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Abstract. The aim of this article is to identify and analyze a new type special
number system which is called bihyperbolic generalized Tribonacci numbers
(BGTN for short). For this purpose, we give both classical and several new
properties such as; recurrence relation, Binet formula, generating function,
exponential generating function, summation formulae, matrix formula, and
special determinant equations of BGTN . Also, the system of BGTN is quite a
big family and includes several type special cases with respect to initial values
and r, s, t values, we give the subfamilies and special cases of it. In addition to
these, we construct some numerical algorithms including recurrence relation
and special two types determinant equations related to calculating the terms of
this new type special number system. Then, we examine several properties by
taking two special cases and including some illustrative numerical examples.

1. Introduction

Numbers and number systems are well-established fundamental and important
topics in not only mathematics but also other disciplines with varied applications
and benefits. In spite of their long history, numbers systems are still an interesting
and important area to work for lots of researchers since there are several applications
in different and several areas such as; differential geometry, engineering, robotics,
graph theory, etc. There exist several types of number systems in the existing
literature. A hyperbolic (perplex, split-complex) number is a number of the form
z = x + yj where x, y ∈ R, j2 = 1, j ̸= ±1, j /∈ R [39, 43, 61]. Also, a bihyperbolic
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number (canonical hyperbolic quaternion [10], hyperbolic four complex numbers
[35]) is written as a linear combination of a pair of hyperbolic numbers. There
exists a relationship between the bihyperbolic numbers and 4–dimensional pseudo-
Euclidean spaces. Bihyperbolic numbers are denoted by H and are defined as
[4, 10,35,37]:

H := {ζ = ρ0 + ρ1j1 + ρ2j2 + ρ3j3 : ρ0, ρ1, ρ2, ρ3 ∈ R, j1, j2, j3 /∈ R} ,

where j1, j2, j3 satisfy the multiplication rules:

j21 = j22 = j23 = 1, j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1. (1)

On the other hand, several studies have been done and are ongoing on the special
recurrence sequences which can have different orders. For example, Fibonacci and
Lucas sequences [18,33] can be given as examples related to second-order recurrence
sequences. The most general form of the second-order recurrence sequences is called
as Horadam [26]. In this study, we deal with the generalization of third-order
recurrence sequences which is called generalized Tribonacci sequence (or numbers).
Generalized Tribonacci sequence {Tn(T0, T1, T2; r, s, t)}n≥0 (for short: {Tn}n≥0)
given by the following recurrence relation:

Tn = rTn−1 + sTn−2 + tTn−3, n ≥ 3 (2)

with the initial conditions T0 = a, T1 = b, T2 = c are arbitrary integers and r, s, t
are real numbers [11]. Generalization of special third-order numbers was studied
in [1, 12,13,15,16,19,20,36,40–42,44–54,59,60,62].

Furthermore, the framework of bringing together the quaternions and special
recurrence sequences is a popular and interesting concept for researchers. Real
quaternions were investigated by W. R. Hamilton as an expansion of the com-
plex numbers [23, 24] (see also Section “Conclusion”). There exist several studies
with respect to combining several different types quaternions such as; split [17],
generalized [29, 30, 34, 38], etc. Additionally, special recurrence sequences were ex-
amined considering quaternions, for instance, Fibonacci and Lucas real quater-
nions [20,22,25,27], Fibonacci and Lucas generalized quaternions [2,20], Narayana
(or Fibonacci-Narayana) generalized quaternions [20]. Besides, the researchers
started to examine the combining the third-order recurrence sequences and sev-
eral types quaternions, such as; Padovan and Perrin quaternions [21, 28, 58], gen-
eralized Tribonacci real quaternions [11]. Also, generalized bicomplex Tribonacci
quaternions were introduced in [32].

In the same manner, a great deal of researchers started to investigate the bihy-
perbolic numbers with several special recurrence sequences. Studies on bihyperbolic
numbers, and bringing together the bihyperbolic numbers and some special recur-
rence numbers have been gathered speed in the existing literature. Bród et al.
studied the generalization of bihyperbolic Pell numbers in [5]. Also, Bród et al. ex-
amined the one-parameter and two-parameter generalizations of the bihyperbolic
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Jacobsthal numbers in [6, 7], respectively. Then, bihyperbolic numbers of the Fi-
bonacci type and idempotent representation of them were investigated in [8]. In [9],
some combinatorial properties of bihyperbolic numbers of the Fibonacci type are
investigated. Azak examined some new identities related to bihyperbolic Fibonacci
and Lucas numbers in [3]. Further, Fibonacci and Lucas bihypernomials [55] and
certain bihypernomials with respect to Pell and Pell-Lucas numbers [56] examined.

