
     

 

  

 

POLİTEKNİK DERGİSİ  
 
JOURNAL of POLYTECHNIC 
 
 
 
 
 
 
 
ISSN: 1302-0900 (PRINT), ISSN: 2147-9429  (ONLINE) 

URL: http://dergipark.org.tr/politeknik 
 

Analysis and modeling of photovoltaic arrays 

for sustaining power generation in 

geostationary satellite solar panels using 

machine learning 

Sabit uydu güneş panellerinde güç üretiminin 

sürdürülebilirliği için fotovoltaik dizilerin 

makine öğrenimi kullanilarak analizi ve 

modellenmesi 

Yazar(lar) (Author(s)): İbrahim ÖZ1, Mehmet BULUT2 

 

ORCID1: 0000-0003-4593-917X 

ORCID2: 0000-0003-3998-1785 

To cite to this article: Öz İ., Bulut M., “Analysis and Modeling of Photovoltaic Arrays for Sustaining Power 

Generation in Geostationary Satellite Solar Panels using Machine Learning”, Journal of Polytechnic, *(*): 

*, (*). 

 

Bu makaleye şu şekilde atıfta bulunabilirsiniz: Öz İ., Bulut M., “Analysis and Modeling of Photovoltaic 

Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning”, 

Politeknik Dergisi, *(*): *, (*). 

  
 
Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive 

DOI: 10.2339/politeknik.1377988 

 

http://dergipark.org.tr/politeknik
https://orcid.org/0000-0003-4593-917X
https://orcid.org/0000-0003-3998-1785
http://dergipark.org.tr/politeknik/archive


 

 
 

Analysis and Modeling of Photovoltaic Arrays for Sustaining Power 

Generation in Geostationary Satellite Solar Panels using Machine 

Learning 

Highlights 

❖ The study concentrates on modeling satellite solar panels using artificial neural networks. 

❖ A non-linear time series neural network with feedback is proposed. 

❖ A significantly enhanced and more efficient modeling of solar panels is attained. 

Graphical Abstract 

Geostationary satellite solar panels are vital energy sources for space-borne systems. Understanding their power 

generation and accurately modeling performance is crucial for satellite design, manufacturing, and operation 

optimization. This study explores how solar panel power fluctuates in response to varying conditions on geostationary 

satellites. A method employing neural networks was presented to effectively model this power variability over time. 

Non-linear autoregressive neural networks with exogenous inputs were employed, utilizing both single-input and six-

input configurations with feedback. The comprehensive analysis yields a Mean Squared Error (MSE) of 0.0477 and 

a regression value of 0.9999, indicating exceptional performance. These results validate a strong correlation between 

predicted and actual power values, underscoring the accuracy of our neural network-based approach in capturing 

the dynamics of solar panel power generation on geostationary satellites. Satellite operators can employ this 

technique to monitor and forecast solar panel-generated power effectively. 

 

 
Figure. The solar panels' predicted and actual power generated using 6- inputs over 8 years. 

Aim 

Explores how solar panel power fluctuates in response to varying conditions on geostationary satellites. 

Design & Methodology 

Employ non-linear autoregressive neural networks with exogenous inputs, utilizing both single-input and six-input 

configurations with feedback 

Originality 

Neural network-based approach in capturing the dynamics of solar panel power generation on geostationary 

satellites 

Findings 

Analysis yields a Mean Squared Error (MSE) of 0.0477 and a regression value of 0.9999, indicating exceptional 

performance.  

Conclusion 

Results validate a strong correlation between predicted and actual power values, underscoring the accuracy of our 

neural network-based approach in capturing the dynamics of solar panel power generation on geostationary 

satellites. Satellite operators can employ this technique for effective monitoring and forecasting of solar panel-

generated power. 
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ABSTRACT 

Geostationary satellite solar panels are vital energy sources for space-borne systems. Understanding their power generation and 

accurately modeling performance is crucial for satellite design, manufacturing, and operation optimization. This study explores 

how solar panel power fluctuates in response to varying conditions on geostationary satellites. We present a method employing 

neural networks to model this power variability over time effectively. To achieve this, we employ non-linear autoregressive neural 

networks with exogenous inputs, utilizing both single-input and six-input configurations with feedback. Our comprehensive 

analysis yields a Mean Squared Error (MSE) of 0.0477 and a regression value of 0.9999, indicating exceptional performance. These 

results validate a strong correlation between predicted and actual power values, underscoring the accuracy of our neural network-

based approach in capturing the dynamics of solar panel power generation on geostationary satellites. Satellite operators can employ 

this technique for effective monitoring and forecasting of solar panel-generated power.. 

Keywords: Solar air collector, conical spring, fuzzy logic, modeling, outlet temperature, thermal efficiency. 

Sabit Uydu Güneş Panellerinde Güç Üretiminin 

Sürdürülebilirliği için Fotovoltaik Dizilerin Makine 

Öğrenimi Kullanılarak Analizi ve Modellenmesi 

ÖZ 

Sabit uydu güneş panelleri, uzay tabanlı sistemler için hayati enerji kaynaklarıdır. Enerji üretimlerini anlamak ve performanslarını 

doğru bir şekilde modellemek uydu tasarımı, üretimi ve operasyon optimizasyonu için çok önemlidir. Bu çalışma, sabit uydulardaki 

değişen koşullara yanıt olarak güneş paneli gücünün nasıl dalgalandığını araştırmaktadır. Zaman içindeki bu güç değişkenliğini 

etkili bir şekilde modellemek için sinir ağlarını kullanan bir yöntem sunulmuştur. Bunun için, hem tek girişli hem de geri beslemeli 

altı girişli konfigürasyonlardan faydalanan, dışsal girişlere sahip doğrusal olmayan otoregresif sinir ağları kullanıldı. Gerçek bir 

uydu analizine yönelik kapsamlı çözüm olarak, 0,0477'lik Ortalama Karesel Hata (MSE) ve 0,9999'luk bir regresyon değeri sağlar 

ve bu olağanüstü performansa işaret etmektedir. Bu sonuçlar, tahmin edilen ve gerçek güç değerleri arasında güçlü bir korelasyonu 

doğrulayarak, sabit uydularda güneş paneli güç üretiminin dinamiklerini yakalamada sinir ağı tabanlı yaklaşımımızın doğruluğunu 

göstermektedir. Uydu operatörleri, güneş paneli tarafından üretilen gücün etkili bir şekilde izlenmesi ve tahmin edilmesi için bu 

tekniği kullanabileceklerdir..   

