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Abstract 

 

Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series 

analysis methods have been proposed for earthquake prediction. Our work attempts to predict three 

earthquake parameters in the Anatolian Peninsula using pure artificial neural network methods. An 

optimized BP-NN model and optimally hyper-parameterized LSTM Model have been designed to 

predict earthquake magnitude, latitude, and longitude. The two models are compared with previous 

works for their prediction performances using four well-accepted metrics: mean squared error, mean 

absolute error, median absolute error, and standard deviation.  The time, depth, sun, and moon distances 

to Earth were identified as the most contributing factors in earthquake occurrence through analysis by 

five different feature extraction algorithms. The date harmed the prediction accuracy. The LSTM model 

outperformed the BP-NN Model in magnitude prediction with 0.062 MSE. Latitude predictions of both 

methods were satisfactory and close. However, BP-NN had lower error rates in latitude prediction. 

However, longitude prediction errors were significant in both models. Therefore, our designs did not 

successfully predict the exact location of the earthquakes. However, multi-variate, stacked LSTM 

models are promising in predicting Anatolian Peninsula earthquake magnitudes, but future work is 

necessary for location and timing predictions. 
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1. Introduction 

 

An earthquake is a seismic event due to the energy accumulated due to plate movements in the 

earth’s crust. Earthquakes are natural disasters that can devastate human life and sometimes the 

entire ecosystem where they occur. The recordings of the seismic waves unleashed during an 

earthquake reveal the earthquake’s location, time, and magnitude. People know avoiding 

earthquakes is impossible but wish to be warned. Thus, it is commonly believed that predicting 

earthquakes can help reduce losses. Therefore, predicting the timing, magnitude, and location 

of significant earthquakes has become an essential field of research. Unfortunately, due to the 

complicated underlying factors, a solution to determine the earthquake’s time, magnitude, and 

location is yet to come [1]. Due to region-specific and complexly interrelated geophysical 

factors, a simple cause-result analysis is not viable. Hence, earthquake prediction is still a 

significant research area, even in today’s age of Information Technology. Due to region-specific 

and complexly interrelated geophysical factors, a simple cause-result analysis is not viable. As 

a result of the highly non-linear cross-correlations between earthquakes and their factors, 

traditional mathematical, statistical, and machine-learning methods have failed to make sound 

predictions [2]. Contemporary data mining approaches and Artificial Neural Networks (ANN) 

have been tried in earthquake prediction [3]. Deep Learning methods and hybrid multi-layer 

ANN methods have also been used [4].  Some methods, such as multi-layer perceptron (MLP) 

and back-propagation Neural Networks (BP-NN), have become common [5–7]. While some 

research focused on fundamental component analysis and data dimensionality reduction [8], 

most works chose to apply a single algorithm. The problem with one-stage algorithm efforts is 

the low prediction performance. In our study, however, we use improved ANN models. Instead 

of the original, single Long Short Term Memory (LSTM) model, we designed a stacked, multi-

variate, multi-input, and multi-output unique LSTM model for earthquake prediction.  LSTM 

possesses a strong non-linear learning capability suitable for analyzing correlations in long-

term data, such as earthquakes [6]. In the rest of this study, previous earthquake prediction 

methods are discussed in Section 2. In Section 3, the materials and methods of our model are 

described.  Results and comparisons with earlier works are presented in Section 4. Finally, we 

conclude in Section 5. 

 

2. Related works 

 

In a highly valued work, Gutenberg and Richter provided a universal mathematical model for 

the magnitude and frequency of earthquake occurrence after a long period of non-standard 

earthquake reporting [9].  Many works used the Richter scale in their seismology and 

earthquake prediction research. However, modern scientific earthquake prediction studies date 

back to the Haicheng earthquake case in the 1970s [9].   A "Four-Stage Prediction Timeline" 

approach prevented a much larger casualty number by ordering the evacuation of a city. The 

four-stage prediction model consisted of a few years long-term, one or two years middle-term, 

a few months short-term, and daily imminent stages. However, the same prediction success was 

not obtained in other world regions.  Therefore, much new research emerged in the latest 

earthquake prediction literature, which can be classified under four categories [2]:  

 

• Mathematical and statistical methods [11].  

