gravity anomaly data is taken as 
2mGal. Therefore, covariance matrix of the observation noise 
becomes a diagonal matrix of size 140 × 140, with variances of 
4𝑚𝐺𝑎𝑙2 . 

𝐷𝑛 = [
4𝑚𝑔𝑎𝑙2 0 0

0 ⋱ 0
0 0 4𝑚𝑔𝑎𝑙2

]

140×140
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Since the estimation points are on the observation profile, the 
displacement vector 𝒃 = 0.  In case of a single track, J=1 and 
𝛥𝑥2 = 0. The auto- and cross- covariance matrices given in 
equations (15) and (16) take the form of, 

𝐶𝛥𝑔,𝛥𝑔(𝑝, 𝑝′)
140×140

= [
𝐶(𝑝1, 𝑝′1) ⋯ 𝐶(𝑝1, 𝑝′𝑛)

⋮ ⋱ ⋮
𝐶(𝑝ℓ, 𝑝′1) ⋯ 𝐶(𝑝ℓ, 𝑝′𝑛)

] (17) 

𝐶𝛤𝑗𝑘,𝛥𝑔(𝑝, 𝑝′)
140×140

= [
𝐶(𝑝1, 𝑝′1) ⋯ 𝐶(𝑝1, 𝑝′𝑛)

⋮ ⋱ ⋮
𝐶(𝑝ℓ, 𝑝′1) ⋯ 𝐶(𝑝ℓ, 𝑝′𝑛)

] (18) 

According to equations (7)-(13), cross-covariances 
𝐶(𝛤11,𝛥𝑔), 𝐶(𝛤22,𝛥𝑔), 𝐶(𝛤12,𝛥𝑔) and 𝐶(𝛤23,𝛥𝑔) become zero. Remaining 

covariances along track T31 are demonstrated in Figure 4. 

 
Figure 4. Auto-covariance for the gravity anomaly, 𝛥𝑔 ,and cross-covariances between the gravity gradient disturbances, 𝛤33 , 𝛤11 and 
𝛤13,  and the gravity anomaly, 𝛥𝑔. 

Using these covariances, the modeled gravity gradient 
disturbances are computed using least-squares collocation by 

𝛤𝑗𝑘
140×1

= 𝐶(𝛤33,𝛥𝑔)
140×140

(𝐶(𝛥𝑔,𝛥𝑔)
140×140

+ 𝐷𝑛
140×140

)

−1

𝛥𝑔
140×1

 (19) 

and compared with the observation profile generated from 
EGM08 model. The resolution of the EGM08 model (𝑛𝑚𝑎𝑥= 2160) 
is about 9 km at the equator [21]. East-west resolution of EGM08 
model for this region is about 7.6 km. The results are illustrated 
in Figure 5. 
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Figure 5. Plots of modeled gravity gradient disturbances computed on the earth’s surface using least-squares collocation (LSC) and 
corresponding EGM08 profile along track T31.  

To estimate the gravity gradient disturbances from multiple 
observation tracks, additional two tracks are considered given 
either side of the track (T31) between latitudes 33.71𝑜 ≤ 𝜙 ≤
36.21𝑜and longitudes at 𝜆 = −98.9294𝑜 and 𝜆 = −98.7976𝑜. 
Along track distance is same for all tracks, 𝛥𝑥1 = 2𝑘𝑚 and the 
distance between tracks is 𝛥𝑥2 = 6𝑘𝑚. For three tracks, 𝐽 = 3. 
Each element of cross-covariance matrix, which is 140 × 420 in 
size, contains 1 × 3 row vectors. Cross-covariances are defined 
by 

𝐶𝛤𝑗𝑘,𝛥𝑔
140×420

(𝑝, 𝑝′)

=

[
 
 
 
 
𝐶(𝑝1, 𝑝′1)

1×3
𝐶(𝑝1, 𝑝′2)

1×3
𝐶(𝑝1, 𝑝′3)

1×3
⋰

𝐶(𝑝2, 𝑝′1) 𝐶(𝑝2, 𝑝′2) 𝐶(𝑝2, 𝑝′3) ⋯
⋯ ⋮ ⋮ ⋯

𝐶(𝑝ℓ, 𝑝′𝑛)
1×3

𝐶(𝑝ℓ, 𝑝′𝑛)
1×3

𝐶(𝑝ℓ, 𝑝′𝑛
1×3

) ⋱
]
 