Anahtar Kelimeler: Güneş enerjili hava kollektörü, konik yay, bulanık mantık, modelleme, çıkış sıcaklığı, termal verim. 

 

1. INTRODUCTION 

Presently, Photovoltaic (PV) solar array systems stand as 

the prevailing method for generating power in satellite. 

The cornerstone of any satellite lies in its electrical power 

system, as it serves as the lifeblood for all onboard 

subsystems. The PV array, comprised of solar panels 

linked in series and parallel, fulfills the entire power 

demand, thereby sustaining the spacecraft's mission 

throughout its operational life. While solar PV cells 

represent the most dependable power generation system 

for aerospace applications, the aerospace industry often 

leans towards the more cost-effective Si-based solar cells 

to offset satellite launch expenses. Notably, the inaugural 

solar-powered satellite, Vanguard 1, embarked on its 

journey into space on March 17, 1958 [1]. These PV 

arrays encompass various solar panel substrates, 

strategically housing solar cells in series and parallel 

configurations to meet power requirements. This 

adaptability in solar panel design facilitates their 

integration into a multitude of mission profiles and space 

environments. Progressive strides in solar array 

technology have embraced the optimization of structural 

platforms, lightweight substrates, innovative distribution 

systems, and high-efficiency photovoltaics. An array of 

technical solutions now caters to missions spanning from 

interplanetary voyages to low Earth orbit endeavors [2]. 
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In the demanding space environment of geosynchronous 

orbit (GEO), spacecraft surface materials contend with 

harsh conditions characterized by the flow of electrons 

exhibiting a wide energy distribution. Consequently, 

satellites can accrue negative charges reaching tens of 

thousands of volts relative to the surrounding space 

plasma. These electric fields may trigger localized 

discharges, or arcs, compromising satellite operations 

[3]. To address this, comprehensive spacecraft charge 

analyses, employing tools like the Multi-Purpose 

Spacecraft Charge Analysis Tool, have been undertaken 

for large GEO satellites. These analyses yield the 

expected count of electrostatic discharges over a 15-year 

orbital period, serving as the basis for primary 

electrostatic discharge (ESD) evaluations in future solar 

cell coupon ESD tests. In this context, solar panel 

substrate design is pivotal for fixed satellites. The process 

involves calculating the total solar array area, eclipse 

duration, voltage, and power output, considering worst-

case scenarios aligned with satellite power requisites. 

Various solar panel distribution mechanisms are assessed 

based on their merits and drawbacks [4,5]. Furthermore, 

understanding the potential and requirements of 

photovoltaic arrays in catering to the unique demands of 

spacecraft missions across diverse celestial bodies is 

paramount. Whether stationed in Earth's orbits, the dusty 

terrains of Mars and the Moon, the searing climates of 

Venus and Mercury, or amidst the distant Gas Giants, 

each environment presents distinct challenges for solar-

powered spacecraft. Therefore, not all existing 

photovoltaic technologies have been fully optimized to 

navigate this array of conditions [6, 7]. 

As satellite power demands continue to escalate, the 

fusion of emerging thin-film PV technologies such as 

Copper Indium Gallium Selenide (CIGS) cells or 

gallium-arsenide (GaAs) cells with Gossamer 

distribution technologies holds the potential to 

significantly augment power availability for spacecraft 

[8]. Changes in temperature and radiation significantly 

influence solar energy production in solar PV cells. An 

increase in radiation at a constant temperature leads to a 

rise in both voltage and current output. Conversely, 

elevated temperatures at a consistent irradiance level 

diminish power output from the PV array. Mathematical 

models produce diverse curves mapping the I-V and P-V 

characteristics of the PV array [9]. 

Telecommunication satellites in geostationary orbit 

(GEO) often bear sizable communication antennas and 

external attachments. These appendages cast varying 

shadows on the solar arrays. This phenomenon exerts a 

pronounced adverse impact on solar array power 

generation and the management of spacecraft payload 

capacity. Simulation across varying lighting conditions 

should be performed to accurately forecast array power 

changes and solar cell performance [10]. 

The exploration of neural style transfer performance in 

deep learning models is a well-established subject in both 

academic and industrial realms. Studies primarily target 

the improvement of quality and performance, as 

highlighted in the reference Comparison of Neural Style 

Transfer Performance of Deep Learning Models [11]. 

One application of Artificial Neural Networks (ANN) 

involves predicting the monthly average soil temperature 

for the upcoming year. This prediction relies on 

meteorological parameters encompassing historical 

monthly averages collected over an extended period. Five 

distinct artificial neural network estimation models, 

including feed-forward neural networks and Levenberg-

Marquardt algorithm-based networks, have been devised 

to estimate soil temperatures at various depths: five, ten, 

twenty, fifty, and one hundred centimeters. The 

comparison reveals that estimations generated by 

artificial neural network models outperform those from 

regression models. The study 'Estimating Soil 

Temperature With Artificial Neural Networks Using 

Meteorological Parameters' provides insights into this 

evaluation[12]. Furthermore, the application of artificial 

intelligence in detecting and diagnosing faults in thermal 

images of solar panels has been proven effective, as 

discussed in the reference Deep Learning Based Fault 

Detection And Diagnosis in Photovoltaic System Using 

Thermal Images Acquired by UAV [13]. Experimental 

studies in the literature have demonstrated that 

temperature significantly influences the performance of 

photovoltaic (PV) panels, impacting current, voltage, 

power output, and electrical efficiency, as outlined in the 

reference Experimental Investigation of The Efficiency 

of Solar Panel Over Which Water Film Flows [14]. 

Space solar cell technologies are relentless in their 

pursuit of heightened solar cell efficiency and 

adaptability to specific mission environments. 