In this study, we investigate a new type of number system which is called as bihy-
perbolic generalized Tribonacci numbers (BGTN ) and give some special cases with
respect to the initial and r, s, t values. Then, we obtain the recurrence relation,
Binet formula, generating function, exponential generating function, summation
formulae, several new special properties, matrix formula, and special determinant
equations related to these new types special numbers. Moreover, we establish some
numerical algorithms including recurrence relation and special two types determi-
nant equations related to calculating the terms of BGTN . As a final part, we review
the overall conclusions and give several contributions for future studies.

2. Basic Concepts

In this section, we give some background about bihyperbolic numbers and gen-
eralized Tribonacci numbers.

The addition and multiplication operations are commutative and associative on
H. (H,+, .) is a commutative ring [4]. Besides, a bihyperbolic number
ζ = ρ0 + ρ1j1 + ρ2j2 + ρ3j3 ∈ H has three conjugations, as follows:

ζ
j1

= ρ0 + ρ1j1 − ρ2j2 − ρ3j3,

ζ
j2

= ρ0 − ρ1j1 + ρ2j2 − ρ3j3,

ζ
j3

= ρ0 − ρ1j1 − ρ2j2 + ρ3j3,

which are called as the principal conjugations of ζ [10].
Additionally, the characteristic equation of generalized Tribonacci numbers given

in Eq. (2) is x3 − rx2 − sx− t = 0. The roots of this equation are given as follows:

x1 =
r

3
+ α+ β, x2 =

r

3
+ εα+ ε2β, x3 =

r

3
+ ε2α+ εβ, (3)

where 
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and

x1 + x2 + x3 = r, x1x2 + x1x3 + x2x3 = −s, x1x2x3 = t.

Providing µ > 0, Eq. (2) has one real and two non-real solutions, the latter being
conjugate complex. The following equation is called as Binet formula for generalized
Tribonacci numbers [11]:

Tn =
P̃ xn

1

(x1 − x2)(x1 − x3)
+

R̃xn
2

(x2 − x1)(x2 − x3)
+

S̃xn
3

(x3 − x1)(x3 − x2)
, (4)

where 
P̃ = c− (x2 + x3)b+ x2x3a,

R̃ = c− (x1 + x3)b+ x1x3a,

S̃ = c− (x1 + x2)b+ x1x2a.

(5)

Besides, the quite beneficial and functional method to generate Tn is applying S-
matrix which is determined in [41,59] and is a generalization of the R-matrix. The
S-matrix is determined as follows (see also [31,60]):

S =

 r s t
1 0 0
0 1 0

 .

In Table 1, some special subfamilies (9 pieces) of generalized Tribonacci numbers
are given with respect to r, s, t values. Additionally, Table 2 includes several mem-
bers of the family of generalized Tribonacci numbers (38 pieces) regarding both
initial values and r, s, t values [1, 12,13,15,16,19,20,36,40–42,44–54,59,60,62].

Table 1. A brief classification for generalized Tribonacci numbers

Name {Tn} = {Tn(T0, T1, T2; r, s, t)} Recurrence Relation

G. Tribonacci (usual) {An} = {Tn(T0, T1, T2; 1, 1, 1)} An = An−1 + An−2 + An−3

G. Padovan {Gn} = {Tn(T0, T1, T2; 0, 1, 1)} Gn = Gn−2 + Gn−3

G. Pell-Padovan {Mn} = {Tn(T0, T1, T2; 0, 2, 1)} Mn = 2Mn−2 + Mn−3

G. T. Pell {Sn} = {Tn(T0, T1, T2; 2, 1, 1)} Sn = 2Sn−1 + Sn−2 + Sn−3

G. T. Jacobsthal {Xn} = {Tn(T0, T1, T2; 1, 1, 2)} Xn = Xn−1 + Xn−2 + 2Xn−3

G. Jacobsthal-Padovan {χn} = {Tn(T0, T1, T2; 0, 1, 2)} χn = χn−2 + 2χn−3

G. Narayana {ϑn} = {Tn(T0, T1, T2; 1, 0, 1)} ϑn = ϑn−1 + ϑn−3

G. 3-primes {κn} = {Tn(T0, T1, T2; 2, 3, 5)} κn = 2κn−1 + 3κn−1 + 5κn−3

G. Reverse 3-primes {∇n} = {Tn(T0, T1, T2; 5, 3, 2)} ∇n = 5∇n−1 + 3∇n−1 + 2∇n−3

*G.: Generalized, T.: Third Order
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Table 2. Some special cases of generalized Tribonacci numbers