 
 
 

 

 

(20) 

The elements of the covariance matrix represent the covariances 
between the gravity gradient disturbances on the middle track 
and gravity anomalies given on the three tracks. Elements of the 
auto-covariance matrix are the covariances between gravity 
anomalies on any two tracks separated by 0𝑘𝑚, 𝛥𝑥2𝑘𝑚 and 
2𝛥𝑥2𝑘𝑚 and given by 

𝐶𝛥𝑔,𝛥𝑔
420×420

(𝑝′, 𝑝′)

=

[
 
 
 
 
𝐶(𝑝′1, 𝑝′1)

3×3
𝐶(𝑝′1, 𝑝′2)

3×3
𝐶(𝑝′1, 𝑝′3)

3×3
⋰

𝐶(𝑝′2, 𝑝′1) 𝐶(𝑝′2, 𝑝′2) 𝐶(𝑝′2, 𝑝′3) ⋯
⋯ ⋮ ⋮ ⋯

𝐶(𝑝′𝑛, 𝑝′1)
3×3

𝐶(𝑝′𝑛, 𝑝′2)
3×3

𝐶(𝑝′𝑛 , 𝑝′𝑛)
3×3

⋱
]
 
 
 
 

 
(21) 

And corresponding observation vector includes gravity 
anomalies on the three tracks and is defined by 

𝛥𝑔
420×1

[𝛥𝑔(𝑝′𝑛,0) 𝛥𝑔(𝑝′𝑛,1) 𝛥𝑔(𝑝′𝑛,2) ⋯]𝑇 (22) 

Figure 6 illustrates a comparison of modeled gravity gradient 
disturbances estimated using LSC with corresponding EGM08 
data profile. Modeled gravity gradient disturbances agree well 
with the EGM08 generated gravity gradient disturbances. There 
is some discrepancy between gradients that include components 
in the east-west direction and corresponding EGM08 data profile, 
especially for 𝛤22  gradient. The discrepancy could be due to a lack 
of data in 𝑥2-direction. Improving the estimation of the modeled 
gradient, 𝛤22 could be achieved by adding more data tracks to the 
estimation process.
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Figure 6. Computed gravity gradient disturbances on the earth’s surface (zero altitude) using LSC and corresponding EGM08 gradients 
along track T31. 

Figure 7 illustrate differences between modeled gravity gradient 
disturbances and EGM08 generated gradients along profile T31. 
The corresponding statistics of the differences are listed in table 
2. Standard deviation of the differences ranges from 3 E to 10 E.  
Standard deviation of  Γ22 is smaller than that of the other 
diagonal gradients as magnitude of Γ22 gradient is smaller 
compared to the other diagonal gradients. Overall, standard 
deviation of differences in gradients that include components in 
the east-west direction is also smaller than that of the other 

gradients. Finally, modeled gravity gradient disturbances are 
computed at an aircraft altitude along track T31 and compared 
with the real airborne gravity gradiometry data as well. The 
profile T31 is an actual gravity gradiometry survey data and is 
approximately 278 km long. The altitude of the profile above 
terrain is approximately 1000m. The profile includes 2533 points 
with a sampling interval of 110 m. [17] stated that terrain effect 
on profile T31 is negligible; so, terrain correction hasn’t been 
applied to the profile. Some of the gradients along this track are 
illustrated in Figure 8.   

 
Figure 7. Differences between modeled gravity gradient disturbances and EGM08 gradients along track T31. 
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Table 2. Differences between modeled gradient disturbances and EGM08 gradients along profile T31 and corresponding statistics  

Gradients [E] 𝛿𝛤11 𝛿𝛤12 𝛿𝛤13 𝛿𝛤22 𝛿𝛤23 𝛿𝛤33 

Mean 0.320 -0.05 0.105 3.640 0.179 -3.961 

Std 5.936 3.143 6.034 4.870 3.996 9.528 

max 15.360 8.738 17.095 19.284 13.331 23.377 

min -18.753 -6.663 -18.684 -6.745 -8.291 -32.771 

 

