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ABSTRACT 

Diabetic foot complications, caused by prolonged hyperglycemia, are a significant health concern among diabetes 

patients. The majority of patients develop diabetic foot complications, contributing significantly to diabetes-related 

hospital admissions. These complications include foot ulcers, infections, ischemia, Charcot foot, and neuropathy. 

They also increase the risk of amputation, affecting quality of life and putting strain on healthcare systems. At this 

stage, early diagnosis plays a vital role. The process of diagnosing involves not only identifying the presence or 

absence of a disease, but also categorizing the disease. In this study, we examine the use of deep learning methods 

in the diagnosis of diabetic foot conditions. It explores various aspects, such as predictive modeling and image 

analysis. The study discusses the progression of model designs, data sources, and interpretability methodologies, 

with a focus on improving accuracy and early detection. Overall, the study provides a comprehensive analysis of 

the current state of deep learning in diabetic foot problems, with highlighting advancements. 
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Diyabetik Ayağın Derin Öğrenme Yöntemleriyle Ayırıcı Tanısı 

 

ÖZ 

Uzun süreli hipergliseminin neden olduğu diyabetik ayak komplikasyonları diyabet hastaları arasında önemli bir 

sağlık sorunudur. Hastaların çoğunda diyabetik ayak komplikasyonları gelişir ve bu da diyabetle ilişkili hastaneye 

başvurulara önemli ölçüde sebebiyet verir. Bu komplikasyonlar arasında ayak ülserleri, enfeksiyonlar, iskemi, 

Charcot ayağı ve nöropati yer alır. Ayrıca amputasyon riskini artırarak yaşam kalitesini etkiler ve sağlık sistemleri 

üzerinde baskı yaratır. Bu aşamada erken teşhis hayati önem taşır. Teşhis süreci yalnızca bir hastalığın varlığını 

veya yokluğunu belirlemeyi değil aynı zamanda hastalığın kategorize edilmesini de içerir. Bu çalışmada diyabetik 

ayak rahatsızlıklarının tanısında derin öğrenme yöntemlerinin kullanımı incelenmiştir. Çalışma, tahmine dayalı 

modelleme ve resim analizi de dahil olmak üzere farklı yönleri de ele alır. Doğruluğun ve erken tespitin 

geliştirilmesine odaklanarak model tasarımlarının, veri kaynaklarının ve yorumlanabilirlik metodolojilerinin 

ilerleyişini tartışır. Genel olarak bu çalışma, diyabetik ayak problemlerinde derin öğrenmenin mevcut durumunun 

kapsamlı bir analizini ve ilerlemelerin altını çizmektedir. 

 

Anahtar Kelimeler: Derin öğrenme, ayırıcı tanı, diyabetik ayak, sınıflandırma.

 

 

https://orcid.org/0000-0002-2831-8104
https://orcid.org/0000-0002-2577-0517
https://orcid.org/0000-0003-1906-0401


 

Differential diagnosis of diabetic foot with deep learning methods                          Çakır et al. / RTEU-JSE 4(2) 288-305 2023 

 

289 

1. Introduction 

Diabetes mellitus (DM) is a chronic condition 

characterized by compromised insulin production, 

insulin resistance, or a combination of both (Belsti 

et al., 2020). According to the International 

Diabetes Federation, there is an estimated global 

prevalence of diabetes of approximately 537 

million individuals (Maltese et al., 2023). 

According to the cited source, it is projected that 

the aforementioned figure will increase to 

approximately 783 million by the year 2045 

(Ogurtsova et al., 2022). Nevertheless, it is worth 

noting that around 50% of diabetes cases remain 

misdiagnosed, leading to a staggering 6.7 million 

fatalities. Undiagnosed individuals with diabetes 

are at a significantly increased risk of developing 

a range of serious diseases (Ferreira et al., 2020). 

DM is accompanied by several consequences, 

such as cardiovascular diseases, myocardial 

infarctions, renal diseases, retinopathy, podiatric 

injuries, hearing impairment, visual impairments, 

bacterial and fungal infections, depressive 

disorders, and dementia. Figure 1 shows the 

principal problems associated with diabetes.  

These challenges not only have implications for 

individuals' well-being, but they also have a 

substantial influence on their personal and 

professional lives. Additionally, it is linked to a 

significant mortality rate (Cruz-Vega et al., 2020).  

Diabetic foot is a prominent problem related to 

diabetes. According to reports, individuals with 

diabetes may have reduced sensitivity in their feet, 

along with mechanical stress in the plantar area. 

The occurrence of diabetic foot is a significant 

consequence associated with diabetes, 

characterized by the formation of plantar ulcers 

that may ultimately need amputation (Cruz-Vega 

et al., 2020). Around one-third of individuals 

diagnosed with diabetes will experience a diabetic 

foot ulcer (DFU), with a lifetime probability of 

34%. This indicates a significant health risk for 

patients (Yap et al., 2021b). Individuals diagnosed 

with DFU are susceptible to experiencing 

compromised wound healing. DFUs have been 

associated with the potential risk of lower limb 

amputation and a subsequent decrease in survival 

rates (Chamberlain et al., 2022). Furthermore, it is 

crucial to note that the primary risk factors 

associated with the formation of foot ulcers in 

individuals diagnosed with diabetes are peripheral 

neuropathy and vascular disease (Reardon et al., 

2020). 

Figure 1. Diabetes related disorders (Das et al., 

2023) 

Diabetes, especially DFU management, is costly 

due to the expenses associated with diagnosis, 

regular check-ups, costly substances, and 

maintaining personal hygiene, as shown in Figure 

2. In recent years, there has been widespread 

adoption of medical technology with a view of 

enhancing the care provided to individuals with 

diabetes. This has resulted in the generation of a 

substantial volume of data, which holds potential 

for advancing the management of such chronic 

condition. Considering this opportunity, 

methodologies that employ artificial intelligence 

(AI), have been extensively embraced with 

encouraging outcomes (Zhu et al., 2020). 