Name {Tn} = {Tn(T0, T1, T2; r, s, t)} Recurrence Relation

Tribonacci {An} = {Tn(0, 1, 1; 1, 1, 1)} An = An−1 +An−2 +An−3

Tribonacci-Lucas {Bn} = {Tn(3, 1, 3; 1, 1, 1)} Bn = Bn−1 +Bn−2 +Bn−3

Tribonacci-Perrin {Cn} = {Tn(3, 0, 2; 1, 1, 1)} Cn = Cn−1 + Cn−2 + Cn−3

M. Tribonacci {Dn} = {Tn(1, 1, 1; 1, 1, 1)} Dn = Dn−1 +Dn−2 +Dn−3

M. Tribonacci-Lucas {En} = {Tn(4, 4, 10; 1, 1, 1)} En = En−1 + En−2 + En−3

A. Tribonacci-Lucas {Fn} = {Tn(4, 2, 0; 1, 1, 1)} Fn = Fn−1 + Fn−2 + Fn−3

Padovan (Cordonnier) {Gn} = {Tn(1, 1, 1; 0, 1, 1)} Gn = Gn−2 +Gn−3

Perrin {Hn} = {Tn(3, 0, 2; 0, 1, 1)} Hn = Hn−2 +Hn−3

Van der Laan {In} = {Tn(1, 0, 1; 0, 1, 1)} In = In−2 + In−3

Padovan-Perrin {Jn} = {Tn(0, 0, 1; 0, 1, 1)} Jn = Jn−2 + Jn−3

M. Padovan {Kn} = {Tn(3, 1, 3; 0, 1, 1)} Kn = Kn−2 +Kn−3

A. Padovan {Ln} = {Tn(0, 1, 0; 0, 1, 1)} Ln = Ln−2 + Ln−3

Pell-Padovan {Mn} = {Tn(1, 1, 1; 0, 2, 1)} Mn = 2Mn−2 +Mn−3

Pell-Perrin {Nn} = {Tn(3, 0, 2; 0, 2, 1)} Nn = 2Nn−2 +Nn−3

T. Fibonacci-Pell {On} = {Tn(1, 0, 2; 0, 2, 1)} On = 2On−2 +On−3

T. Lucas-Pell {Pn} = {Tn(3, 0, 4; 0, 2, 1)} Pn = 2Pn−2 + Pn−3

A. Pell-Padovan {Rn} = {Tn(0, 1, 0; 0, 2, 1)} Rn = 2Rn−2 +Rn−3

T. Pell {Sn} = {Tn(0, 1, 2; 2, 1, 1)} Sn = 2Sn−1 + Sn−2 + Sn−3

T. Pell-Lucas {Un} = {Tn(3, 2, 6; 2, 1, 1)} Un = 2Un−1 + Un−2 + Un−3

T. modified Pell {Vn} = {Tn(0, 1, 1; 2, 1, 1)} Vn = 2Vn−1 + Vn−2 + Vn−3

T. Pell-Perrin {Wn} = {Tn(3, 0, 2; 2, 1, 1)} Wn = 2Wn−1 +Wn−2 +Wn−3

T. Jacobsthal {Xn} = {Tn(0, 1, 1; 1, 1, 2)} Xn = Xn−1 +Xn−2 + 2Xn−3

T. Jacobsthal-Lucas {Yn} = {Tn(2, 1, 5; 1, 1, 2)} Yn = Yn−1 + Yn−2 + 2Yn−3

M. T. Jacobsthal {Zn} = {Tn(3, 1, 3; 1, 1, 2)} Zn = Zn−1 + Zn−2 + 2Zn−3

T. Jacobsthal-Perrin {Γn} = {Tn(3, 0, 2; 1, 1, 2)} Γn = Γn−1 + Γn−2 + 2Γn−3

Jacobsthal-Padovan {χn} = {Tn(1, 1, 1; 0, 1, 2)} χn = χn−2 + 2χn−3

Jacobsthal-Perrin {∆n} = {Tn(3, 0, 2; 0, 1, 2)} ∆n = ∆n−2 + 2∆n−3

A. Jacobsthal-Padovan {ωn} = {Tn(0, 1, 0; 0, 1, 2)} ωn = ωn−2 + 2ωn−3

M. Jacobsthal-Padovan {Ωn} = {Tn(3, 1, 3; 0, 1, 2)} Ωn = Ωn−2 + 2Ωn−3

Narayana {ϑn} = {Tn(0, 1, 1; 1, 0, 1)} ϑn = ϑn−1 + ϑn−3

Narayana-Lucas {τn} = {Tn(3, 1, 1; 1, 0, 1)} τn = τn−1 + τn−3

Narayana-Perrin {σn} = {Tn(3, 0, 2; 1, 0, 1)} σn = σn−1 + σn−3

3-primes {κn} = {Tn(0, 1, 2; 2, 3, 5)} κn = 2κn−1 + 3κn−2 + 5κn−3

Lucas 3-primes {θn} = {Tn(3, 2, 10; 2, 3, 5)} θn = 2θn−1 + 3θn−2 + 5θn−3

M. 3-primes {γn} = {Tn(0, 1, 1; 2, 3, 5)} γn = 2γn−1 + 3γn−2 + 5γn−3

