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Abstract 

Blood disorders are such conditions that impact the blood’s ability to function 

correctly. There is a range of different symptoms depending on the type. 

There are several different types of blood disorders such as Leukemia, chronic 

myelocytic leukemia, lymphoma, myelofibrosis, polycythemia, 

thrombocytopenia, anemia, and leukocytosis. Some resolve completely with 

therapy or do not cause symptoms and do not affect overall lifespan. Some 

are chronic and lifelong but do not affect how an individual life. Other blood 

disorders, like sickle cell disease and blood cancers, can be even fatal. There 

needs to be a capture of hidden information in the medical data for detecting 

diseases in the early stages. This paper presents a novel hybrid modeling 

strategy that makes use of the synergy between two methods with histogram-

based gradient boosting classifier tree and random subspace. It should be 

emphasized that the combination of these two models is being employed in 

this study for the first time. This novel model is presented for the assessment 

of blood diseases. The results show that the proposed model can predict the 

tumor of blood disease better than the other classifiers.  
 

  

1. Introduction 

Providing accessible and reliable diagnosis is a 

fundamental problem for global healthcare 

systems [1]. Early diagnosis of blood diseases is 

critical for both successful treatment and the 

avoidance of misdiagnoses, which are sadly 

frequent in medical practice. A misdiagnosis may 

result in ineffective treatment strategies, 

postponed care, and in extreme circumstances, 

serious health decline. This is particularly 

important when discussing blood disorders 

because their symptoms might be mild and easily 

missed or confused with other illnesses [2].  An 

estimated 5% of outpatients in the US alone are 

given the incorrect diagnosis each year. Since one 

in three misdiagnoses of patients with major 

medical illnesses results in serious patient harm, it 

is estimated that 20% of patients with serious 
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medical disorders receive incorrect diagnoses at 

the primary care level [3].  

Improving the precision and scope of 

diagnostic processes is critical in the field of 

medicine, especially for blood disorders. A 

multidisciplinary approach is necessary to fully 

comprehend the patient's condition [4]. In order to 

augment the information currently available, more 

data is gathered during a diagnostic procedure 

from the patient's medical history, physical 

examination, and various diagnostic techniques, 

such as clinical laboratory tests. Laboratory tests 

are used to guide medical care as well as to 

confirm, rule out, classify, or monitor illnesses. 

[5]. The entire potency of laboratory test results is 

often overestimated since clinical laboratories 

often publish test results as individual numerical 

or categorical values, and clinicians typically 

focus on those values that fall outside of a given 

reference range. 
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The development of advanced 

computational techniques has transformed the 

study and practice of medicine, providing new 

opportunities for the analysis of intricate health 

data [6]–[10]. For many years, medical datasets 

have been analyzed using machine learning 

techniques. [11]. It provides a number of essential 

tools for machine learning-based intelligent data 

analysis. Patient monitoring and other data 

gathering tools are now widely used in modern 

hospitals to gather data, which is then shared and 

kept in extensive information systems. These 

days, machine learning technology is ideal for 

identifying illnesses and evaluating medical data. 

Clinical data analysis reveals the molecular 

processes that underlie diseases and the ways in 

which risk factors impact their progression. 

Medical records in hospitals or their departments 

contain information about correct diagnosis. 

Patient data with the right diagnosis are loaded 

into a computer program and a learning algorithm 

is executed in medical machine learning studies. 

[11]. Machine learning (ML) has the potential to 

greatly improve the accuracy, efficiency, and 

dependability of systems intended for the 

diagnosis of particular illnesses[12]. 

Laboratory blood testing is the mainstay 

for the clinical diagnosis of hematological 

disorders; however, even the most skilled 

hematologist may overlook trends, outliers, or 

correlations among the myriad blood parameters 

that modern laboratories are now measuring [13], 

[14] . In contrast, this field of medicine is 

particularly interesting for machine learning 

applications because machine learning algorithms 

can manage hundreds of attributes (parameters) 

and can identify and utilize the interactions 

between these many attributes. 

Machine learning has demonstrated 

potential in a number of areas related to medical 

practice, such as improving differential diagnosis, 

helping to choose the best course of treatment, 

offering prognostic estimates, lowering medical 

errors, and increasing overall effectiveness. Its 

uses in hematology are steadily growing in three 

main domains: image interpretation, diagnostic 

procedures, and predictive modeling. 