Automated telemedicine systems have become 

the most economical option for detecting DFUs. 

Identification methods, such as computer vision 

techniques and supervised machine learning (ML) 

and deep learning (DL) algorithms, have been 

suggested for this purpose (Das et al., 2023). The 

use of AI approaches to various medical imaging 

has become increasingly prevalent with the 

advancement of AI technology. ML and DL, as 

widely adopted methods in the field of AI, have 

established their dominance over an extended 

period. 
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Figure 2. Diabetes management (Zhu et al., 2020) 

The fundamental principle behind several DL 

methods is the use of artificial neural networks 

(ANNs) with extensive architectures to process 

input and acquire progressively more complex 

properties. It is currently used to improve 

classification accuracy, but it often requires a 

large amount of data and labeling. Two primary 

methods for training DL are full training, which 

requires a large amount of labeled data, and using 

large computing and memory resources like 

GPUs for accelerated processing. In medicine, 

this may pose challenges for expert annotation 

tasks and acquiring large patient images. One 

potential solution is fine-tuning a pre-existing DL 

architecture using a large, labeled dataset from a 

specific application domain. In medical imaging, 

fine-tuning has shown superior performance or 

comparable performance to a convolutional 

neural network (CNN) trained from the beginning 

(Cruz-Vega et al., 2020). 

2. Material and Method 

In recent years, there has been a significant 

advancement in the field of DL, which is a 

specific branch of ML. In contrast to traditional 

ML approaches that necessitate human feature 

extraction and rely on domain expertise, DL could 

automatically extract features by shifting from 

hand-designed to data-driven features (Min et al., 

2017). Figure 3 illustrates the distinction between 

traditional ML and DL in regards to feature 

extraction. In conventional ML, the process of 

feature extraction often involves multiple stages, 

including feature extraction and selection. DL is a 

computational framework that typically consists 

of numerous layers of processing. Its purpose is to 

acquire knowledge about data by converting input 

information into various degrees of abstraction. 

This is achieved through the use of basic yet non-

linear modules (LeCun et al., 2015). Through 

these transitions, DL models will acquire 

knowledge of a highly intricate function. 

Significantly, because of its automated nature, DL 

facilitates the analysis of numerous cases, 

surpassing the capacity of human experts in terms 

of both exposure and recollection. Consequently, 

DL exhibits enhanced resilience to diverse 

variances in characteristics across distinct 

categories (Chan et al., 2020). 
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Figure 3. Difference between DL and ML (Zhang et al., 2022) 

DL models provide a flexible and adjustable 

output with high accuracy, minimizing costs, 

reducing human bias, and reducing time-

consuming work. However, their successful 

application in healthcare settings has not been 

fully realized. The data challenge, or 

insufficiently labeled data, is a primary obstacle in 

this field. DL models often exhibit a large 

parameter count and overfitting tendencies when 

trained on insufficiently large datasets, leading to 

suboptimal performance on novel data. Various 

strategies, such as transfer learning and data 

augmentation, can address this issue. The 

prevailing trend towards deep neural networks 

(DNN) intensifies the vanishing gradient 

problem. Skip connections have been 

demonstrated to address this issue and offer 

additional advantages during the training phase. 

DL algorithms could be categorized into 

reinforcement learning, supervised learning, and 

unsupervised learning. Supervised learning 

involves classification and regression tasks, using 

labeled input data for backward propagation and 

model optimization. Three types of supervised 

learning based DNNs have been identified in the 

diabetes literature: CNNs, deep multilayer 

perceptrons (DMLPs), and recurrent neural 

networks (RNNs). DMLPs, also known as feed-

forward neural networks, utilize simple 

interconnections among neurons, specifically 

fully connected (FC) layers. DMLPs are 

characterized by weight vectors, bias scalars, and 

nonlinear activation functions. CNNs use 

convolutional layers as perceptrons to analyze 

signals from multi-dimensional arrays, leading to 

exceptional performance in imaging tasks. Most 

CNN architectures use a subsampling layer or 

pooling layer to aggregate feature maps. 

Convolutional processes reduce neuron 

connections across layers, improving model 

training efficiency by facilitating back-

propagation. Various CNN-based methods have 

been used for large-scale imaging recognition 

tasks, such as the ImageNet database, using 

parallelized operations of GPUs and TPUs. These 

models have also been adapted for practical use in 

industry. Common CNN configurations include 

VGGNet, AlexNet, ResNet, EfficientNet, and 

GoogLeNet (Zhu et al., 2020). 

2.1. CNN 

CNNs are crucial in medical diagnostic 

applications, specifically for analyzing and 

interpreting medical imaging data like magnetic 

resonance imaging (MRIs), X-rays, computerized 

tomography (CT) scans, and histopathological 

images. A conventional CNN structure consists of 

convolutional layers, dropout layers, pooling 

layers, and FC layers. Convolutional layers 

extract feature maps from input images by 

multiplication with a convolution kernel matrix 

(Roback, 2010). Non-linear characteristics are 

derived from convolved outputs using non-linear 

activation functions (Yap et al., 2021a). Pooling 

layers decrease feature map resolution and obtain 

invariance. To mitigate overfitting and minimize 

computational complexity, techniques like max-

min, and average pooling are used. The feature 

matrices in the last pooling layer are flattened and 

converted to a vector for the FC layer. The 
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classification label is determined by applying a 

transformation to the flattened vector. The 

softmax function generates a probability 

distribution for multiple classifications. Local 

patterns are found by convolutional layers, spatial 

dimensions are reduced by pooling layers, and 

features are combined by FC layers, and the final 

diagnosis is made by the output layer. The 

network is trained using annotated datasets and 

optimized using methods like stochastic gradient 

descent. This architecture aids healthcare 

practitioners in making accurate, prompt, and 

potentially life-saving evaluations (Zhang et al., 

2022). Figure 4 shows the CNN architecture based 

on the image classification of DFU. 