• Studies using precursor signals [12–19].  
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• Machine learning methods [18–21].  

• Deep Learning methods [22–28].  

However, previous work showed that earthquake prediction cannot be reduced into simple, 

mathematical, or statistical non-linear models. Similarly, good results could not be obtained 

only by using precursors. However, the spreading of computers and sensors has boosted the 

research of modern techniques, with increasing computing power and abundant data. Our 

literature research revealed that Deep Learning works are more widespread [22–24]. Namely, 

BP-NN and ANN models are widely used in many time series analyses and recommended for 

earthquake-related works. One of the variants of ANN is the popular LSTM [26]. Although 

some ANN models have been applied to earthquake prediction, to our knowledge, there has 

been no work comparing BP-NN and LSTM models for earthquake prediction for the Anatolian 

Plate [27–29]. 

2.1. Motivation 

 

The motivation behind our work is threefold. People are expecting early warnings about 

pending earthquakes due to the availability of modern-day technologies.   Therefore, further 

research to satisfy the public’s earthquake warning expectations is our responsibility.  Secondly, 

we used Artificial Intelligence Feature Extraction Algorithms to study the contribution of the 

sun and moon distances because many major Anatolian Plate earthquakes coincide with sun 

and moon eclipses or phases. Thirdly, previous related works recommend further research into 

earthquake prediction using modern data processing tools. Therefore, we used pure ANN 

methods, such as the state-of-the-art BP-NN and LSTM models. 

 

2.2. Contribution 

 

Neural networks can handle large data sets, even if some are missing or corrupted. In addition, 

some input data have more impact on the outcome than others.  Therefore, we decided to 

identify the most contributing factors or features that can improve the prediction of earthquake 

magnitudes and locations. In brief, we make the following contributions to Anatolian Plate 

earthquake prediction:  

• A pure ANN approach to earthquake prediction.  

• Extensive feature extraction analysis is used to identify the most contributing celestial 

factors.  

• A comparison of modern ANN methods, BP-NN and LSTM, was applied to Anatolian 

Plate earthquakes.  

• The Use of state-of-the-art multi-variate stacked LSTM architecture in earthquake data 

analysis.  

• Prediction of earthquake magnitudes and approximate locations. 

 

3. Materials and methods 

 

The primary material of deep learning research is data. We obtained earthquake data from 

different sources. The data was first studied for completeness and errors and compared. Data 

apart from earthquakes were also collected and time-merged with the earthquake data. Feature 

selection was done to find the most relevant data on earthquakes that should be used in 

earthquake data analysis. For the methods, we used and compared two modern ANN methods, 
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namely BP-NN and LSTM. The details of the materials and techniques used are elaborated 

below. 

3.1. Materials 

 

3.1.1 Data acquisition 

 

Most earthquakes occur along well-mapped fault lines, which reveal the world’s tectonic plate 

borders. The world’s tectonic plates and major fault lines are shown in Fig. 1. Our region of 

interest (ROI) is the Anatolian Plate, squeezed by the Eurasian, African, and Arabian Plates.  

Therefore, data on the ROI was obtained from two sources. However, detailed data from the 

period before the 1970s is not available because seismic sensors were not widespread 

worldwide. The start of detailed local data collection on Anatolian Plate earthquakes was in 

1970, and regular detailed data announcements began in 1975. Fortunately, worldwide 

earthquake data became globally available in the United States Geological Survey (USGS). 

Comparing the data from both sources showed that local data mostly matched USGS data. 

However, the data on earthquakes under magnitude 2.5 is more at USGS.  Therefore, we 

decided to use the USGS earthquake data between 1970 and 2019 in our study.  