Consequently, assessing the performance of photovoltaic 

arrays throughout their operational lifespan becomes 

imperative to gauge their suitability for past and future 

missions. The present study encompasses the simulation 

of solar panels that are used by artificial intelligence tools 

to predict power output based on environmental 

parameters. This holds the potential to enhance the 

utilization of photovoltaic arrays for space applications. 

In this article, geostationary satellite solar panels as 

sources of power generation was analysed. Additionally, 

employing neural networks to model power generation 

were investigated. Furthermore, the research findings and 

discussions that originate from the models are 

comprehensively summarized and discussed. 

 

2. GEOSTATIONARY SATELLITE SOLAR 

PANELS FOR POWER GENERATION 

Geostationary satellite solar panels are designed to 

harness solar energy in space and provide electrical 

power to satellites. The power generation characteristics 

of geostationary satellite solar panels depend on  a range 

of factors that evolve over time. These factors include the 

distance to the Sun, sun incidence angle, panel 

orientation, temperature variations, and the solar cells' 

efficiency and degradation rates. Understanding these 

factors is decisive for assessing and optimizing the long-



 

 

term performance of solar panels in geostationary 

satellites [6]. 

Three-axis body-stabilized satellites typically employ 

flat solar panels. These panels can be rotated to optimally 

intercept solar energy, thereby maximizing electric 

power generation. For instance, 60 m2 flat solar panels 

can produce about 9 kW of power on geostationary 

satellites. However, since these solar panels constantly 

face the Sun, they operate at relatively higher 

temperatures, which can lead to reduced efficiency. On 

the other hand, spin-stabilized satellites utilize 

cylindrical solar panels. These panels offer their own set 

of advantages and disadvantages. The spin-stabilized 

design allows the solar cells to cool down when they are 

in the satellite's shadow. As a result, these panels can 

maintain better efficiency compared to the flat solar 

panels used in three-axis body-stabilized satellites. 

  

(a) 

 

(b) 

Figure 1. a) Flux density change over a year due to the sun 

distance to the earth b) sun incidence angle left vertical axis 

solid line, flux density right vertical line over a year. 

Solar panels consist of a series and parallel connection of 

numerous solar cells. These solar cells are the 

fundamental building blocks that convert solar energy 

into electrical power. The need to produce sufficient 

power necessitates a large surface area of solar panels. 

However, this requirement must be balanced with the 

satellite's objective of being compact and lightweight. 

For this reason, careful consideration is given to the 

selection of solar panel type based on the satellite's 

stabilization mechanism. 

Like all satellites, geostationary satellites with solar 

arrays are susceptible to various factors. As the Earth 

orbits the Sun, the distance between them varies from a 

minimum of 0.983 astronomical units (AUs), where 1 

AU is the mean distance from the Earth to the Sun 

(approximately 149,597,870 km), to a maximum of 1.067 

AU. This difference amounts to 12,518,000 km. If the 

energy received from the Sun at 1 AU is considered as 

100%, the energy received by the geostationary satellite 

varies from approximately 97% to 103% due to the 

changing distance. These variations are depicted in 

Figure 1. a), illustrating the fluctuation in energy received 

by the solar arrays throughout the year. These changes in 

solar energy availability impact the power generation 

capacity of the solar arrays and must be accounted for in 

satellite system design and power management 

strategies. [15] 

( 
𝐻

𝐻𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
= 1 + 0.33𝑐𝑜𝑠(

360(𝑛−2)

365.25
)         (1) 

(1) 

where; H radiant power density outside the Earth's 

atmosphere (W/m2), H constant: solar constant 1353 

W/m2, n: day of the year n=1 on 1st of January. 

 

The Earth's orbit is not perfectly circular, and the plane 

of the Earth's equator does not align precisely with the 

plane of its orbit, known as the ecliptic. This 

misalignment of the equatorial plane with the ecliptic 

plane gives rise to the Earth's seasons. This phenomenon 

is depicted in Figure 1b). This declination angle can be 

expressed in Equation 2. 

𝛿 = 23° + (
27

60
)° + 𝑠𝑖𝑛 [

360 𝑑

365.25
]                   (2) 

           

where d: day of the year passed after the spring equinox 

which is March 21.  

The solar cycle is a recurring pattern of solar activity that 

spans approximately 11 years. It is characterized by Sun's 

magnetic field variations, sunspot activity, and overall 

solar output. Throughout the solar cycle, the Sun 

undergoes periods of high and low activity, directly 

influencing the flux density of solar radiation reaching 

the Earth. 

A geostationary satellite eclipse refers to the period when 

a satellite is in the Earth's shadow, causing a temporary 

loss of direct sunlight. Due to this fixed position, the 

satellite can experience eclipses when the Earth blocks 

the Sun's direct rays. The eclipse duration can be 

estimated, providing valuable information for power 

system design, battery performance assessment, and 

thermal design in geostationary satellites. 

It is important to note that these eclipses persist for 

approximately 45 days in the geostationary orbit and 

occur twice per year. The maximum eclipse period was 

estimated to be around 69 minutes in practice [18]. 



 

 

Satellite panels solar cells, commonly composed of 

silicon, are semiconductor materials capable of 

conducting electricity under specific conditions. When 

sunlight strikes the solar cell, the semiconductor material 

absorbs a portion of the light, transferring its energy. This 

energy absorption causes some electrons within the 

material to become free, allowing them to move and 

create a flow of electrons known as a current [16]. By 

understanding the current voltage and power-voltage 

characteristics, designers can optimize the solar cell's 

performance and harness its maximum power generation 

capabilities for various applications. [17] 

There are various types of solar cells, with silicon and 

multijunction solar cells particularly interesting. Silicon 

solar cells are widely used and have been a predominant 

technology for many years. They are known for their 

reliability and reasonable efficiency in converting 

sunlight into electricity.Solar cells are designed to 

convert solar energy into electrical energy, utilizing the 

Sun's radiation, which is approximately 1360 W/m² at 1 

AU (Astronomical Unit). These cells have varying 

conversion efficiency rates depending on the material 

used, ranging from 20% for silicon to 35% for the most 

efficient multijunction Ga-As cells. Additionally, factors 

such as cell aging and working temperatures can further 

reduce efficiency. 