 
Figure 4. CNN architecture for image classification of DFU (Zhang et al., 2022) 

Amin et al. (2020) present a DL model for 

localizing and classifying DFU using a 16-layer 

CNN architecture. The model includes various 

components such as 1 input layer, 3 convolutional 

layers, 3 batch-normalization layers, 1 average 

pooling layer, 1 skip convolutional layer, 3 ReLU 

layers, 1 add layer (performing element-wise 

addition of two inputs), FC layers, SoftMax layer, 

and classification output layers. It incorporates 

YOLOv2-DFU for infection/ischemia models. 

Various classifiers, including K-Nearest 

Neighbors, Decision Trees, Ensemble methods, 

SoftMax, and Naive Bayes, are used to analyze 

the classification results. The YOLOv2-DFU 

model incorporates a shuffle network for 

localization, demonstrating superior performance 

due to the influence of the chosen convolutional 

layers on classification outcomes. Das et al. 

(2022) present a novel approach for identifying 

DFU using a stacked parallel convolution layer 

within a CNN. The DFU SPNet, trained with 

various optimizer and learning rate 

configurations, demonstrated superior 

performance compared to standard CNN 

architectures. The DFU SPNet demonstrated 

significant gains over state-of-the-art approaches 

on the same dataset, with promising mean average 

accuracy, sensitivity, F1-score, and AUC. This 

approach, DFU SPNet, can assist DFU specialists 

in expediting their decision-making process. 

Harahap et al. (2022), evaluated the CNN 

algorithm, ResNet152V2, for its precision in 

categorizing diabetic ulcer disease using transfer 

learning methodology. The ResNet152V2 model 

achieved the highest accuracy score of 0.993, 

recall score of 0.986, precision score of 1.00, F1-

Score of 0.993, and support score of 72. This 

study highlightsm CNN's potential as a classifier 

for identifying and categorizing diabetic ulcers in 

individuals with DM. Gamage et al. (2019) 

propose the use of a CNN based on the DenseNet-

201 architecture for predicting the severity stages 

of DFUs. The CNN is combined with a global 

average pooling (GAP) layer to extract features. 

The authors also introduce a methodology that 

improves computational efficiency and reduces 

memory usage by implementing feature 

extraction using singular value decomposition. 

The proposed architecture has the potential to 

achieve an accuracy rate of over 96%. The 

researchers evaluate various pre-trained CNN 

architectures, including ResNet, EfficientNet, 

DenseNet, Xception, VGG, InceptionV3, and 

InceptionResNetV2, commonly used for transfer 
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learning. Reyes-Luévano et al. (2023) present a 

unique architecture called DFU_VIRNet, which is 

a CNN designed for the purpose of automatically 

classifying abnormal skin from healthy skin. The 

proposed CNN is trained and validated using 

images obtained from thermography, specifically 

in the visible and infrared spectrums. In addition, 

this study introduces a novel approach utilizing 

estimation maps for the identification of high-risk 

areas where patients are more likely to develop 

DFU. In order to assess the applicability of the 

proposed method, the performance of 

DFU_VIRNet has been evaluated with a total of 

five datasets. These datasets consisted of one 

visible-infrared dataset and four recently 

published visible datasets, as presented in this 

paper. The datasets encompassed samples of 

abnormal skin, healthy skin, as well as cases of 

ischaemia and infection. The findings of the study 

indicate that DFU_VIRNet exhibited superior 

performance compared to the current leading 

results. Specifically, it achieved an AUC of 

0.9923 and an F1-score of 0.9600 for DFU 

classification, an AUC of 0.9982 and an F1-score 

of 0.9928 for ischaemia classification, and an 

AUC of 0.9121 and an F1-score of 0.8363 for 

infection classification. The exceptional 

performance of DFU_VIRNet can be attributed to 

a novel learning mechanism introduced in this 

study, known as the GAP-2D-DLSA-IMG 

substructure. This mechanism effectively 

mitigates overfitting and enhances the perceptual 

field of DFU_VIRNet. 

2.1.1. R–CNN 

The use of R-CNN (Region-based CNN) in 

diabetic foot diagnosis has shown significant 

progress in object detection within medical 

images. R-CNN models are known for their high 

accuracy in localizing and detecting objects, 

particularly in identifying anomalies related to 

diabetic foot conditions such as ulcers and 

infections. These models employ a two-stage 

process of region proposal generation and CNN-

based classification, improving accuracy for 

evaluation and treatment planning in medical 

imaging. Customization through fine-tuning on 

specialized datasets specific to diabetic foot 

further enhances diagnostic performance. The 

presentation of interpretable outcomes, 

represented by bounding boxes around identified 

areas, allows healthcare practitioners to visually 

verify and understand model predictions. 

Incorporating R-CNN models into diagnostic 

systems improves the efficiency of automated 

analysis for diabetic foot images, leading to timely 

treatments and reducing the severity of foot 

issues. These models also complement 

conventional DL methods in classification and 

object identification, making them crucial 

components of comprehensive diagnostic 

solutions. However, it is important to note that the 

effectiveness of R-CNN in diagnosing diabetic 

foot relies on carefully annotated medical image 

datasets and rigorous training and validation 

procedures. 

In contrast to conventional feed-forward neural 

networks, RNNs incorporate information from 

past timesteps into their input. The inclusion of 

this feature enhances the capabilities of RNNs in 

effectively analyzing consecutive data and 

capturing temporal characteristics. Nevertheless, 

the challenge with vanilla RNNs resides in the 

process of back-propagation training, which often 

leads to issues such as exploding and gradient 

vanishing (Bengio et al., 1994). Long short-term 

memory and gated recurrent units are two 

examples of sophisticated RNN cells that have 

fortunately addressed the issues mentioned above. 

These RNN cells have successfully addressed the 

issues by incorporating gate functions and 

effectively retaining long-term information. 