 

 
Figure 1 World tectonic plate map, including Turkey’s Anatolian plate. 

 

The fault lines are the natural geological borders of the plates. We first traced the world fault 

lines by breaking them down into none non-overlapping, small-sized zones. Then, the geologic 

systems affecting Turkey were studied to determine our ROI [28, 29]. Due to the thrust zone in 

the east, the Anatolian Plate was divided into Eastern and West Anatolia Regions. 

 

Fig.2 shows Turkey's major fault lines, thrust zones, and grabens. The area in Fig. 2 only covers 

Turkey, between 25°- 45° longitude and 33°- 43° latitude. However, due to the African and 

Arabian Plate's thrust force on the Anatolian Plate, the scope of our work was adjusted to cover 

the area bounded by 25°-50° longitude and 35°-47° latitude [30]. Although our ROI can be 

expanded or shifted, trials with slightly different ROI did not reveal significant changes in the 

results of our work. 

 

3.1.2 Our ROI data pre-processing 

 

Our ROI data from 1970 to 2019 includes the date, time, latitude, longitude, magnitude, region 



51 

name, and depth of earthquakes. On the other side, the Sun Distance-Altitude-Azimuth and  

 
Figure 2 Major fault lines, thrust zones, and grabens in Turkey 

 

 

Moon Distance-Altitude-Azimuth at the time of the earthquakes were obtained with custom-

made software [31]. All earthquakes of magnitude larger than 2.5 were time merged with sun 

and moon data in a single database.  Of 18,917 records, 80% were used for training and 20% 

for testing the designed neural networks. No corrupted (empty, infinite values) or repeated data 

was used during the analyses. 

 

3.1.3 Tools used in the analysis 

 

All collected data was inserted in MySQL database table structures. The following computer 

configuration was used for training the data and testing our models: Intel Core i5 8250U CPU, 

AMD Radeon 530 GPU, 8 GB of RAM, and Windows 10™ operating system. Cuda tool kit 

v9.0.176 was used for debugging and optimizing to observe AMD Radeon GPU compatibility. 

Python programming language was used to design our two custom models. For additional 

functionalities, the following libraries were used:  

 

• Keras is responsible for the development and training of models.  

• ScikiT-learn scans the model and finds the best input parameters by 5-fold cross-

validation.  

• Tensorflow by Google, Keras, and library for faster training and testing.  

• Numpy for performing matrix operations.  

• Matplotlib for plotting trend graphs.  

• MATLAB R2017b Academic version for BP-NN modeling.  

•  

3.2. Methods 
 

3.2.1 Our ROI feature selection strategy 

 

As a first step, feature selection was applied to the prepared data using three commonly 

preferred methods: Decision Tree, CHI2, and PCA. The feature selection results revealed nine 

features out of the 12 available in each technique.   Of the nine features, the scores of the six 
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standard features in the Decision tree and CHI2 methods are given in Table 1. The most critical 

or related features were the Sun and Moon distances. In conclusion, feature extraction using 

three popular methods pointed to six inputs for our model: Sun distance-altitude-azimuth and 

Moon distance-altitude-azimuth.  Our outputs are the expected prediction values: Earthquake 

longitude, latitude, and magnitude. 

 

Table 1. Decision Tree, CHI2, and PCA top 9 feature extraction scores  
Features Decision Tree CHI2 

Sun distance 0.1623 6174.66 

Moon distance 0.1617 74.97 

Sun altitude 0.1573 1.25 

Moon azimuth 0.1555 3.91 

Moon altitude 0.151 0.61 

Date 0.1092 41.71 

Time 0.1019 22.68 

Depth 0.0666 15.27 

 

 

3.2.2 Correlation matrix 

 

In the second step, the correlation matrix of the features against the outputs has been analyzed. 

The results are shown in Table 2. According to the table, date and moon altitude negatively 

correlate to our outputs. Meanwhile, time and depth are positively correlated.  Therefore, time 

and depth need to be included in our analysis. 