Predictive modeling is one application of 

machine learning in hematology. A noteworthy 

study by [15] created a model to predict 100-day 

mortality after allogeneic hematopoietic stem cell 

transplantation (HSCT) using 28,236 acute 

leukemia patients from the European Society of 

Blood and Marrow Transplantation registry. This 

model was validated both internally and 

externally, showcasing machine learning's 

capacity to offer insightful information for crucial 

medical decisions. 

An interpretable boosted decision tree 

model that performed better than the previous 

benchmark for outcome prediction was used in the 

model's creation. [16] used similar techniques to 

predict acute graft-versus-host disease (GVHD). 

Other groups have focused on creating techniques 

that use imaging and gene expression data to 

predict treatment response [17]. Artificial 

intelligence decision support solutions for 

oncology are already available. A model 

developed by [18] generates a list of probable 

diagnoses based on age, serial chemistry, and 

complete blood count laboratory values. These 

diagnoses are then fed into a support vector 

machine model. The aforementioned findings 

suggest several possible real-world uses for 

artificial intelligence. 

IBM Watson for Oncology ranks and 

suggests treatment options based on patient and 

illness characteristics, published literature, 

available clinical trials, and the expertise of top 

oncologists. It uses the EMR's natural language 

processing and machine learning algorithms to 

achieve this [19]. Numerous techniques have been 

used to apply AI to improve the efficacy, 

practicality, or accuracy of diagnoses. It has been 

demonstrated that CNN-based techniques can 

reliably identify multiple myeloma based only on 

mass spectrometry data from peripheral blood 

[20]. 

Machine learning has great potential for 

the field of hematology as well as the larger 

medical community, even though it is still in its 

infancy [21]. This review intends to clarify 

important artificial intelligence (AI) concepts for 

readers who are not familiar with the field, 

examine the various hematology applications 

where AI has proven useful, and talk about the 

new difficulties that arise when incorporating AI 

into clinical practice. Moreover, the aim is to offer 

perspectives on how these cutting-edge 

technologies might influence clinical outcomes 

and patient care in the future [22]. Machine 

learning has been used in some research to 

forecast the number of instances of a specific 

disease in a given region based on historical data 

and present conditions [23]. Others have utilized 

machine learning to determine the most likely 

sources of an outbreak based on the pathogen's 

genetic makeup and infection pattern [24], [25]. 

Others have utilized machine learning to estimate 

an individual's risk of developing an infectious 
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disease based on their persona[15]l attributes and 

activities [26]. 

The use of machine learning in infectious 

illness prediction is a promising area of research 

with potential implications in public health, 

epidemiology, and clinical practice. However, 

there are substantial obstacles and constraints to 

utilizing machine learning in this context, such as 

the requirement for high-quality data, the 

complexity of the underlying phenomenon, and 

the risk of bias and overfitting [27].  

Das and Tsanas et al. [28], [29] developed 

novel artificial intelligence-based methodologies 

for analyzing Parkinson's disease patients. Little et 

al. [30] proposed using speech signal information 

to distinguish Parkinson's disease. They 

discriminated between 23 Parkinson's disease 

patients and 8 healthy people. SVM is used to 

define both Parkinson's disease and healthy 

people. The proposed technique was found to be 

91.4% accurate. Another survey [28] chose 132 

elements based on dysphonic discourse indicators. 

Specular selection (FS) calculations such as 

LASSO, Relief, MRMR, and LLBFS[29]. 

A crucial component use in blood disease 

detection research, image datasets have certain 

drawbacks, including reliance on high-quality 

imaging and interpretive variability [31]–[36]. For 

image processing, these techniques also demand a 

substantial amount of processing power. On the 

other hand, our work offers clear benefits as it 

makes use of numerical data from laboratory tests. 

Subjectivity in image analysis is reduced when 

dealing with numerical data because they are more 

standardized and structured. They offer 

measurable metrics, which are essential for 

reliable diagnosis. This method also makes it 

simpler to integrate patient data with other 

sources, which supports diagnostic models that are 

more thorough. Additionally, models based on 

numerical data need less processing power, which 

makes them more accessible and useful in a range 

of clinical contexts. In hematology, this efficiency 

is essential for prompt and precise diagnosis, 

which results in more efficient treatment planning.  