Reverse 3-primes {∇n} = {Tn(0, 1, 5; 5, 3, 2)} ∇n = 5∇n−1 + 3∇n−2 + 2∇n−3

Reverse Lucas 3-primes {Λn} = {Tn(3, 5, 31; 5, 3, 2)} Λn = 5Λn−1 + 3Λn−2 + 2Λn−3

Reverse M. 3-primes {ϕn} = {Tn(0, 1, 4; 5, 3, 2)} ϕn = 5ϕn−1 + 3ϕn−2 + 2ϕn−3

*M.: Modified, A.: Adjusted, T.: Third order
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3. The Bihyperbolic Generalized Tribonacci Numbers

In this section, we introduce bihyperbolic generalized Tribonacci numbers (BGTN )
by taking into account several special cases with respect to r, s, t values, and initial
values. Besides, we scrutinize not only classical several properties but also some new
and interesting equations. Then, we support these new results with some numerical
algorithms. Finally, we examine two special cases of BGTN .

Definition 1. The nth BGTN is defined as:

Tn = Tn + Tn+1j1 + Tn+2j2 + Tn+3j3, n ≥ 0 (6)

with the initial values
T0 =a+ bj1 + cj2 + (rc+ sb+ ta)j3,

T1 =b+ cj1 + (rc+ sb+ ta)j2 +
((
r2 + s

)
c+ (rs+ t) b+ rta

)
j3,

T2 =c+ (rc+ sb+ ta) j1 +
((
r2 + s

)
c+ (rs+ t) b+ rta

)
j2

+
((
r3 + 2rs+ t

)
c+

(
r2s+ s2 + rt

)
b+

(
r2t+ st

)
a
)
j3,

where the rules of j1, j2, j3 are given in Eq. (1) and Tn is the nth generalized
Tribonacci number given in Eq. (2).

In the following Definition 2, we give some basic algebraic properties such as;
equality, summation, subtraction, multiplication with a constant (a constant is
a real number), multiplication of any two BGTN , and also three types principal
conjugations of BGTN .

Definition 2 (Algebraic Properties). Let Tn and Tm be the nth and mth BGTN ,
respectively. Then, the followings are defined:

• Equality:

Tn = Tm ⇔ Tn = Tm, Tn+1 = Tm+1, Tn+2 = Tm+2, Tn+3 = Tm+3,

• Addition/Subtraction:

Tn ± Tm =Tn ± Tm + (Tn+1 ± Tm+1)j1 + (Tn+2 ± Tm+2)j2 + (Tn+3 ± Tm+3)j3,

• Multiplication by a scalar:

υTn = υTn + υTn+1j1 + υTn+2j2 + υTn+3j3, υ ∈ R,

• Multiplication:
TnTm =TnTm + Tn+1Tm+1 + Tn+2Tm+2 + Tn+3Tm+3

+ (TnTm+1 + Tn+1Tm + Tn+2Tm+3 + Tn+3Tm+2)j1

+ (TnTm+2 + Tn+1Tm+3 + Tn+2Tm + Tn+3Tm+1)j2

+ (TnTm+3 + Tn+1Tm+2 + Tn+2Tm+1 + Tn+3Tm)j3,

by using the rules in Eq. (1) for multiplication.
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• Principal Conjugates: Also, the following three types principal conjugations of
Tn are defined by: 

Tn
j1

= Tn + Tn+1j1 − Tn+2j2 − Tn+3j3,

Tn
j2

= Tn − Tn+1j1 + Tn+2j2 − Tn+3j3,

Tn
j3

= Tn − Tn+1j1 − Tn+2j2 + Tn+3j3.