 

Table 2. Correlation matrix for our outputs: earthquake latitude, longitude, and magnitude 
Features Latitude Longitude Magnitude 

Date -0.016 0.001 -0.001 
Time -0.007 0.013 0.033 

Moon altitude -0.015 -0.009 -0.018 
Moon azimuth 0.010 0.017 0.027 
Moon distance 0.019 0.000 -0.001 

Sun altitude 0.066 -0.048 -0.179 
Sun azimuth -0.009 0.012 0.064 
Sun distance 0.039 -0.012 -0.006 

Depth 0.051 0.259 0.278 
Latitude 1.000 0.227 -0.29 

Longitude 0.227 1.000 0.516 
Magnitude -0.29 0.516 1.000 

 

 

3.2.3 Statistical analysis 

 

Factor analysis is a statistical method usually applied to find the correlation between the 

prepared data and the expected outputs of the designed ANN model [40]. In other words, factor 

analysis is used to determine new features or verify the most contributing features of an ANN 

model. Detailed mathematical derivations and explanations can be found in [41]. The results of 

our factor analysis are given in section 4.1. 

 

3.2.4 Method1: BP-NN model 

 

ANNs are computational models inspired by biological neural networks [32].  Most ANNs have 
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input, hidden, and output layers, as shown in Fig. 3. The number of input nodes depends on the 

number of features in the data set. While the user determines the number of hidden layer nodes, 

the number of output nodes depends on the output result set [33]. Training the model can start 

with a single hidden layer comprising ten nodes. Gradually, hidden neurons are added if the 

designed network cannot learn the studied data [34]. Search for the correct number of hidden 

neurons continues until the prediction error is reduced under a predefined value. This 

methodology is called the adaptive hidden neuron algorithm. The activation function is usually 

chosen as the non-linear sigmoid function. The scope of this work deliberately does not include 

the geological reasoning of the seismic events to investigate if purely ANN methods can predict 

earthquakes. ANNs are computational models inspired by biological neural networks [32]. Most 

ANNs have input, hidden, and output layers, as shown in Fig. 3. The number of input nodes 

depends on the features determined in the previous stage. While the user selects the number of 

hidden layer nodes, output nodes rely on the result set [33]. Training the model can start with a 

single hidden layer of ten nodes. Gradually, new hidden neurons or layers are added if the 

designed network cannot learn the studied data [34].  Search for the correct number of hidden 

neurons continues until the prediction error is reduced under a predefined value. This 

methodology that we accepted is called an adaptive hidden neuron algorithm.  The activation 

function is usually chosen as the non-linear sigmoid function. Some neurons are fed back to 

reduce the prediction errors by adjusting the weights or biases of internal neurons, hence the 

term back-propagation. 

 

Figure 3. Our BP-NN structure for forecasting earthquakes 

 

 

The BP-NN architecture of our first method is depicted in Fig.  3.  MATLAB R2017b program 

was utilized to build our model. From the data, 15133 records were allocated for training the 

model. Three thousand seven hundred eighty-four records were used for testing, not part of the 

training set.   Before feeding the neural network, all data were normalized with the MATLAB" 

pressed" method. The neural network was configured with one hidden layer and 20 hidden 

neurons. Training function was used as the adaptive learning training method for back-

propagation. Traininggdx is a network training function that updates the weight and bias values 

of the designed neural network according to gradient descent momentum. The maximum 

iteration was set at 5000 iterations, and the minimum error rate was set at 0.01. 
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3.2.5 Method1: Stacked LSTM model 

 

Recently, ANN has been improved by adding extra hidden layers and interconnections between 

the nodes. With the invention of deeper, interconnected feedback layers, newer approaches were 

named Recurrent Neural Networks (RNN). LSTM is an RNN variant, shown in Fig. 4. LSTM 

has been used successfully in handwriting and speech recognition and anomaly detection in 

computer intrusion detection systems [35–37]. There can be lags of unknown duration between 

significant events in time series. Still, LSTM can process entire data sequences and cope with 

the vanishing gradient problem in sequence learning methods [38].  A basic LSTM unit 

comprises an input, output, and forget gate (Fig. 4). The gates regulate the flow of information 

into and out of the unit. The unit remembers values over arbitrary time intervals. 