Considering all these factors, solar arrays positioned at 1 

AU and accurately aligned with the Sun can generate 

approximately 150 to 400 W per m² of surface area. A 

combination of material characteristics, physical factors, 

and environmental conditions influences the overall 

efficiency of the solar array. Nonetheless, solar arrays 

remain a vital and efficient means of converting solar 

energy into usable electrical power for various satellite 

applications. 

Table 1 provides a comprehensive overview of various 

solar cell technologies along with their respective 

performance metrics. These metrics include the 

Beginning-of-Life (BOL) efficiency at 28℃, specific 

power coefficient, and mass characteristics under 

different radiation conditions. The table outlines the solar 

cell technologies, each with its corresponding BOL 

efficiency percentage at 28℃, specific power coefficient, 

and mass values. Table 1 provides a comprehensive 

comparison of solar cell technologies based on their 

efficiency, power coefficient, mass, and radiation 

response, offering valuable information for selecting and 

optimizing solar cell technologies for space applications 

[18].  

 
(a) 

 
(b) 

 

Figure 2. a) Sun flux density variation at geo altitude over a 

year b) Satellite solar panel lifetime power performance. 

 

When combining the information depicted in Figure 1. 

a), which illustrates the variation in sun distance to Earth 

and its corresponding flux, with Figure 1. b), 

demonstrating the flux variation due to the Sun's 

incidence angle on the Earth's equator and the solar panel 

of the satellite, we obtain Figure 2. a). This resultant 

figure represents the flux density, which directly and 

significantly impacts the power generated by the solar 

panel. Analyzing Figure 2. a), we can assess the primary 

influencing factor on the solar panel's power generation 

capability [3, 19]. 

Suppose the effects of variations in solar distance, solar 

cycle, solar angle,  temperature, and eclipses over a year 

were combined. In that case, new results are obtained, 

and the total solar energy available varies 12%—from a 

low of 89% to a high of 101% [20]. The effects of 

degradation on the solar cells and their optical coverings 

due to the space environment and a nominal nine-year 

Table 1. Categorized performance metrics of different solar cell technologies for space spplications 

Solar Cell Technology 
BOL effic. (% at 
28℃) 

Specific 
Power  

Mass 
 

Power 
coefficient 

Radiation (P/P0)  
Radiation 
(P/P0) 

Radiation 
(P/P0)  

Unit (℃) (W/m2) (kg/m2) (% / ℃) 1x1014 5x1014 1x1015 

Si 13.7 185 0.55 -0.045 0.92 0.82 0.77 

High ef. Si 16 216 0.28 -0.042 0.92 0.83 0.79 

GaAs /GESJ 19 253 0.83 -0.022 0.90 0.85 0.75 

GaInP2/ GaAs/ GeDJ 22 297 0.85 -0.030 0.96 0.89 0.83 

GaInP2/ GaAs/ Ge TJ 25 337 0.85 -0.060 0.96 0.82 0.83 

Hi 3J 28 378 0.86 -0.060 0.93 0.89 0.86 

 



 

 

satellite lifetime are shown in Figure 2. b. The size of a 

spacecraft subsystem is determined not only by the power 

needed to operate the equipment and its duty cycle but 

also by considering factors such as power requirements 

during eclipses and peak power consumption. Ensuring 

reliable power supply throughout the satellite's mission is 

crucial, considering the limited lifespan of solar cells and 

batteries. At the beginning of life, the power requirement 

should be considered the potential degradation in the 

solar array. This degradation is influenced by factors 

such as the orbit altitude and radiation environment. 

When designing the power subsystem for a spacecraft, 

ensuring a continuous and reliable power supply 

throughout its planned lifetime is of utmost importance. 

A power margin of approximately 33% is incorporated 

into the design to achieve this. This means that the power 

subsystem is designed to provide an initial power 

capacity of approximately 133% of the maximum power 

demand required for normal operations, where 100% 

represents the power needed for standard functioning. By 

implementing this power margin, the satellite can sustain 

normal operations while accommodating any potential 

variations or increased power demands that may arise 

over its lifetime. This additional power capacity acts as a 

safety buffer, preventing the available power from 

dropping below the threshold necessary for smooth 

operation throughout the satellite's planned mission 

duration. 

The spacecraft's power subsystem ensures a robust and 

reliable power supply over an extended period by 

strategically providing an initial power capacity that 

exceeds the immediate needs. This design approach 

considers potential changes in power requirements, solar 

panel degradation, and other factors that may affect 

power generation over the satellite's operational life. As 

a result, the spacecraft can operate efficiently and 

effectively, fulfilling its mission objectives with a stable 

and dependable power supply [21, 22]. 

 

3.  POWER GENERATION MODELING USING 

NEURAL NETWORKS 

Traditional analytical models used for solar panel power 

generation often rely on simplifications and assumptions 

that may not fully capture the complex and non-linear 

relationships inherent in the process. These limitations 

can result in inaccurate predictions, especially in 

scenarios with varying weather conditions and 

environmental factors. Consequently, optimizing the 

efficiency and reliability of solar energy utilization 

becomes challenging. 

In recent years, advancements in artificial intelligence 

have paved the way for more sophisticated modeling 

techniques. Neural networks, a subset of machine 

learning algorithms inspired by the human brain's neural 

structure, have demonstrated significant potential in 

addressing the shortcomings of traditional analytical 

models. Unlike traditional approaches, neural networks 

excel at learning patterns and correlations directly from 

data, making them well-suited for capturing intricate 

relationships present in solar panel power generation. 

By leveraging their powerful learning capabilities, neural 

networks can process vast amounts of historical data 

related to solar panel power output and associated 

environmental parameters. This includes data on solar 

irradiance, panel temperature, sun position, and other 

relevant factors. Through the training process, neural 

networks identify complex patterns and dependencies 

within the data, creating a model that can accurately 

predict solar panel power generation under various 

conditions. 