A method for monitoring blood pressure 

(BP), which is essential for identifying and 

averting health problems like hypertension and 

cardiovascular disorders, is presented in a study in 

the field [37] . With the use of CNN-LSTM and 

Photoplethysmography (PPG) signals, the study 

successfully divides blood pressure (BP) into three 

groups: normotension, prehypertension, and 

hypertension. It is noteworthy that it distinguishes 

between normotension and hypertension with a 

noteworthy accuracy of 66.76%, highlighting the 

potential of sophisticated techniques in continuous 

blood pressure monitoring. 

Five machine learning models (RF, NB, 

LogR, SVM, and AdaBoost) were developed by 

Kim, T., et al. using a clinical database to predict 

persistent immune thrombocytopenia in pediatric 

ITP patients. The study comprised 969 juvenile 

patients with ITP, of which 332 had verified acute 

ITP and 253 had chronic ITP. In order to predict 

chronic ITP, 10-fold cross-validation was carried 

out using clinical (age, gender, race, ethnicity, 

presence of primary ITP) and laboratory variables 

(baseline platelet count, leukocyte count, 

lymphocyte count, eosinophil count, mean platelet 

volume, anti-nuclear antibody, immature platelet 

fraction, direct antiglobulin test, and 

immunoglobin levels). When it came to predicting 

chronic ITP, the 100-tree random forest model 

performed better than any other model (AUC: 

0.795, accuracy: 0.737, precision: 0.738, F1-

score: 0.671, and recall: 0.737). Naïve Bayes was 

the second-best performing model (AUC: 0.792, 

accuracy, 0.698, precision: 0.737, F1-score: 0.671, 

and recall: 0.698) [38] 

Seven machine learning models were 

developed to predict hospital-acquired 

thrombocytopenia (HAT) post-surgery in the 

study by Cheng et al. These models included 

Gradient Boosting (GB), Random Forest (RF), 

Logistic Regression (LogR), XGBoost, Multilayer 

Perceptron, Support Vector Machine (SVM), and 

k-nearest Neighbors (k-NN). Adult ICU patients 

who had undergone surgery were enrolled in the 

study, with training and assessment divided 70-30. 

In roughly 13.1% of cases, thrombocytopenia 

occurred. The RF and GB models fared the best in 

internal validation, exhibiting high levels of 

specificity (79.1% and 73.7%, respectively) and 

sensitivity (79.3% and 73.6%, respectively), with 

no discernible differences between them. RF and 

GB had AUCs of 0.834 and 0.828, respectively 

[39]. In order to predict 30-day mortality in ITP 

patients with cerebral bleeding, Zhang, X.H. et al. 

[40] created ten machine learning algorithms 

(ML): SVM, k-NN, LogR, linear discriminant 

analysis, decision tree, RF, GB decision tree, 

AdaBoost, XGBoost, and light gradient boosting 

machine. In the training cohort, they carried out a 

10-fold cross-validation, and they externally 

verified across 11 different centers. During 

internal validation, the SVM model performed 

better in predicting 30-day mortality (AUC: 0.879, 

F-1 score: 0.748, sensitivity: 0.600). 
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A crucial component of medical 

diagnostics, early identification of blood disorders 

has a major influence on patient outcomes [41]. 

Blood disorders can have a significant impact on 

general health and quality of life [42]. They 

include a broad range of conditions from anemia 

to leukemia. Early detection of these conditions is 

essential for the possibility of early intervention, 

which could reduce the severity of the illness and 

enhance the prognosis [43]. 

Unfortunately, there are a number of 

drawbacks to the current blood disorder diagnostic 

techniques [44]. Even though they work well, 

traditional blood tests frequently miss subtle 

symptoms of early-stage disorders or fail to 

present a complete picture of the patient's health. 

In addition, a number of blood disorders share 

symptoms with other illnesses, which could result 

in a delayed or incorrect diagnosis. 

The gaps in the diagnostic procedures 

used today emphasize the need for more 

sophisticated and accurate detection techniques 

[45]–[47]. By facilitating prompt and focused 

treatments, an improved strategy for early 

detection lowers the risk of complications while 

also increasing the accuracy of diagnoses. Closing 

these gaps and improving patient care in the field 

of blood disorders requires the development and 

application of novel diagnostic tools. Through the 

introduction of a novel hybrid modeling approach 

that blends cutting-edge analytics with 

conventional diagnostic techniques, our research 

seeks to address these issues and provide a more 

effective and efficient pathway for the early 

detection of blood disorders.  