RNN-based models have demonstrated 

significant advancements in many prediction and 

regression tasks, particularly in the domains of 

natural language processing and speech 

recognition. The attention mechanism has 

emerged as a prominent trend in RNNs. This 

mechanism enables models to selectively 

concentrate on specific segments of input 

sequences, facilitating the mapping of 

dependencies irrespective of their spatial 

separation (Zhu et al., 2020). 
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Oliveira et al. (2021) present a novel methodology 

for the automated detection of DFUs via DL 

methodologies. An expanded iteration of the 

Faster R-CNN methodology has been 

implemented in the study. Several strategies have 

been implemented in order to attain a high level 

of precision in the detection of ulcers, reduce the 

occurrence of false positive results, and accelerate 

the whole detection process. Several 

modifications were made to improve the 

performance of the detection system. These 

modifications include altering the number of 

regions and anchor scales, implementing data 

augmentation techniques in the dataset, and 

adopting a CNN that has demonstrated superior 

detection capabilities compared to previous 

approaches. Ultimately, they conducted 

experiments with the selected detectors, 

subjecting each one to a training process 

consisting of 100 epochs. The findings of our 

study indicate that the application of our solutions 

leads to enhancements in both the mean average 

precision (mAP) and F1-score, in comparison to 

the state-of-the-art standard detector 

implementations. Significant improvements have 

been made in terms of mAP, F1-score, and 

detection speeds. These advancements not only 

enhance the detection capabilities of DFUs, but 

also instill greater confidence in the practical 

implementation of the Faster R-CNN DFU model. 

Cao et al. (2023) used the Wagner diabetic foot 

grading method to categorize wounds into five 

grades using a multi-classification methodology. 

An ADL model was developed to perform 

semantic segmentation of DFU wounds, based on 

the Mask Region-based CNN (Mask R-CNN) 

architecture. The model achieved several levels of 

diabetes nested segmentation outcomes, 

effectively capturing varying degrees of severity 

within a single wound. The model demonstrated 

superior performance metrics, with a specificity 

of 99.50%, sensitivity of 70.62%, precision of 

84.56%, and a mAP of 85.70%. This approach 

offers recommendations for the assessment, 

diagnosis, and management of DFUs, 

demonstrating the efficacy of the nested 

segmentation and multi-level classification 

approaches. Sharma et al. (2023)  explore the use 

of AI and image fusion techniques to assess and 

characterize DFUs. The study utilizes a computer-

aided assessment technique that combines thermal 

and visual data using an image fusion technique 

based on hue, saturation, and value. The wound 

area estimation is achieved through a Mask R-

CNN based on instance segmentation. The study 

is a randomized, prospective, single-blind trial 

conducted over a period of 12 weeks, focusing on 

neuropathic DFUs of Wagner grade 2 located on 

the plantar surface of the foot. Forty-two 

participants with an average age of 54.28±7.45 

years and an average ulcer duration of 5.86±2.22 

years were included in the study. The healing 

progress of eight patients was tracked on a weekly 

basis. The study found that the absolute 

temperature differential across contralateral ulcer 

sites was measured to be 2.63±1.99°C, with a 

statistically significant p-value of 0.000040412. 

There was a 92.50% correlation between the 

ground truth ulcer area estimation made by 

doctors using the Woundly program and the 

suggested method. The research concludes that 

the Mask-RCNN technique, when applied to 

fused images, has the potential to enable 

automation and user-independence.  

2.1.2. EfficientNet 

EfficientNet, a neural network designed for 

efficient image classification, has proven 

beneficial in diabetic foot diagnosis. Its scalability 

allows for different model sizes to accommodate 

computational resources and diagnostic 

requirements. EfficientNet's advanced feature 

extraction capabilities and fine-tuning on specific 

diabetic foot image datasets streamline the 

diagnostic process. Integrating EfficientNet into 

diagnostic systems improves efficiency and 

consistency, especially in time-sensitive 

situations. However, its effectiveness relies on 

carefully annotated medical image datasets, 

rigorous fine-tuning, and validation procedures in 

clinical settings. 

The EfficientNet model introduces a novel 

approach known as the compound scaling 

method, which involves scaling convolutional 

layers to effectively extract deeper information 
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(Tan and Le, 2019). While previous CNN 

approaches primarily emphasize the search for 

optimal architecture layers, EfficientNet takes a 

different approach by examining the depth and 

tensor size of these layers. Therefore, EfficientNet 

has the potential to be integrated into the base 

architectures of other CNNs, such as ResNet and 

MobileNet. The EfficientNet framework 

encompasses a collection of eight distinct 

architectural families that are utilized within the 

compound scaling paradigm. The primary 

architect of the EfficientNet model is referred to 

as EfficientNetB0. The model has undergone 

further development, culminating in its most 

recent iteration, known as EfficientNetB7 

(Munadi et al., 2022). 

Liu et al. (2022) focus on the development of a 

DL method for detecting bacterial infection and 

inadequate blood flow (ischemia) in DFUs 

through image processing. The researchers 

utilized a dataset of DFUs and applied geometric 

and color image processes to augment the dataset. 

They then performed binary classification tasks 

using the EfficientNet DL model and compared its 

performance to other baseline models such as 

ResNet, Inception, and Ensemble CNN. The 

results showed that the EfficientNet model 

achieved superior performance in classifying both 

ischemia and infection, with accuracies of 99% 

and 98% respectively. This outperformed the 

other baseline models, which achieved accuracies 

of 87%. Furthermore, the EfficientNet model 

demonstrated a notable reduction in the time 

required for classifying test photos compared to 

the baseline models, ranging from 10% to 50%. 

Overall, this study provides evidence that 

EfficientNets can be considered a feasible DL 

model for accurately classifying infections and 

ischemia in DFUs. Basiri et al. (2022) focus on 

evaluating and selecting the most accurate feature 

extractor for the development of a DL wound 

detection network. The researchers utilized mAP 

and F1-score parameters to assess the 

performance of their approach using the publicly 

available DFU2020 dataset. They found that a 

hybrid approach combining the UNet architecture 

and the EfficientNetb3 feature extractor achieved 

the best results compared to the other 14 networks 

considered. This combination of UNet and 

EfficientNetb3 is deemed suitable for creating a 

comprehensive autonomous wound detection 

pipeline specifically tailored for the DFU domain. 