 
Figure 8.  Gravity Gradiometer Survey Data along T31 profile  

GGSS data are smoothed with a window size of 10 km to reduce 
very high frequency variations. Modeled gradient disturbances 
are calculated at the aircraft altitude of 𝑥3 = 𝑥′3 = 1000𝑚. Since 
GGSS data has higher resolution, estimation points are spaced 
0.11km apart. Therefore, the displacement vector components 
are 𝑏1 = 0.11km and 𝑏2 = 0.The results are illustrated in Figure 
10. Modeled gradients generally agree with EGM08 model 
generated gradients. However, there are some discrepancies 
observed between airborne gradiometric data and some modeled 
gradients. The modeled gradients, 𝛤22 and 𝛤12  have more 
agreement with EGM08 data than the airborne data. Since being 
first test of the Gravity Gradiometer Survey System (GGSS) 
performed in 1987, the data does not meet highest quality 
standards. Figure 9 compares spectra of both GGSS data and 
corresponding EGM08 profile for the gradient 𝛤12 along track 
T31.Power spectral density of GGSS data does not agree much 
with PSD of EGM08 data. Figure 11 demonstrates differences 
between modeled gravity gradient disturbances and EGM08 
generated gradients together with airborne gradiometer data 
along track T31. 

  
Figure 9.  Power spectral densities of 𝛤12 according to EGM08 
model and GGSS data along track T31. 
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Figure 10. Plots of modeled gravity gradient disturbances, EGM08 gradients and airborne gradiometry data along track T31 

Tables 3 and 4 show differences between modeled gradient 
disturbances and EGM08 gradients, as well as airborne 
gradiometry data along track 31. Standard deviation of 
differences based on airborne gradiometry data is greater than 

those calculated from EGM08 data. In most cases, standard 
deviation of differences between modeled gradients with 
components in the east-west direction and both EGM08 gradients 
and airborne gradiometer data is smaller than that of the other 
gradients. 

Table 3. Differences between modeled gradient disturbances and EGM08 gradients along profile T31 and corresponding statistics   

Gradients [E] 𝛿𝛤11 𝛿𝛤12 𝛿𝛤13 𝛿𝛤22 𝛿𝛤23 𝛿𝛤33 

Mean 0.437 -0.041 0.120 3.250 0.291 -3.671 

Std 5.766 2.928 4.907 3.329 3.055 6.283 

max 16.484 10.546 11.288 12.775 9.417 11.496 

min -21.400 -5.484 -14.296 -4.150 -7.031 -26.037 
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Table 4. Differences between modeled gradient disturbances and airborne gradiometry data along profile T31 and corresponding 
statistics   

Gradients [E] 𝛿𝛤11 𝛿𝛤12 𝛿𝛤13 𝛿𝛤22 𝛿𝛤23 𝛿𝛤33 

Mean 0.188 0.016 0.373 -0.893 4.159 0.729 

Std 9.107 8.983 7.249 6.411 8.898 8.250 

max 21.160 16.890 24.556 13.615 21.087 21.084 

min -22.328 -19.564 -16.323 -18.326 -25.443 -17.942 

 
Figure 11. Differences between modeled gravity gradient disturbances and both EGM08 gradients and airborne gradiometry data 
along profile T31. 

4. Conclusions 

This study presents modeling of the gravity gradient 
disturbances from free air gravity anomaly data employing least-
squares collocation and evaluates the modeling method using 
both real airborne gradiometer data and EGM08 gradients. Such 
modeling is useful for validating airborne gradiometer survey 
data. It has been shown that modeled gradients have good 
agreement with EGM08 generated gravity gradient disturbances 
both on the ground and at an aircraft altitude. There are some 
discrepancies in modeled gradients including components in the 
east-west direction, which may be due to a lack of data in that 
direction. Since the airborne gradiometry data used in this study 
is the first test survey of airborne gradiometer survey system, the 
quality of the data may not be good enough to evaluate all 
modeled gradients. It is important to emphasize that the airborne 
gradiometer data has higher resolution than both EGM08 model 
and ground gravity anomaly data. Standard deviation of 
differences between modeled gradients and both EGM08 
gradients and airborne gradiometer data are between 2-10E for 
all gradients. The differences in gradients containing components 
in the east-west direction are smaller than those in the other 
gradients, likely because these gradients have smaller magnitude 
than the others. This can be attributed to elongated structure of 
the fault system lying in this region, resulting in less variations in 
gradients along the east-west direction.  
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