In this study, prior research on blood 

condition was assessed for early detection 

critically, noting important constraints and the 

results attained in these investigations. Gaps in 

present diagnostic techniques are identified by this 

assessment, especially with regard to the detection 

of subtle and early-stage signs of blood diseases. 

By merging random subspace techniques with 

gradient boosting based on histograms, our 

research advances this subject through the 

introduction of a novel hybrid modeling 

methodology. By addressing the inadequacies of 

conventional diagnostic approaches, this novel 

methodology seeks to improve the accuracy and 

reliability of blood disease diagnosis. The theory 

was that specific hematological diseases like 

leukocytosis, anemia, and thrombocytopenia 

found in the values of blood test results would be 

enough for the novel hybrid predictive model to 

suggest a plausible diagnosis if it were trained on 

a large enough dataset of medical cases that 

included clinical laboratory blood tests. Two 

separate methodologies, the Random Subspace 

Ensemble method and the Histogram-based 

Gradient Boosting Classification Tree (HIST-

GBCT) algorithm, are combined to create a novel 

methodology. To the best of knowledge, this 

combination has not before been investigated in 

the literature. 

 

2. Material and Method 

2.1. Dataset 

The 4000 samples in the dataset are categorized 

into three distinct groups: 1232 samples relate to 

pediatric hematology cases, 1451 samples are 

from adult hematology patients, and the remaining 

1232 samples are linked to different tumor types. 

Sensitive personal data, including names and IDs, 

has been removed from the dataset in order to 

respect privacy standards. A salient characteristic 

of our dataset is the 'Clinic Number,' which 

functions as the classification target label. The 

three groups are identified by this label: 80 stands 

for adult hematology cases, 95 for pediatric 

hematology cases, and 59 for tumor cases. The 

National Heart, Lung, and Blood Institute's (2016) 

guidelines were carefully followed in the selection 

of the dataset's features to ensure their 

applicability and coherence within the framework 

of oncology and hematological research. The 

features of the dataset are listed depending on 

(National Heart Lung Blood Institute site, 2016). 

The content of the dataset's columns is presented 

in Table 1. 

Table 1. Data set content 

Name Definition 

WBC White blood cells 

 RBC RED blood cells 

Cupper Cu 

hgb Hemoglobin 

HCT Hematocrit 

MCV Macrocytic Anemia: 

MCH Mean Corpuscular Hemoglobin 

MCHC Mean Corpuscular Hemoglobin 

Concentration 

PLT Platelet Count 

RDW-SD Red blood cell distribution width 

RDW-CV Red blood cell distribution width 

PDW platelet distribution width 

MPV Mean platelet volume 

RDW-SD Red blood cell distribution width 

P-LCR Platelet larger cell ratio 

PCT Procalcitonin 

NEUT Neutropenia 
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LYMPH Lymphocytes 

MONO Mononucleosis 

EO Eosinophil granulocyte 

BASO Basophil granulocyte 

IG Intravenous immunoglobulin 

OUTPUT Thrombocytopenia = 1 

Normal = 2 

Leukocytosis = 3 

 
 

2.2. Model background 

Random Subspace Ensemble (RSE) is a machine 

learning technique used to improve predictive 

modeling by training several models on randomly 

selected subsets of the input characteristics.  Each 

model in the ensemble focuses on a different 

subset of the available features, encouraging 

model variety. RSE tries to increase the overall 

model's robustness and generalization 

performance by merging predictions from several 

diverse models, making it particularly beneficial 

for high-dimensional datasets or when dealing 

with the curse of dimensionality. Ho et al. 

presented a classic integrated technique called 

random subspace in 1998 [52]. To generate the 

training subset, the algorithm is comparable to the 

bagging algorithm and is randomly selected by the 

original training set [52], [53]. The algorithm of 

the Random subspace is represented in Alg. 1. 