The study concludes that the EfficientNetb3 

feature extractor produces the highest Intersection 

over Union and F1 values. Through a thorough 

evaluation of feature extractors and architectures, 

the researchers argue that an optimized 

combination of EfficientNetb3 and UNet for box 

detection has the potential to outperform the 

current. Liu et al. (2023) introduced a novel DL 

architecture called Semi-Supervised PMG 

EfficientNet (SS-PMG-EfficientNet), which was 

utilized to estimate all eight sub-scores related to 

PWAT. The researchers employed transfer 

learning techniques on the SS-PMG-EfficientNet 

model in order to train individual models for each 

of the eight PWAT sub-scores. The SS-PMG-

EfficientNet architecture demonstrated strong 

performance in the rigorous evaluation of chronic 

wounds, specifically in the assessment of DFUs, 

vascular ulcers, pressure ulcers, and surgical 

wounds. The proposed approach, known as SS-

PMG-EfficientNet, achieved an average 

classification accuracy and F1 score of 

approximately 90% for all 8 PWAT sub-scores. It 

outperformed a comprehensive set of baseline 

models and demonstrated a 7% improvement over 

the previous state-of-the-art method, without the 

use of data augmentation.  

2.1.3. ResNet 

The integration of ResNet, a DNN design known 

for its depth and efficacy in addressing the 

vanishing gradient problem, shows promise in the 

field of diabetic foot diagnosis. ResNet's deep 

layers have the ability to acquire complex details 

from medical pictures, making it suitable for 

detecting subtle patterns and abnormalities 

relevant to diabetic foot issues. The use of residual 

connections in ResNet allows for the training of 

deep networks with a high number of layers while 

maintaining the smooth transfer of information, 

making it suitable for medical picture processing. 

The depth of ResNet refers to its ability to extract 
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pertinent characteristics from images, which is 

essential for accurately identifying anomalies 

associated with diabetic foot conditions. ResNet's 

adaptability in transfer learning allows for the 

refinement of pre-existing models using specific 

datasets focused on diabetic foot images, 

improving its ability to adapt to medical image 

analysis tasks with limited data. The incorporation 

of ResNet into diagnostic systems enhances the 

efficiency of automated analysis for diabetic foot 

pictures, accelerating the diagnostic process and 

enabling prompt intervention. ResNet's 

interpretability and visualization capabilities also 

enhance its usefulness in clinical settings, 

allowing healthcare practitioners to better 

understand the model's diagnostic reasoning. 

However, the effectiveness of ResNet in 

diagnosing diabetic foot relies on carefully 

annotated medical image datasets and rigorous 

processes of model fine-tuning and validation, 

which are necessary for its implementation in 

clinical environments. 

The success of ResNet can be attributed to its 

incorporation of the identity shortcut connection, 

which allows for the bypassing of layers. This 

feature has greatly improved various computer 

vision applications, such as image classification, 

object identification, face recognition, and 

semantic segmentation. The inclusion of residual 

units and skip connections in deep networks has 

made training easier and information propagation 

more efficient. These enhancements have also 

reduced the number of parameters required while 

maintaining or improving performance in 

semantic segmentation tasks. Additionally, the 

use of average pooling instead of FC layers helps 

to prevent overfitting and leads to increased 

accuracy (Bouallal et al., 2022). 

Bouallal et al. (2022)  develop an automated and 

accurate method for segmenting diabetic foot 

images. The authors propose a DNN framework 

called Double Encoder-ResUnet that combines 

the advantages of residual networks and U-Net 

architecture. The network uses RGB color 

photographs and integrates thermal and color data 

to increase segmentation accuracy. The dataset 

consists of 398 pairs of RGB and thermal images, 

with two groups: a healthy cohort of 54 

individuals and a diabetic cohort of 145 

individuals. The dataset is divided into training, 

testing, and validation subsets. The proposed 

model achieves high performance in generating 

precise segmentations of the diabetic foot, 

outperforming existing techniques with an 

average intersection over union score of 97%. It 

also accurately identifies areas of the foot that are 

at a higher risk for ulcers, such as the toes and 

heels. Ahsan et al. (2023) introduce a variety of 

end-to-end  CNN architectures, including 

AlexNet, VGG16/19, GoogLeNet, ResNet50.101, 

MobileNet, SqueezeNet, and DenseNet. These 

designs are used for the purpose of categorizing 

infections and ischemia using the benchmark 

dataset DFU2020. The weight is adjusted to 

address the issue of insufficient data and minimize 

computational costs. The use of affine transform 

methods is employed for the purpose of 

augmenting input data. According to the findings, 

the ResNet50 model demonstrates superior 

accuracy rates of 84.76% and 99.49% for the 

detection of infection and ischaemia, respectively.  

2.2. Performance Assessment 

The effectiveness of ML algorithms, including 

DL algorithms, is evaluated using performance 

assessment metrics. Various performance 

evaluation measures are used to evaluate the 

performance of DL models, particularly in the 

context of DFUs. The accurate utilization of these 

metrics is crucial in determining the effectiveness 

and optimal functioning of the model. One 

important component of DL models is the 

confusion matrix, which provides insights into the 

accuracy of both actual and expected 

classifications.  The definitions of certain 

concepts inside the confusion matrix are as 

follows: in the context of DL models, when a 

prediction accurately identifies the positive class, 

it is referred to as a true positive (TP); conversely, 

if the prediction incorrectly identifies the positive 

class, it is known as a false positive (FP). In the 

context of DL models, when a prediction 

accurately identifies the negative class, it is 
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referred to as a true negative (TN). Conversely, if 

the prediction incorrectly fails to identify the 

negative class, it is classified as a false negative 

(FN). The aforementioned concepts are employed 

in the performance assessment criteria utilized for 

DL models in the context of DFUs (Zhang et al., 

2022). Table 1 shows the confusion matrix, and 

Table 2 indicates the performance assessment 

parameters. 