 

 
Figure 4. The general construct of an LSTM memory unit 

 

 

The equations of status and output values of Fig. 4’s LSTM unit are as follows [39]: 

ft = (Wfhht1 + Wfxxt + bf)    (1) 

it = (Wihht1 + Wixxt + bi)    (2) 

cˆt = tanh(W cˆhht1 + W cˆxxt + bcˆ)   (3) 

ct = ftct1 + itcˆt      (4) 

ot = (Wohht1 + Woxxt + bo)    (5) 

ht = otxtanh(ct)      (6) 

 

The value ct is the LSTM, where Wi, Wc, and Wo are the weights. Bi, bf, and bo are the biases 

of the input gate, forget gate, and output gate, respectively. Operator ‘x’ denotes the pointwise 

multiplication of two vectors. The symbol represents the sigmoid activation function. The input 

gate decides the information stored in the unit’s new state. The output gate decides what 

information can be outputted. The forget gate decides the information that will be disregarded 

in the next state.  A value of "1" in the forget gate ft keeps the present data, while 0 drops the 

info from the LSTM unit.  LSTM variant studies resulted in four LSTM types [41]:  

 

• Univariate LSTM Models  

• Multivariate LSTM Models  

• Multi-Step LSTM Models  

• Multivariate Multi-Step LSTM Models  
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Our detailed inspection of the categories showed that the category two multi-variate model 

accommodates our study due to the multiple interrelated inputs and outputs [40].  However, 

early trials showed that a single LSTM layer is inadequate for accurate predictions.  Therefore, 

stacked LSTM layers used in univariate models were integrated into our design.  Thus, the 

innovation in our design is the multi-variate stacked LSTM structure used for earthquake 

prediction, as shown in Fig. 5. Stacking layers of LSTM cells on top of each other is possible, 

as shown in our architecture. Our layered model has increased complexity and prediction power, 

but training times have also increased. The "Adam" layer is added to normalize the output of 

neurons. For training the model 80% and testing, the remaining 20% of the data was used. The 

same performance metrics of Method 1 were used in Method 2. 

 

 
Figure 5. Our Stacked LSTM structure for predicting earthquakes 

 

 

3.2.6 Performance evaluation metrics 

 

Performance evaluation of prediction proposals is universally based on accuracy and different 

error parameters. In ANN prediction, performances are measured using Mean Squared Error 

(MSE), Mean Absolute Error (MAE), Median Absolute Error (MEDAE) [2], and Standard 

Deviation (STD) values [6].  To be in line with previous and future ANN earthquake analyses, 

we used the same metrics to declare and compare our results with each other and prior works. 

 

4. Research Results and discussion 

 

4.1. Statistical results 

 

Factor analysis has been applied to the input data to determine the correlation between the 

features and the predicted values. The study investigates the ‘weight’ of a feature among 

different groups of features (factors) on the outputs.   In Table 3, features positively affecting 

the outputs are signless, while features negatively affecting the outputs are depicted with 

negative sign and positive correlation values in Table 3. According to Table 3, time is the most 

critical contributing feature, while sun azimuth and moon distance are essential for further 

investigation. Surprisingly, the data negatively contributes to the earthquake prediction analysis 

in all three-factor groups. 
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Table 3. Factor analysis results of studied features 
Features Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 

Time 0.948 - - - - - 
Sun azimuth 0.944 - - - - - 

Magnitude - 0.814 -0.134 -0.122 - - 
Longitude - 0.799 - 0.234 - - 

Depth - 0.616 - - - - 
Sun altitude - -0.151 0.787 - - - 

Sun distance - - 0.784 - - - 
Latitude - 0.146 0.180 0.772 0.124 -0201 

Moon distance - - -0.174 0.577 0.163 0.181 
Moon azimuth - - - - 0.794 -0.278 

Date - - - -0.197 -0.603 -0.378 
Moon altitude - - - - - 0.848 
% of Variance 15.43 14.39 11.00 8.90 8.50 8.38 
Cumulative % 15.43 29.82 40.82 49.72 58.22 66.60 

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.  
 