The ability of neural networks to handle non-linear 

relationships and adapt to changing inputs makes them 

particularly valuable in scenarios with dynamic and 

uncertain solar energy generation patterns. As a result, 

these AI-based models offer superior accuracy and 

robustness compared to traditional analytical methods. 

Furthermore, neural networks can be continually updated 

and fine-tuned as new data becomes available. This 

adaptability ensures that the model remains up-to-date 

and maintains its predictive capabilities over time. 

Businesses, energy providers, and policymakers can 

optimize solar energy utilization, improve energy 

planning, and enhance overall system efficiency by 

making informed and precise forecasts [23, 24, 25]. 

Hence, in this study, utilizing the neural network method 

was proposed to model and analyze the power generated 

by satellite solar panels.  

3.1. Non-linear Autoregressive Neural Networks with 

Exogenous Input 

A neural network model is constructed with appropriate 

input and output layers. Hidden layers with 

interconnected neurons enable the network to learn the 

underlying patterns and relationships between 

environmental factors and solar panel power generation.  

Figure 3 illustrates the architecture of a neural network 

employing a single input with feedback.  

 
Figure 3. Non-linear Autoregressive Neural Networks with 

Exogenous Input 



 

 

In certain time series problems, the goal is to predict 

future values of a given time series, denoted as y(t), by 

utilizing past values of both that time series and an 

additional related time series, denoted as x(t). This type 

of prediction is known as non-linear autoregressive with 

exogenous input. Mathematically, it can be expressed as 

follows: 

 
𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … 𝑦(𝑡 − 𝑑), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑑))    (3) (3) 

 

In this context, the above mentioned network model was 

employed to predict future values of generated power by 

a solar panel based on previous instances of generated 

power. The model considers the historical data of both 

the solar panel's power output (y) and other relevant 

factors (x), such as environmental conditions, solar 

radiation, or panel orientation. 

By analyzing the relationships between past power 

generation and the associated exogenous inputs, the 

network learns patterns and correlations to make 

predictions about future power generation. This 

predictive capability aids in optimizing power 

management, system planning, and decision-making 

processes related to solar energy utilization. 

The network serves as a valuable tool in harnessing the 

potential of solar panels by providing insights into their 

performance dynamics and enabling accurate predictions 

of future power generation based on historical data. 

3.1.1. Training and Validation 

The collected data is split into training and validation 

sets. The neural network is trained using the training data, 

and the model's performance is assessed using the 

validation set. The network learns to accurately predict 

solar panel power output based on environmental inputs 

through an iterative process. 

 

Mean Squared Error (MSE) are used as a performance 

indicators to evaluate the proposed model's predicted 

performance. These metrics quantify the accuracy and 

quality of the predictions by measuring the discrepancy 

between the predicted and actual values. The Mean 

Squared Error (MSE) is computed using the following 

equation 4: 

𝑀𝑆𝐸 =
1

𝑁
∑(

𝑁

𝑖=1

𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 (4) 

MSE considers the absolute differences between actual 

and predicted values. However, by squaring these 

differences, the MSE emphasizes larger errors and 

provides a measure of the average squared difference 

between the actual and predicted values. 

In this study, the Levenberg-Marquardt training 

algorithm, which yielded superior results compared to 

other methods, was employed. The evaluation of training, 

validation, and testing results is based on two metrics: 

Mean Squared Error (MSE) and Regression R Values. 

MSE measures the average squared difference between 

predicted outputs and actual targets, with lower values 

indicating better accuracy (zero indicates no error). 

Regression R Values quantify the correlation between 

predicted outputs and targets, where an R-value of 1 

indicates a close relationship, and 0 signifies a random 

relationship. By utilizing these evaluation metrics and the 

effective Levenberg-Marquardt training algorithm, our 

study aims to provide accurate and reliable predictions 

for solar panel power generation, further advancing the 

capabilities of neural network modeling in this domain. 

3.2. Data Collection and Preprocessing 

In our study, the actual power data of  Satellite-A (Sat-A) 

operated at the designated orbital location over eight 

years was utilized. The power generated through Sat-A's 

solar panels is used explicitly for modeling purposes. The 

entire dataset covers a span of 8 years, ranging from 

January 1, 2015 to December 31, 2022. 

Two distinct methodologies exist for utilizing satellite 

solar panel power data to train the neural network. The 

first approach involves predicting solar panel power 

values based on a comprehensive set of parameters 

encompassing telemetry, orbital data, and space 

environment conditions. These parameters include 

variables such as day of the year, sun flux density, sun 

incidence angle, satellite-to-sun distance/AU ratio, cell 

degradation factor, and panel temperature readings. 

Within this approach, the neural network's output 

signifies the predicted power values generated by the 

solar panels, while the parameters mentioned above 

constitute the network's input. Conversely, the second 

approach exclusively employs the actual generated 

power values as input. The network's output continues to 

represent the solar panel power, while the input consists 

solely of day-of-the-year values commencing from an 

established epoch. 

Table 2 presents a detailed overview of the input and 

output values of the Sat-A dataset utilized for the training 

process. Each row corresponds to a specific day, 

providing information on parameters such as Sun angle, 

flux density, temperature, cell degradation, sun-satellite 

distance, and the corresponding power generated by the 

solar panel. The dataset spans 2922 days, encapsulating 

various conditions and factors contributing to solar panel 

power generation. 

In this study, both approaches are implemented, and their 

respective outcomes are meticulously compared. The 

results shed light on the efficacy and performance of each 

approach, allowing for a comprehensive evaluation of 

their predictive capabilities in modeling satellite solar 

panel power generation. 

This preprocessed data forms the foundation for training 

and validating the neural network model. By using this 

comprehensive dataset, we aim to develop a reliable and 

accurate model for predicting the power output of Sat-A's 

solar panels over time. The neural network model is 

trained and evaluated based on this dataset. 



 

 

It enables us to assess its forecasting performance and 

potential for predicting solar panel power generation in 

various conditions and scenarios.  