Algorithm: Random Subspace Method 

Input: 

Training dataset: (X_train, y_train) 

Number of base models: n_estimators 

Maximum number of features to consider for each base 

model: max_features 

Output: 

List of base models: estimators 

Initialize an empty list estimator to store the base 

models. 

For i in range(n_estimators): 

a. Randomly select a subset of features from 

the available features with a size not exceeding 

max_features. Let's call this subset 

selected_features. 

b. Create a base model (e.g., decision tree 

classifier) and train it using the training data 

(X_train[:, selected_features], y_train). 

c. Append the trained base model and the 

selected_features to the estimators list. 

d. Return the list of estimators. 

 

The Histogram-based Gradient Boosting 

Classification Tree (HIST-GBCT) is a supervised 

classification machine learning algorithm. It 

creates an ensemble of decision trees by enhancing 

their forecast accuracy iteratively. The use of 

histograms to efficiently represent and manipulate 

data during the training phase distinguishes HIST-

GBCT. HIST-GBCT organizes data into bins or 

buckets rather than individual data points, 

reducing computing complexity and allowing for 

faster training. This method is very useful when 

working with huge datasets or high-dimensional 

feature spaces. The algorithm gradually refines its 

judgment bounds, resulting in a sophisticated 

classification model capable of successfully 

classifying new, previously unseen data points 

[54]. 

The outline of the mathematical formulation of 

Histogram-based Gradient Boosting: 

Initialize the ensemble model as an empty 

function: 𝑓0(𝑥) = 0. For each boosting round 𝑚 

from 1 to 𝑀: 

Step 1: Compute Negative Gradient 

For Calculating the negative gradient of the loss 

function with respect to the current model's 

predictions 

𝑔𝑚(𝑥𝑖) =
𝑑𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝑑𝐹𝑚−1(𝑥𝑖)
, for i

= 1,2,3, … , N.   (𝟐. 𝟏) 

Step 2: Fit a Base Learner 

Fit a base learner to the negative gradients 

𝑔𝑚(𝑥𝑖) = 0 and discover the best structure for the 

tree (e.g., split points and leaf values). This is 

accomplished by minimizing a loss function, such 

as squared error in regression or deviation in 

classification. 

𝑇𝑟𝑒𝑒𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡𝑟𝑒𝑒 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)

𝑁

𝑖=1

+ 𝑡𝑟𝑒𝑒(𝑥𝑖)). (𝟐. 𝟐) 

Step 3: Update the Model 

𝐹𝑚(𝑥) = 𝑦𝑖 , 𝐹𝑚−1(𝑥) + 𝑡𝑟𝑒𝑒(𝑥𝑖)
+ ɳ. 𝑡𝑟𝑒𝑒𝑚(𝑥𝑖) (𝟐. 𝟑) 

Add the new tree to the ensemble model, weighted 

by a learning rate: 

Step 4: Termination Check 
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Steps 1-3 must be repeated for a set number of 

boosting rounds 𝑀 or until a convergence 

condition is fulfilled. 

2.3.  Proposed model 

Figure 1 depicts the classification process with the 

whole flow of operations through the various 

stages. Two major operations were carried out in 

the preprocessing step to prepare the dataset for 

future analysis that represented under phase 1.  

First, categorization was employed, which 

included converting non-numeric categorical 

information into a numerical format that can be 

used in machine learning models. This phase 

guarantees that the algorithms can work 

effectively with categorical data, contributing to 

the dataset's overall quality. 

Accordingly, feature normalization was 

used. Normalization of features is an important 

step in data preprocessing. Scaling the numerical 

properties to a common range or distribution is 

involved. This normalization procedure 

guarantees that all features have a comparable 

influence on the modeling process, avoiding 

particular features from dominating the others due 

to scale disparities. 

Furthermore, the dataset has been divided 

into two parts: the training set and the test set.  The 

dataset was randomly divided into two subsets, 

with 70% going to the training set and 30% going 

to the test set. Because of the random split, both 

sets are representative of the whole dataset, 

allowing for robust model training and evaluation. 

This section is necessary for model training and 

evaluation. The training set is used to train 

machine learning models, while the test set is used 

to evaluate their performance and generalizability.  

Under phase 2; the efficacy of a random 

forest-based method for selecting relevant 

features, thus enhancing data input quality, is 

being investigated. The Histogram-based Gradient 

Boosting Classification Tree (HIST-GBCT) 

technique is employed in an ensemble of random 

subspaces. This method allows us to efficiently 

classify the selected features, which contributes to 

better analysis accuracy. 