 

4.2. Artificial neural network method 1: Optimized BP-NN model results 

 

The Hinton diagram method optimized our designed BP-NN model [34].   Hinton diagrams 

show the weights of the connection values of the input nodes to the hidden nodes in designed 

BP-NN models. The connection values are represented by the colors and sizes of the rectangles 

in the diagram.  The adaptive optimization resulted in 20 hidden neurons in our design reaching 

the minimum training error of 0.01. Table 4 presents the performance of the BP-NN method. 

The BP-NN’s MSE was 0.423 in magnitude prediction, 30.912 in longitude, and 1.528 in 

latitude prediction. The longitude prediction is inaccurate. The reason for the significant error 

in our longitude prediction originates from the close to zero weight values of the neurons 

reaching the longitude output. Close to zero weight values are known to produce significant 

errors in BP-NN. The large error may be due to the mistakes in the reported longitude values.  

The GPS coordinates of earthquakes are estimations because they occur in large depths, where 

earth curvature negatively affects the estimations. However, the BP-NN method has striking 

prediction results when closely predicting earthquake magnitudes, latitudes, and longitudes. 

Even the sporadic correct predictions can be an answer to people’s early warning expectations. 

 

Table 4. Performance metrics of Method 1: BP-NN.  
Model Name Neurons Epochs Feature(s) MSE STD MAE 

BP-NN 20 5000 Latitude 1.528 1.236 0.927 

   Longitude 30.912 5.545 3.661 

   Magnitude 0.413 0.649 0.510 

 

 

4.3. Artificial Neural Network Method 2: Stacked LSTM Model Results 

 

The same inputs and outputs used in Method 1 were used in the multi-variate, many-to-many 

connected, and stacked LSTM configuration of Fig.5. The model is trained with 80% of the 

data and tested in the remaining 20%. The model’s performance depends on optimizing hyper-

parameters (number of neurons, epoch, and batch size). The number of neurons decides the 

number of nodes in a single LSTM unit and affects the graphical fitting of the data points, 
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preventing over-fitting or under-fitting.  The number of complete passes through the model is 

the number of epochs.   Since all of the data cannot be fed into the model in one go, it is divided 

into batches that can be passed through one training episode of the model. The best performance 

is found by varying the hyper-parameters and the inputs [31]. Many hyper-parameter 

combinations have been tried for optimization. The lowest error rates, hence highest 

performances, were obtained in configurations with (number of neurons, epoch, batch size) = 

(32, 32, 32), (32, 64, 32), and (8, 64, 64). The impact of the used inputs on the prediction results 

was tested in the next step.  Changing the inputs was most significant in the above three 

configurations.  

 

In the proposed LSTM model, hyperparameter tuning was accomplished through a random grid 

search, programmer’s heuristics, and previous experiments and literature reports [20-21]. 

 

Our best-performing hyperparameters are as follows: 

 

● The number of LSTM hidden layers: 1 

● The number of neurons in each LSTM layer: 8 

● The number of neurons in each Dense layer: 8 

● Dropout rate: 0.1 

● Learning rate: 0.001 

● Batch size: 64 

● Epoch size: 64 

● Optimizer: Adam 

● Cost function: cross-entropy 

 

The results of the three configurations for varying inputs have been summarized in Tables 5, 6, 

and 7.  Table 5 shows the test results when all of the inputs are included, including all inputs in 

the first test, which allowed for obtaining a comparison baseline for different input 

combinations.  The averages of the errors and standard deviation were taken to assess the 

performance of the three configurations. Configuration Test 1 had the worst performance with 

the highest average errors. With the lowest error averages, the performance of configuration 

Test 3 was the best. Test 2 had a medium average error. 