 

4.  THE RESEARCH FINDINGS AND 

DISCUSSION 

This study encompasses a data collection spanning 2922 

days for Sat-A to facilitate neural network training for 

predictive purposes. The entire dataset is partitioned 

randomly into three distinct segments: 70% (2046) is 

allocated for training, 15% (438) for validation, and the 

remaining proportion for testing. During the training 

phase, the neural network undergoes adjustments in 

response to its computed errors. The validation subset 

evaluates the network's generalization capacity and 

prompts the cessation of training upon stagnation in 

performance enhancements. Conversely, the testing 

subset furnishes an independent assessment of the 

network's operational efficacy both during and post-

training, all the while preserving the integrity of the 

training process. 

As previously delineated, the study encompasses two 

distinct modes of training: a single input paradigm 

involving only day values and a more comprehensive 6-

input framework encompassing days, flux density, sun 

incidence angle, sun-satellite distance, temperature, and 

cell degradation as inputs. 

Figure 4.a) illustrates a neural network architecture with 

a single input and 1 feedback (y(t)), featuring 10 hidden 

layers and a single output in Matlab form. Meanwhile, 

Figure 4.b) presents a network configuration with 6 

inputs and 1 feedback (y(t)), incorporating 10 hidden 

layers and a sole output. Notably, both configurations 

incorporate a delay of 2 in their respective designs. 

Figure 5 compares the actual and predicted values of Sat-

A solar panel output over 8 years using the neural 

network time series model with a single input. The model 

employs a non-linear autoregressive with external 

(exogenous) input architecture. The lower portion of the 

figure illustrates the error, representing the difference 

between the observed and predicted values. Notably, the 

error values in the figure are minimal, indicating the 

model's effectiveness in accurately capturing the solar 

panel's power generation behavior. 

 

(a) 

 

(b) 

Figure 4. a) the block diagram of the network generated for 

training with a single input and feedback, b) illustrates the 

networks utilized for training with six inputs and feedback. 

 

The neural network model demonstrates its proficiency 

in predicting solar panel output with high precision and 

reliability, validating its successful performance in this 

context. 

Table 2. Input and output values of Sat-A data for neural network training 

Day 

 

Sun angle 

 (degree) 

Flux Den 

 (W/m2) 

Temperature 

(℃) 

Cell degrade 

(%) 

Sun-Sat  

Dist (AU) 

Power 

(Watt) 

1 -23.012 1397.642 28.0239 0.9999 0.983046 10999.885 

2 -22.931 1397.649 28.0416 0.9998 0.983031 11004.321 

… … … … … … … 

2921 -23.012 1397.642 28.0196 0.9356 0.983121 10292.445 

2922 -22.931 1397.649 28.0380 0.9356 0.983093 10297.616 

 



 

 

 

Figure 5. The upper part presents a comparison between predicted and actual power generated by the solar panels over an 8-year 

period, while the lower part illustrates the differences between them. 

 

 
 

Figure 6. The left graph illustrates the performance of the single input model, while the right graph displays the regression value 

between the actual and predicted power. 

 

Figure 6.the left side showcases the network's 

performance in the context of a single input with 

feedback. The Mean Squared Error (MSE) is quantified 

at 0.199. Figure 6.the right side illustrates the regression 

value at an impressive 0.9999. This exceptionally high 

regression value indicates an exceptional fit between 

predicted and actual data. Furthermore, the minimal 

value of MSE underscores the strong performance of the 

modeling approach. 

In light of these findings, it is evident that the generated 

power of Sat-A solar panels is effectively and accurately 

modeled by utilizing the neural network. The 

combination of the high regression value and the low 

MSE demonstrates the reliability and precision of the 

neural network model in predicting solar panel power 

generation behavior. This success contributes to 

advancing our understanding and practical utilization of 

neural networks in analyzing and optimizing satellite 

solar panel performance. 



 

 

 
Figure 7. The upper portion presents an 8-year comparison between the predicted and actual power generated by the solar panels 

using six inputs. The lower part illustrates the differences between these values. 

 

Figure 7. offers a comprehensive visual comparison 

between the observed and predicted values of Sat-A solar 

panel output over an 8-year duration. This analysis is 

conducted by applying a neural network time series 

model, incorporating 6 inputs encompassing the 

aforementioned critical data parameters. For enhanced 

accuracy, the model is structured with a non-linear 

autoregressive architecture featuring external 

(exogenous) input. 

The upper segment of Figure 7. provides a detailed 

portrayal of the predicted and actual values of generated 

power derived from Sat-A solar panels throughout the 8-

year span. This representation visually illustrates the 

model's predictive performance in capturing the intricate 

nuances of power generation behavior. The closeness 

between the predicted and actual values highlights the 

model's capability to accurately emulate the real-world 

solar panel power output. 

Intriguingly, the lower section of the same figure 

illustrates the margin of error, revealing the disparity 

between the observed and predicted values. The 

remarkably low difference observed in this comparison 

indicates the model's exceptional precision in replicating 

actual solar panel power generation. This remarkable 

agreement between the predicted and actual data 

underscores the reliability and effectiveness of the neural 

network time series model. 

The findings depicted in Figure 7 validate the chosen 

modeling approach's robustness and reinforce the 

significance of neural networks in understanding and 

forecasting satellite solar panel power generation 

dynamics. The successful alignment of predicted and  

actual values paves the way for enhanced decision-

making and optimization in satellite power management. 

 

 

 
Figure 8. The left graph demonstrates the performance of the six-input model, while the right graph showcases the 

regression value indicating the correlation between the actual and predicted power. 



 

 

 

Figure 8. the left graph provides insight into the behavior 

of the Mean Squared Error (MSE) alongside the number 

of iterations throughout the iterative modeling process, 

displayed on a logarithmic scale. As expected, the errors 

consistently diminish as the number of iterations 

increases. This pattern aligns with the anticipated 

trajectory of iterative optimization algorithms frequently 

utilized in training neural networks. The gradual decrease 

in errors over successive iterations signifies the model's 

progressive enhancement in prediction refinement. 

Through iterative learning, the neural network effectively 

fine-tunes its predictions, resulting in a notable reduction 

in MSE and a heightened precision in capturing the 

intricate power generation patterns of the solar panel. 