Table 1. Confusion-matrix (Wang et al., 2022) 

 
Predicted 

N P 

Actual 
Negative TN FP 

Positive FN TP 

N: Negative; P: Positive; TN: True negative; FN: False 

negative; FP: False positive; TP: True positive 

 Accuracy assesses the accuracy of a model in 

predicting tasks. Its usefulness depends on the 

context and its simplicity of interpretation. 

However, it is vulnerable to class imbalance 

and may not be sufficient in situations with 

imbalanced class distributions or 

incomparable FP and FN. Therefore, accuracy 

should be combined with additional metrics 

tailored to the dataset's task objectives and 

features for a more nuanced evaluation.  

 Sensitivity, also known as TP rate, evaluates 

a model's ability to accurately detect positive 

instances in binary classification tasks. High 

sensitivity reduces FN, enhancing its 

usefulness in medical diagnosis. However, 

enhancing sensitivity may lead to incorrect 

positive identifications. Hence, it's essential 

to assess the model's overall performance, 

considering both sensitivity and specificity, to 

determine its capacity to differentiate 

negative instances.  

 Specificity is crucial for identifying negative 

instances in binary classification tasks, known 

as the TN rate. It reduces FPs and unnecessary 

alerts, especially in medical diagnostic tests. 

However, achieving greater precision may 

result in more FN. Therefore, it's essential to 

assess the model's overall performance, often 

in conjunction with sensitivity, to determine 

its capacity to accurately identify positive 

instances.  

 Precision assesses a model's effectiveness in 

identifying positive instances. It is used in 

various tasks like search engine ranking and 

email spam filtering. Precision prioritizes 

positive predictions, reducing FP. However, it 

can lead to increased FN. To evaluate a 

model's performance, a balance between 

precision and recall is necessary, considering 

the trade-offs between these metrics.  

 Recall assesses a model's ability to accurately 

identify positive instances in classification 

tasks. It represents the ratio of TP predictions 

to actual positive instances. Recall is 

especially important in medical diagnosis and 

quality control, where overlooking favorable 

occurrences can have significant 

consequences. However, achieving maximum 

recall can lead to FP, highlighting the need for 

a balance between recall and precision.  

 The Area Under the Receiver Operating 

Characteristic Curve (AUC) assesses a 

model's ability to differentiate between 

classes in binary classification scenarios. It 

uses the ROC curve, a visual representation, 

to evaluate a model's discriminatory ability. 

AUC is particularly useful in imbalanced 

datasets and can withstand threshold-specific 

factors. However, it doesn't provide insight 

into the ideal threshold for specific 

applications, necessitating the use of 

precision-recall curves.  

 The F1 Score combines precision and recall 

evaluating a model's performance in binary 

classification tasks. It ranges from 0 to 1, with 

higher values indicating better performance. 

It's useful in situations where high precision 

and recall are crucial, such as information 

retrieval, text categorization, and medical 

diagnosis. It helps balance efforts for optimal 

model performance.  

 Average Precision (AP) is a crucial in object 

detection and information retrieval. It 

evaluates a model's ability to balance 

precision and recall, with higher values 
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indicating better performance. AP is 

particularly useful in situations with 

imbalances between positive and negative 

occurrences or tasks requiring high precision 

across different recall levels.   

 Mean Average Precision (mAP) is used for 

object detection and classification across 

multiple classes. It calculates AP for each 

object class separately and takes the mean. It 

evaluates a model's precision-recall trade-

offs, but its computational requirements can 

be significant.  

 The Dice Similarity Coefficient measures the 

level of similarity between predicted and 

ground truth sets. It is crucial in applications 

like medical image segmentation and 

computer vision, where object delineation 

precision is crucial. However, it may not 

consider object size or shape differences or 

the distribution of errors in space. Despite 

these limitations, it remains a significant tool 

for segmentation accuracy. 

 

Table 2. Performance assessment parameters (Zhang et al., 2022) 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

Sensitivity 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Specificity 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

Recall 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

AUC 
𝐴𝑈𝐶 =

∑ 𝑟𝑎𝑛𝑘𝑖𝑛𝑠𝑖𝑖𝑛𝑠𝑖∈𝑝𝑜𝑠𝑡𝑖𝑣𝑒𝑐𝑙𝑎𝑠𝑠 −
𝑀 × (𝑀 + 1)

2
𝑀 × 𝑁

 

F1-Score 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Average precision (AP) 𝐴𝑃 =
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑄
𝑞=1

𝑄
 

Mean average precision (mAP) 𝑚𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄

𝑞=1

𝑄
 

Dice similarity coefficient (DSC) 𝐷𝑆𝐶 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

2.3. Limitations and Possible Solutions 

The use of DL in diabetes research has shown 

promising advancements, but it is important to 

consider qualities like robustness, reliability, and 

effectiveness in healthcare applications. There are 

several constraints that limit the implementation 

of DL in real-world clinical environments, 

including, data volume, transparency, data 

quality, and interpretability (Zhu et al., 2020). The 

major challenge is the limited availability and 

quality of data, particularly in obtaining 

comprehensive and well-annotated medical 

imaging datasets. Data obtained from diabetic 

foot patients may have imperfections due to 

human errors and sensor abnormalities, and 

acquiring empirical data can be costly and time-
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intensive. Data privacy policies can also make it 

challenging to exchange data sets among research 

teams. Additionally, there is a lack of 

transparency, making it difficult for doctors to 

understand the logic behind the model's output. 

Balanced performance and interpretability are 

crucial when exploring DL techniques.  To 

overcome these limitations and ensure safe and 

effective integration into clinical practice, the 

progress of DL in identifying diabetic foot 

conditions requires the involvement of multiple 

stakeholders. The application of DL algorithms 

involves multiple strategies to overcome these 

complex challenges. These strategies include data 

augmentation to increase the amount and diversity 

of datasets, transfer learning to leverage pre-

trained models and adapt them for the specific 

task. Rigorous clinical validation is conducted to 

ensure the safety and reliability of DL models in 

real-world clinical environments. 