 

 

Table 5. Results of the LSTM tests, when all inputs are used 

Test(s) Neur. Epochs 
Batch 

size 
Feature 

(s) 
MSE STD MAE MEDAE Avg. 

Perfor. 

Order 
Test 1 32 32 32 Latitude 4.848 1.395 1.703 1.002 2.337 Poor 

    Longitude 105.500 4.111 9.415 10.030 32.264  

    Magnitude 0.067 0.122 0.229 0.232 0.163  
Test 2 32 64 32 Latitude 4.799 1.414 1.673 1.224 2.278 Medium 

    Longitude 86.390 4.605 8.074 6.507 26.394  

    Magnitude 0.072 0.106 0.246 0.252 0.169  
Test 3 8 64 64 Latitude 3.670 1.382 1.327 0.766 1.786 Successful 

    Longitude 52.990 3.436 6.417 5.772 17.154  

    Magnitude 0.062 0.115 0.222 0.244 0.161  

 

 

In the second testing phase, the moon data recorded during the earthquakes was removed from 

the inputs. The performance results of the three configurations for this set-up are shown in Table 
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5. The average error and standard deviation performance of configuration Test 3 were again the 

best.  However, the performance order of Tests 1 and 2 was reversed. Another observation is 

that the performances in Tables 5 and 6 are very close.  For example, every performance metric 

of configuration Test 3 in Table 5 is very close to its corresponding value in Table 6.  Therefore, 

the absence of the moon variables does not appear to impact predictions critically. Only sun 

variables were removed from the training data in the third testing phase.   

 

Table 6. Results of the designed model tests without moon, depth, and time parameters. 

Test(s) Neur. Epochs 
Batch 
size 

Feature(s) MSE STD MAE MEDAE Avg. 
Perfor. 
Order 

Test 1 32 64 32 Latitude 4.917 1.163 1.888 1.851 2.454 Poor 

    Longitude 101.5 6.01 8.08 6.05 30.41  

    Magnitude 0.152 0.257 0.300 0.247 0.239  
Test 2 32 32 32 Latitude 4.841 1.155 1.872 1.812 2.42 Medium 

    Longitude 112.7 6.53 8.36 5.81 33.35  

    Magnitude 0.174 0.246 0.293 0.250 0.241  
Test 3 8 64 64 Latitude 4.966 1.166 1.891 1.803 2.457 Successful 

    Longitude 99.96 5.997 8.003 5.906 29.967  

    Magnitude 0.168 0.245 0.297 0.257 0.242  

 

 

Table 6 shows that configuration Test 2 is again the worst performer.  The configuration 

performance Test 3 was again the best. Out of three tests, configuration Test 2 had two worst 

performances and, therefore, was classified as the non-optimal architecture.  As the best 

performer in all three tests, configuration Test 3 was declared the optimal architecture compared 

to the BP-NN model.  Another observation is the poor performance in longitude prediction in 

all tests.  Because of the significant errors in longitude prediction, our designed models cannot 

successfully predict the exact location of the earthquakes. 

 

Table 7. Results of the designed model tests without sun, depth, and time parameters. 

Test(s) Neur. Epochs 
Batch 

size 
Feature(s) MSE STD MAE MEDAE Avg. 

Perfor. 