Figure 8. the right graph unveils the comparison between 

observed and predicted power regression. The data points 

cluster closely around the 45-degree line, indicating a 

robust correlation between the predicted and actual solar 

array power. This striking proximity underscores the 

neural network's commendable accuracy in forecasting 

power generation, affirming its competence in accurately 

simulating the genuine power output behavior of the solar 

array. 

The specific quantitative indicators also underscore the 

effectiveness of the model. The MSE is recorded at a 

value of 0.047, highlighting the minimal discrepancy 

between predicted and actual values. Simultaneously, the 

regression value (R) registers at an impressive 0.9999, 

showcasing the robust relationship between predicted 

and actual data points. 

Upon scrutinizing the performance metrics of the 6-input 

model in contrast to the 1-input model, it becomes 

evident that the former exhibits slightly superior 

performance. The 6-input model showcases improved 

metrics, with an MSE of 0.047 compared to the 1-input 

model's 0.199. Moreover, the R values corresponding to 

the 6-input model also demonstrate an enhanced 

correlation. While the discrepancy between the two 

models is modest, these marginal improvements 

collectively contribute to the slightly superior prowess of 

the 6-input model. 

The suggested neural network-based modeling approach 

has numerous benefits, including enhanced power 

estimation, increased efficiency in satellite mission 

planning, and improved resource management. 

Furthermore, the model's flexibility is evident since it can 

be consistently refined with new telemetry data, allowing 

it to stay quick and sensitive to changing circumstances 

while improving its capacity to make predictions. The 

proposed neural network modeling technique has been 

evaluated against other research areas, including the 

simulation of satellite temperature sensors [26], the 

control of spacecraft power systems [27], and methods 

for predicting time series data [28]. These comparisons 

demonstrate that our approach is both reliable and 

practically applicable, yielding positive results. This 

validation across different domains confirms the 

robustness and effectiveness of proposed neural network 

model in accurately predicting power generation in 

geostationary satellite solar panels. 

The rationale for employing a neural network in this 

study lies in its capacity to effectively capture and model 

the complex and non-linear relationships inherent in the 

behavior of photovoltaic arrays. Traditional analytical 

models may have limitations in accurately representing 

the intricate dynamics of solar panel power generation. 

Neural networks, a form of artificial intelligence, have 

demonstrated promise in learning patterns from data and 

providing precise predictions. By leveraging the neural 

network's ability to adapt and learn from the dataset, the 

study aims to achieve a more accurate and reliable 

predictive model for the power generation of 

geostationary satellite solar panels. The neural network, 

particularly in the context of machine learning, offers the 

flexibility to discern patterns and relationships among 

various input parameters, such as time, temperature, flux 

density, sun angle, and satellite-to-sun distance. This, in 

turn, enhances the understanding and prediction of how 

these factors influence the power output of the 

photovoltaic arrays over time. 

 

5. CONCLUSION 

This study extensively investigated the complex 

dynamics of power generation in geostationary satellite 

solar panels, presenting an approach for modeling their 

output using neural networks. The effectiveness of the 

proposed technique in accurately forecasting power 

output holds substantial potential for optimizing resource 

allocation, refining satellite operations, and enhancing 

mission planning. 

The findings of our research demonstrate the efficacy of 

the neural network-based model in accurately capturing 

the power generation patterns of geostationary satellite 

solar panels. A remarkable Mean Squared Error (MSE) 

of 0.0477 and a regression value of 0.9999 were achieved 

through the utilization of a non-linear autoregressive with 

exogenous input architecture. This level of performance 

underscores the robust correlation between predicted and 

actual power values. 

The neural network-based model offers satellite 

operators a powerful tool for efficient resource 

management, mission planning, and operational 

decision-making. The accurate prediction of power 

output empowers operators to allocate resources more 

effectively and plan satellite activities with a heightened 

understanding of energy availability. 

Nevertheless, like any scientific investigation, this study 

comes with its own set of limitations. The accuracy of the 

proposed model could be influenced by external factors, 

such as space weather conditions, short circuits in solar 

panel strings, or unforeseen anomalies in solar panel 

performance. Additionally, the model's predictive 

capability is constrained by the data on which it was 

trained. This limitation could hinder the model's ability 

to adapt to new and unique scenarios that were not 

represented in the training data. Addressing these 



 

 

constraints in future work could involve incorporating a 

wider range of data inputs and further refining the model 

to enhance its robustness and adaptability to various 

conditions. 

For future research, there are promising avenues to 

explore. Similar neural network-based modeling 

techniques could be applied to solar panels on satellites 

in Low Earth Orbit (LEO) or other orbital configurations. 

Furthermore, the model could be refined by incorporating 

additional variables such as satellite orientation or 

environmental conditions, potentially enhancing its 

predictive accuracy. Additionally, exploring the 

feasibility of applying this approach to other space-based 

solar power systems holds the potential for advancing our 

understanding of power generation dynamics in various 

satellite environments. 

In conclusion, our research showcases the potential of 

neural network-based modeling in understanding and 

predicting power generation in geostationary satellite 

solar panels. This approach enhances our comprehension 

of energy dynamics in space and has substantial 

implications for improving satellite operations. By 

continually refining and expanding upon this modeling 

technique, new insights into solar panel behavior and 

further optimize space-based energy utilization can be 

unlocked. 

 

DECLARATION OF ETHICAL STANDARDS  

The authors of this article declare that the materials and 

methods used in this study do not require ethical 

committee permission and/or legal-special permission. 

 

AUTHORS’ CONTRIBUTIONS 

İbrahim ÖZ: Perofrmed the study, analyse the results 

and wrote the manuscript 

Mehmet BULUT: Performed structural analysis and 

edited the article. 

 

CONFLICT OF INTEREST 

There is no conflict of interest in this study. 

 

REFERENCES 

[1] Verduci, R., Romano, V., Brunetti, G., Nia, N. Y., Carlo, 

A. D., Ciminelli, C., “Solar energy in space applications: 

review and technology perspectives”. Advanced Energy 

Materials, 2200125, 12(29),  (2022).  

[2] Jones, P. A. and Spence, B. R., "Spacecraft solar array 

technology trends". IEEE Aerospace and Electronic 

Systems Magazine, vol. 26, no. 8, pp. 17-28, (2011).  