In phase 3; a comprehensive set of 

experiments is carried out to demonstrate the 

efficacy of the proposed methods. These studies 

are designed to empirically show the benefits and 

efficacy of the chosen strategies.
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Figure 1. Illustration of the proposed workflow. 

 
3. Results and Discussion 

In this study, the focus is placed on the 

classification of patients with thrombocytopenia, 

leukocytosis, and individuals with normal 

hematological profiles by utilizing the proposed 

model.  Following that, comparison analysis is 

performed by comparing the findings to those 

produced by established approaches such as 

logistic regression, Bernoulli Naive Bayes, SVM-

linear, and k-Nearest Neighbors (kNN). Table 2 

demonstrates unequivocally that the proposed 

model has greater predictive performance [55].

Table 2. Comparative Performance Analysis 

Model Name Accuracy Precision Recall F1 score AUC 

Logistic Regression 0.842 0.841 0.802 0.799 0.694 

Bernoulli Naive Bayes 0.641 0.638 0.575 0.516 0.800 

SVM-Linear 0.635 0.631 0.623 0.490 0.771 

KNN 0.820 0.819 0.741 0.755 0.721 

Proposed Model 0.896 0.894 0.864 0.862 0.967 
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Figure 1. ROC curve for Leukocytosis vs 

(Thrombocytopenia and Normal). 

Figure 1 shows the ROC curve 

displaying the classification of blood illnesses 

into two categories, those are 'Leukocytosis' 

(class_id=2) and 'Thrombocytopenia and 

Normal' (all other classes). Figure 2 depicts the 

ROC curve for classifying blood ailments into 

two groups: 'Thrombocytopenia (class_id=2) 

and 'Leukocytosis and Normal’ (all other 

classes). 

 

Figure 2. ROC curve  for Thrombocytopenia 

vs    (Leukocytosis and Normal). 

The suggested technique regularly 

achieves superior ROC curve findings, 

suggesting its strong performance in accurately 

differentiating between Leukocytosis and 

‘Thrombocytopenia and Normal.’ These 

excellent ROC curves highlight the method's 

usefulness in achieving high sensitivity and 

specificity, which are critical for accurate 

disease categorization. 

 

Figure 3. Confusion matrix results 

Figure 3 illustrates the results of the 

confusion matrix. The high-performance 

confusion matrix demonstrates the several 

advantages of the technique. It emphasizes not 

just the model's ability to reliably identify 

examples, but also its ability to decrease 

misclassifications. As a result, diagnostic 

accuracy improves, false positives are 

minimized, and overall clinical decision support 

improves, ultimately contributing to more 

effective disease management and patient care. 

Table 3 shows a comparative study of 

the performance of our suggested model on 

different sized datasets. Important performance 

indicators like training time, prediction time, 

accuracy, and memory utilization are 

highlighted in the table. Three different dataset 

sizes—small (800 rows), medium (1000 rows), 

and big (1400 rows)—are assessed using these 

metrics. The outcomes show how the model 

scales with increasing data quantity in terms of 

accuracy and efficiency, offering important 

information about how well-suited it is for 

various clinical circumstances and dataset 

complexity. The value of second is averaged. 
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Table 3: Performance Analysis of the Proposed Model for Varying Dataset Sizes 

Dataset Size Model Training Time Prediction 

Time 

Accuracy Memory Usage 

(Training) 

Memory 

Usage 

(Prediction) 

Small (1100 

rows) 

Proposed 

Model 

10 seconds 1 second 83% 204 MB 50 MB 

Medium 

(2200 rows) 

Proposed 

Model 

12 seconds 2 seconds 85% 411 MB 96 MB 

Large (4000 

rows) 

Proposed 

Model 

15 seconds 4 seconds 89% 622 MB 231 MB 

 

In this paper, a novel hybrid modeling 

strategy was presented that takes advantage of 

the synergistic advantages of two different 

methods: the histogram-based gradient boosting 

classifier tree and the random subspace 

approach. The major goal was to develop a 

prediction model optimized for the assessment 

of blood disorders, with a particular emphasis 

on tumor detection. 