Order 
Test 1 32 32 32 Latitude 4.909 1.146 1.896 1.768 2.43 Poor 

    Longitude 114.3 6.61 8.39 5.51 33.703  

    Magnitude 0.146 0.247 0.291 0.249 0.233  
Test 2 32 64 32 Latitude 4.764 1.131 1.867 1.813 2.394 Medium 

    Longitude 106.2 6.28 8.16 5.61 31.563  

    Magnitude 0.151 0.246 0.300 0.256 0.238  
Test 3 8 64 64 Latitude 4.847 1.139 1.884 1.81 2.42 Successful 

    Longitude 98.49 5.947 7.945 6.042 29.606  

    Magnitude 0.144 0.236 0.297 0.221 0.225  

 

 

5. Comparison of BP-NN and stacked LSTM model results 

 

Table 8 shows the best performance values of the optimized BP-NN model and the Stacked 

LSTM model with configuration (number of neurons = 8, epoch = 64, Batch size = 64). The 

table reveals exciting results. The magnitude of significant earthquakes in Turkey was predicted 

with an MSE performance of 0.144 using our Stacked LSTM model.  Latitude prediction of the 

Stacked LSTM model was also satisfactory, with an average error value of 2.420, but BP-NN 

performance was better with 1.629. Comparing the two models’ performances shows that the 

Stacked LSTM model has more minor errors in magnitude prediction, and the predicted 

magnitudes deviate less in LSTM. Therefore, it is safe to declare that our Stacked LSTM 
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performed better in predicting earthquake magnitudes in Turkey.  However, the same is not true 

of latitude predictions.  The latitude prediction performance of the BP-NN Model was better 

than that of the Stacked LSTM Model.  However, the latitude performance difference between 

the two models is insignificant. 

 

Table 8. Comparison of earthquake magnitude prediction errors and the SD of the two methods.  
Model Name Neurons Epochs Feature(s) MSE STD MAE 

BP-NN Latitude 1.528 1.236 0.927 0.744 1.108 

 Longitude 30.912 5.545 3.661 2.054 10.558 

 Magnitude 0.413 0.649 0.510 0.430 0.503 

Stacked LSTM Latitude 3.670 1.382 1.327 0.766 1.786 

 Longitude 52.990 3.436 6.417 5.772 17.154 

 Magnitude 0.062 0.115 0.222 0.244 0.161 

 

 

It is evident from the table that longitude prediction has an unsatisfactorily high error in both 

models. Therefore, our work did not provide a satisfactory prediction of the exact location of 

earthquakes in Turkey. However, our latitude range is geographically between 35° and 47°.  

Hence, the latitude along the quake may be predicted with an error of 20.17% using the LSTM 

model.  Matching the leeway with the present fault lines can approximate the possible location 

of an earthquake, as in the Haicheng case [9].  Briefly, the magnitude and latitude of earthquakes 

in Turkey were predicted to the extent that may satisfy the Turkish people's standard 

"earthquake warning" concern. 

 

6. Conclusion 

 

Earthquake data belonging to Turkey was obtained from USGS from 1970 to 2019. At first, five 

different feature extraction methods were used to determine the most contributing features. 

After selecting the best features, the conditioned data were analyzed using two custom-designed 

ANN methods. The first method used an optimized BP-NN model, and the second used a 

Stacked, Multi-variate, Many-to-Many LSTM model. A Hinton diagram proved the 

optimization of the BP-NN model.  The optimization of the LSTM model was obtained by 

varying the configuration hyper-parameters. The best performance values of MSE, MAE, 

MEDAE, and STD metrics of the two models were compared. When compared, the LSTM 

model outperformed the BP-NN model in earthquake magnitude prediction.  The magnitude 

prediction of the LSTM model was found to be very satisfactory.  However, although very close, 

the BP-NN model outperformed the LSTM model in latitude prediction.   Longitude prediction 

was way off by a wide margin.  However, matching the predicted latitude with the present fault 

lines can approximate the possible location of an earthquake. In brief, the LSTM method was 

found to predict the magnitude and approximate latitude of earthquakes in Turkey. We plan to 

improve the latitude and longitude predictions in future work by adding more seismic inputs 

and geological precursors to the models.  
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