[3] Plis E. A. et al., "Effect of simulated geo environment on 

the properties of solar panel cover glasses,". IEEE 

Transactions on Plasma Science, vol. 49, no. 5, pp. 1679-

1685, (2021). 

[4] Cho M. et al., "Spacecraft Charging analysis of large GEO 

satellites using MUSCAT," IEEE Transactions on 

Plasma Science, vol. 40, no. 4, pp. 1248-1256, (2012). 

[5] Cho, M. R., Ramasamy, T., Matsumoto, K., Toyoda, Y., 

Takahashi, M., “Laboratory tests on 110 V solar arrays in 

a simulated geosynchronous orbit environment,” J. 

Spacecraft Rocket, vol. 40, no. 2, pp. 211–220, (2003). 

[6] O. Safak, “Structural design and analysis of a solar array 

substrate for a GEO satellite,” Projecte Final de Màster 

Oficial, UPC, Escola d'Enginyeria de Telecomunicació i 

Aeroespacial de Castelldefels, Departament de Ciència 

dels Materials i Enginyeria Metal·lúrgica, (2013). 

[7] Bermudez, A., Voarino, P., Raccurt, O., “Environments, 

needs and opportunities for future space photovoltaic 

power generation: A review”, Applied Energy, Volume 

290, 116757, (2021).  

[8] Sproewitz, T., Banik, U., Grundmann, JT. et al. “Concept 

for a Gossamer solar power array using thin-film 

photovoltaics.” CEAS Space J 12, 125–135 (2020). 

[9] Muhammad Z., Ekundayo O., “Simulation of photovoltaic 

(PV) power system performance of spacecraft in 

geostationary orbit using a prototype model.”, IOSR 

Journal of Applied Physics (IOSR-JAP), Volume 6, 

Issue 3 Ver. II, pp 20-26. (2014). 

[10] Chetty, P., Vasagam, R., "Enhanced Power Generation by 

Optical Solar Reflectors on  Geostationary Spinners," 

IEEE Transactions on Aerospace and Electronic 

Systems, vol. AES-15, no. 1, pp. 119-124, Jan. (1979). 

[11] Karadağ B., Arı Ali, Karadağ, M. “Derin öğrenme 

modellerinin sinirsel stil aktarımı performanslarının 

karşılaştırılması.”, Politeknik Dergisi, 24(4), 1611-1622., 

(2021). 

[12] Aslay F.,  Özen, Ü. “Estimating soil temperature with 

artificial neural networks using meteorological 

parameters.”, Journal Of Polytechnic-Politeknik Dergisi, 

16(4), (2013). 

[13] Kayci B., Demir B. E.,  Demir, F. (2023). Deep learning 

based fault detection and diagnosis in photovoltaic system 

using thermal images acquired by UAV. Politeknik 

Dergisi, 1-1, (2023). 

[14] Erdoğan, İ., Bilen, K.,  Kivrak, S. ” Experimental 

investigation of the efficiency of solar panel over which 

water film flows.”, Politeknik Dergisi, 1-1, (2023). 

[15] Abood, A., “A comprehensive solar angles simulation and 

calculation using matlab”, International Journal of Energy 

and Environment, 367, 6(4),  (2015). 

[16] Ribah, A. Z.,  Ramayanti, S., “Power produced analysis of 

solar arrays in nadir pointing mode for low-earth 

equatorial micro-satellite conceptual design”, In IOP 

Conference Series: Earth and Environmental Science 

(Vol. 284, No. 1, p. 012048). IOP Publishing, (2019). 

[17] Maini, A. K., Agrawal, V. “Satellite technology: principles 

and applications”, John Wiley & Sons. (2011). 

[18] Demirel, S., “Haberleşme uydusunun elektrik güç 

sisteminin modellenmesi ve analizi” (Doctoral 

dissertation, Sakarya Universitesi, Turkey, (2017).  

[19] D'Accolti, G., Beltrame, G., Ferrando, E., Riva, S., Vallini, 

L., “One year in-orbit data of the MITA Ga As on Ge solar 

array” In Space Power, Vol. 502, p. 719, (2002). 

[20] Sözbir, N., Bulut, M. “Prediction of the Solar Array 

Temperatures of Geostationary Earth Orbit Satellite by 

Using Analytical Methods.”. 9th International 

Conference on Recent Advances in Space Technologies 

(RAST), Istanbul, Turkey, , pp. 369-372, (2019). 

[21] Kirkpatrick, D., “Space mission analysis and design”,  

(Vol. 8). J. R. Wertz, W. J. Larson, & D. Klungle (Eds.). 

Torrance: Microcosm. (1999). 

[22] Cao, M., Zhang, T., Liu, Y., Yu, W., “A performance 

degradation model of solar cells in an on-orbit resource 

satellite based on peak currents”, Solar Energy, 189, 26-

34, (2019).  



 

 

[23] Khashei, M., Bijari, M., “An artificial neural network 

(p,d,q) model for time series forecasting”. Expert Systems 

With Applications, 37(1), 479-489. (2010). 

[24] Lee, J., Kim, E., & Shin, K. G., “Design and management 

of satellite power systems”. In 2013 IEEE 34th Real-Time 

Systems Symposium, pp. 97-106, (2013). 

[25] Olawoyin, A.,  Chen, Y.” Predicting the future with 

artificial neural network”. Procedia Computer Science, 

140, 383-392. (2018). 

[26] Abdelkhalek, H. S., Medhat, H., Ziedan, I., Amal, M., 

“Simulation and prediction for a satellite temperature 

sensors based on artificial neural network”. Journal of 

Aerospace Technology and Management, 11. (2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[27] El-madany, H. T., Fahmy, F. H., El-Rahman, N. M., & 

Dorrah, H. T., “Spacecraft power system controller based 

on neural network”. Acta Astronautica, 69(7-8), 650-657, 

(2011). 

[28] Hota, H. S., Handa, R., Shrivas, A. K. “Time series data 

prediction using sliding window based RBF neural 

network”. International Journal of Computational 

Intelligence Research, 13(5), 1145-1156, (2017). 

 

 