Table 4 offers a thorough summary of 

the most important hematology-related studies 

that use machine learning methods. It contains 

each study's title, author names, scope, 

particular machine learning techniques 

employed, and key conclusions or contributions 

from each study. The table also highlights the 

progress and difficulties in applying machine 

learning to different hematological aspects by 

contrasting and comparing the methods and 

results of these studies. This compilation is a 

useful tool for learning about the state of 

machine learning applications in this important 

field of medical research as well as their future 

potential.

 

Table 4: Compilation and comparsion of Machine Learning Studies in Hematology 

References Objective Dataset Method Performance 

[48] Predict  acute 

lymphoblastic 

leukemia (ALL) 

336 diagnosed 

children with ALL 

Random forest 

algorithm 

Accuracy: 0.829 

AUC: 0.902 

[49] Predict chronic 

myeloid leukemia 

(CML) 

Complete blood 

count records of 

1623 people with 

CML 

XGBoost and LASSO AUC range: 0.87-

0.96 

[50] Detection of leukemia 

and its types 

220 blood smear 

images from healthy 

individuals and 

patients with 

leukemia 

support vector machine Accuracy: 0.80 

[51] Leukemia image 

segmentation 

The Acute 

Lymphoblastic 

Leukemia Image 

Database 

HSCRKMb/particle 

swarm optimization/K-

means 

Accuracy: 0.80 

[17] Prediction of complete 

remission of acute 

myeloid leukemia 

473 bone marrow 

samples 

K-nearest neighbor, 

support vector 

machine, and hill 

climbing 

AUC :0.84 

Proposed 

Model 

Prediction  the tumor 

of blood disease 

The 4000 samples 

for  hematology 

The Histogram-based 

Gradient Boosting 

Classification Tree 

with Random 

Subspace Method 

Accuracy :0.896 

Precision :0.894 

Recall :0.864  

F1 score:0.862 

AUC :0.967 
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The findings show that suggested 

model outperforms other classifiers in 

predicting blood disease tumors. This 

accomplishment highlights the study’s 

approach potential therapeutic relevance and 

utility in assisting medical practitioners in the 

early detection of these crucial illnesses. 

This study's methodology is unique in 

that it combines the Random Subspace Method 

with the Histogram-based Gradient Boosting 

Classification Tree. The goal of this special 

pairing, which hasn't been discussed in the 

literature before, is to maximize the advantages 

of both approaches. Although the Gradient 

Boosting based on Histogram provides a strong 

instrument for managing intricate data 

structures, the Random Subspace Method 

improves the model's capacity to generalize and 

function in various diagnostic situations. This 

technology offers a more sophisticated and 

useful tool for early blood problem diagnosis, 

marking a substantial shift from conventional 

diagnostic techniques. 

It is worth noting that the encouraging 

results of this study pave the path for additional 

research and therapeutic applications. The 

accuracy and effectiveness of the model suggest 

that it could be a useful tool in the field of 

healthcare, particularly for the early diagnosis 

of blood diseases. However, it is critical to 

recognize the study's limitations, such as the 

size of the dataset and the necessity for real-

world validation. 

4. Conclusion 

Blood disorders are a broad category of medical 

illnesses that can have a significant impact on 

the correct functioning of the circulatory 

system. This broad range of illnesses produces 

a variety of symptoms that can range from 

minor to severe, depending on the exact type 

and unique patient features. Among the many 

blood illnesses include leukemia, chronic 

myelocytic leukemia, lymphoma, 

myelofibrosis, polycythemia, 

thrombocytopenia, anemia, and leukocytosis. 

Understanding these illnesses is critical because 

they have a wide range of consequences, from 

those that can be adequately managed to those 

that can be fatal. 

Early detection of blood problems is 

one of the most difficult challenges in the field 

of blood disorders. An accurate diagnosis is 

critical for commencing appropriate therapeutic 

interventions, which can have a major impact on 

patient outcomes. However, due to the intricacy 

of the underlying illness processes, detecting 

blood problems in their early stages can be 

extremely difficult. 

In conclusion, the findings of the study 

show the utility of hybrid modeling strategies in 

the context of blood condition assessment, 

particularly tumor prediction. These findings 

lay the groundwork for future research efforts 

aimed at improving early detection, treatment, 

and overall outcomes for those affected by 

blood diseases. 
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