Interdisciplinary collaboration between data 

scientists, healthcare practitioners, regulatory 

authorities, and technologists is essential for 

integrating technology into clinical practice. 

2.3.1 Data Augmentation 

Data augmentation is a crucial technique used in 

DL models, particularly in the field of diabetic 

foot diagnosis and medical imaging. It involves 

intentionally modifying existing data to 

artificially increase the size and diversity of the 

dataset. This is important because DL models 

require a large amount of training data due to the 

numerous parameters involved. Data 

augmentation is a cost-effective strategy to 

generate a substantial amount of data when it is 

not readily available. It involves various 

processing methods such as rotation, flipping, 

contrast enhancement, and changes in space and 

color, as well as random scaling (Cruz-Vega et al., 

2020). These transformations aim to replicate 

real-world variations observed in medical images, 

such as changes in orientation, lighting 

conditions, image quality, and the inclusion of 

clinical annotations. By increasing the dataset size 

through data augmentation, DL models become 

more robust and capable of generalizing, allowing 

them to better handle the complexities and 

variations associated with diagnosing diabetic 

foot conditions. Additionally, data augmentation 

helps prevent overfitting and improves the 

accuracy of the diagnostic process. 

Anaya-Isaza, and Zequera-Diaz (2022a) proposed 

the incorporation of three DL architectures using 

three different data augmentation approaches. A 

novel approach involving the use of the Fourier 

transform to change image amplitudes was 

introduced. The study utilized two CNNs and a 

novel approach using attention models, 

specifically the Transformer model. The 

combination of the Fourier approach and image 

flipping augmentation resulted in the best 

performance across the three networks: DFTNet, 

Transformer, and ResNet50v2. The networks 

achieved performance levels exceeding 95%, with 

ResNet50v2 achieving a flawless score of 100% 

without overfitting. The design also addressed the 

issue of ambiguous probabilities, with a limited 

number of topics having low probabilities that 

made classification challenging. Furthermore, the 

network allowed for an uncertainty threshold of 

up to 20%, ensuring high classification efficiency 

by eliminating values between 0.4% and 0.6%. 

Goyal et al. (2020) present a new dataset and 

utilize computer vision algorithms to detect 

infection and ischaemia in DFUs. The dataset 

includes ground truth labels for cases of infection 

and ischaemia, making it valuable for research 

purposes. The study introduces a new feature 

descriptor called the Superpixel Colour 

Descriptor and employs an Ensemble CNN model 

to improve the accuracy of identifying infection 

and ischaemia. The study suggests using a natural 

data augmentation method that focuses on the 

region of interest in foot images to enhance the 

detection of important elements. The main 

objective is to accurately classify ischaemia and 

infection through binary classification tasks. 

Overall, the proposed methodologies 

outperformed handmade ML algorithms, 

particularly in the classification of ischaemia. The 

results demonstrate that the Ensemble CNN DL 

algorithms achieved a classification accuracy of 

90% for ischaemia and 73% for infection. Anaya-
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Isaza, and Zequera-Diaz (2022b) investigate a 

novel discrimination coefficient based on average 

temperature, age, and the Temperature 

Coefficient Index (TCI) of the subjects' feet. This 

coefficient showed higher accuracy compared to 

TCI, with a 17% improvement. The study also 

explored the use of the ResNet50v2 network and 

data augmentation techniques to categorize 

participants. Twelve data augmentation 

techniques, including dimension reduction 

methods, were used to generate synthetic images. 

All approaches showed statistical significance in 

enhancing the data. A comparative analysis of the 

network's behavior under different training 

settings was conducted, including training from 

inception, transfer learning from the ImageNet 

database, and transfer learning from a 

thermographic database. The findings showed 

that data augmentation and transfer learning 

techniques significantly improved the 

performance of CNNs. The effect of transfer 

learning was consistent regardless of image 

characteristics, as long as the dataset was 

extensive enough to develop transferable patterns 

of learning. Hyun et al. (2021) offer a specialized 

method for synthesizing sensor-based medical 

time series data, with a specific focus on training 

models for diagnosing diabetic foot conditions. 

The suggested system employs statistical 

approaches, augmentation methods, and the 

NeuralProphet model to achieve its objectives 

while upholding medical validity. The findings of 

the study indicate that the synthetic time series 

data generated exhibit patterns and characteristics 

consistent with those observed in real data. In 

addition, their work is subjected to verification 

through the utilization of ML-based clustering 

techniques. The successful clustering of the 

synthetic data created by their suggested system 

serves as empirical evidence to support the 

assertion that their system can achieve its intended 

objectives.  

3. Results and Discussion 

This paper critically evaluates several DL 

methods employed in the diagnosis of diabetic 

foot. Each reviewed study, which includes a DL 

method for diabetic foot diagnosis, utilizes 

diverse methodologies that offer both advantages 

and disadvantages. To comprehensively assess 

these advantages and disadvantages, it is essential 

to simultaneously investigate various parameters. 

The evaluation of performance can only be 

accomplished with this strategy. Based on this 

explanation, Table 3 simultaneously assessing 

these characteristics, it is possible to draw 

conclusions regarding the efficacy of DL 

approaches. Subsequently, the selection of a 

method that aligns with the work’s objectives 

allows the achievement of the most favorable 

outcomes. 

4. Conclusion 

According to the International Diabetes 

Federation, the prevalence of diabetes among 

adults worldwide is projected to increase to 700 

million by 2045. Additionally, approximately 

one-third of individuals diagnosed with diabetes 

will develop a diabetic foot condition, with a 

lifetime probability. The issue at hand carries a 

substantial probability of leading to the 

requirement of amputation. Therefore, the ability 

to identify diabetic foot problems accurately is 

crucial for timely intervention. 

In this study, focused on the use of DL 

methodologies for the diagnosis of diabetic foot 

conditions. These methodologies utilize medical 

images as datasets which obtained various sources 

such as diverse medical images like X-rays, CT 

scans, MRI scans, and PET scans. Additionally, 

they include various medical resources such as 

electronic medical records, genomics data, 

bioinformatics data, and drug response data. 

However, datasets are often accompanied by 

challenges. To address these challenges related to 

limited data, overfitting, and imbalanced class 

distribution, researchers have employed data 

augmentation methods, regularization techniques, 

and ensemble learning. Also, clinical validation is 

crucial to ensure the reliability and effectiveness 

of DL models in real-world scenarios. 

Furthermore, ethical, and legal frameworks are in 

place to ensure compliance with patient consent 

and data privacy regulations. 
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Table 3. Examination of Related Works 

Study Aim 
Network 

Structure 
Data Set Limitations Best Results 

Data Set 

Information 

Yap et al., 

(2021b) 
DFU detection Faster R-CNN DFUC2020 Not mentioned 

mAP=0.6940, 

F1-Score=0.7434. 

2, 000 images, with 

640×480 pixels. 

Ahsan et 

al., (2023) 

DFU infection and 

ischemia categorization 
ResNet50 DFU2020 Not mentioned 

Accuracy=99.49%, 

Sensitivity=99.59%, 

Specificity=99.39%, 

Precision=99.39%, 

F-Score=99.49% 

AUC=99.96% 

1459 images with 

sizes ranging from 

1600 × 1200 and 

3648 × 2736 pixels. 

Liu et al., 

(2022) 

DFU infection and 

ischemia detection 
EfficientNet DFUC2021 

1) High inter-class similarity and intra-

class variations in DFU images; 

(2) Variable and unstandardized DFU 

data set due to the unstable camera 

conditions each time the images were 

captured 

(3) Lack of differential demographic 

information of patients. 

Accuracy=99% in 

ischemia classification 

and Accuracy=98% in 

infection classification 

15760 images with 

224 × 224 pixels. 

Yap et al., 

2021a) 

DFU infection and 

ischaemia classification 
Efficient- NetB0 DFUC2021 

The detection of infection and 

detection of co-occurrences of both 

ischaemia and infection. 

Precision=0.57, 

Recall=0.62 

Accuracy= 97.9%. 

15,683 images 

with, 224X224 

pixels. 

 

Prabhu 

and 

Verma, 

(2021) 

Distinguishing healthy 

skin and DFU class 
Proposed app.  

The time spent on classification tasks, 

such as collecting and labeling images, 

and distinguishing between healthy and 

abnormal skin, is increasing. 

Accuracy= 97.9%. 122 images 

Toofanee 

et al., 

(2023) 

DFU infection and 

ischemia categorization 

Siamese Neural 

Network (SNN) 
DFUC2021 Quality of the dataset Macro F1-score= 0.6455 11,000 images 
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Table 3 Continuation: Examination of Related Works  

Study Aim 
Network 

Structure 
Data Set Limitations Best Results 

Data Set 

Information 

Goyal et 

al., (2020) 

DFU infection and 

ischaemia classification 

Ensemble 

CNN 

Lancashire 

Teaching 

Hospitals 

There are significant visual differences 

between classes, as well as similarities 

between classes. 

Accuracy=90% in 

ischaemia classification 

and Accuracy=73% in 

infection classification. 

1459 images, size 

varies between 

1600×1200 

and 3648×2736 

pixels. 

Alzubaidi 

et al., 

(2020) 

Distinguishing the 

healthy skin and DFU 

class 

DFU_QUTNet 
Nasiriyah 

Hospital 
Not mentioned F1-score=94.5% 754 images 

Goyal et 

al., (2018) 

Distinguishing the 

healthy skin and DFU 

class 

DFUNet 

Lancashire 

Teaching 

Hospitals 

It costs a lot to diagnose, treat, and 

care for people with DFU in the long 

run. 

Sensitivity=0.934, F-

measure= 0.939, 

AUC=0.962 

397 images with 

256×256 pixels. 

Rania et 

al., (2020) 
DFU segmentation U-Net 

Centre 

Hospitalier 

Regional 

d’Orleans 

Not mentioned 
Dice=97.25, 

Accuracy=94.96 
92 images 

 Oliveira 

et al., 

(2021) 

DFU detection Faster R-CNN DFUC 2020 Not mentioned 
Precision=91.4%, F1-

score=94.8% 

2000 images with 

640x480 pixels. 

Cao et al., 

(2023) 

DFU semantic 

segmentation 
Mask R-CNN 

Diabetic Foot 

Prevention and 

Treatment Center 

of Xiangya 

Hospital, and 

DFUC2020 

Not mentioned 

Specificity=99.50%,  

Sensitivity=70.62%,  

Precision = 84.56%, 

Mean Average 

Precision=85.70% 

3000 images with 

512x512 pixels 
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Collaboration between data scientists, healthcare 

professionals, and technologists, is essential for 

advancing knowledge and innovation in 

healthcare. DL methodologies have the potential 

to transform the diagnosis of diabetic foot 

conditions, improving precision, efficiency, and 

availability in clinical settings. The future of DL 

algorithms in diabetic foot diagnosis holds great 

promise, with several notable advancements 

expected. These advancements will be driven by 

the continuous improvement of data sources, 

model architectures, and interpretability 

techniques. 

Numerous scientific studies have been conducted 

on this topic. However, these studies mostly focus 

on only a few types of deep learning methods for 

a few specific types of diseases. Typically, studies 

utilize one specific data set. In this context, the 

comprehensive analysis of existing research 

within the literature has significant importance in 

terms of offering a holistic understanding of such 

a critical problem. This research has significant 

value as it conducts a comprehensive analysis of 

deep learning methods related to differential 

diagnosis in existing papers, in addition to 

demonstrating the diverse outcomes given by 

various parameters. Examining different data sets, 

deep learning methods, and diabetic foot 

problems from a holistic standpoint would 

provide a valuable contribution to the literature. 
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