(7)

Now, let us give the recurrence relation of BGTN .

Theorem 1 (Recurrence Relation). Let Tn be the nth BGTN . Then, the following
recurrence relation is satisfied:

Tn = rTn−1 + sTn−2 + tTn−3, n ≥ 3. (8)

Proof. Using Eqs. (2) and (6), we complete the proof:

rTn−1 + sTn−2 + tTn−3 = r(Tn−1 + Tnj1 + Tn+1j2 + Tn+2j3)

+ s(Tn−2 + Tn−1j1 + Tnj2 + Tn+1j3)

+ t(Tn−3 + Tn−2j1 + Tn−1j2 + Tnj3)

= Tn + Tn+1j1 + Tn+2j2 + Tn+3j3

= Tn.

□

In the following, we construct a numerical algorithm (Algorithm 1) in order to
calculate the nth term of BGTN based on the recurrence relation given in Eq. (8).

Algorithm 1 A numerical algorithm for finding nth term of BGTN

1: Begin
2: Input T0,T1 and T2

3: Compose Tn with respect to Eq. (8) for every n ≥ 3
4: Count up Tn

5: Output Tn = Tn + Tn+1j1 + Tn+2j2 + Tn+3j3
6: Complete

With the same logic of Table 1 and Table 2 in Section “Basic Concepts”, we can
also obtain the same classifications and give special cases of BGTN in the following
Table 3 and Table 4. The members of the BGTN which are written in Table 3
can be also classified and expressed in detail linked to Table 2 regarding recurrence
relations and the initial values. For the sake of brevity, the small parts of them
are written in Table 4 and Table 5 for readers to examine. The other members can
be easily observed and examined, as well. The first three initial values for special
cases written in Table 4 are given in Table 5.
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Table 5. Initial values of special cases

For n = 0 n = 1 n = 2

Bn 3 + j1 + 3j2 + 7j3 1 + 3j1 + 7j2 + 11j3 3 + 7j1 + 11j2 + 21j3
Hn 3 + 2j2 + 3j3 2j1 + 3j2 + 2j3 2 + 3j1 + 2j2 + 5j3
Mn 1 + j1 + j2 + 3j3 1 + j1 + 3j2 + 3j3 1 + 3j1 + 3j2 + 7j3
Sn j1 + 2j2 + 5j3 1 + 2j1 + 5j2 + 13j3 2 + 5j1 + 13j2 + 33j3
Xn j1 + j2 + 2j3 1 + j1 + 2j2 + 5j3 1 + 2j1 + 5j2 + 9j3
χ̃n 1 + j1 + j2 + 3j3 1 + j1 + 3j2 + 3j3 1 + 3j1 + 3j2 + 5j3
ϑ̃n j1 + j2 + j3 1 + j1 + j2 + 2j3 1 + j1 + 2j2 + 3j3
κ̃n j1 + 2j2 + 7j3 1 + 2j1 + 7j2 + 25j3 2 + 7j1 + 25j2 + 81j3
∇̃n j1 + 5j2 + 28j3 1 + 5j1 + 28j2 + 157j3 5 + 28j1 + 157j2 + 879j3

Theorem 2. ∀n ∈ N, the Binet formula for the BGTN is as follows:

Tn =
P̃ xn

1 x̃1

(x1 − x2)(x1 − x3)
+

R̃xn
2 x̃2

(x2 − x1)(x2 − x3)
+

S̃xn
3 x̃3

(x3 − x1)(x3 − x2)
,

where 
x̃1 = 1 + x1j1 + x2

1j2 + x3
1j3,

x̃2 = 1 + x2j1 + x2
2j2 + x3

2j3,

x̃3 = 1 + x3j1 + x2
3j2 + x3

3j3.

(9)

Here P̃ , R̃, S̃ are given in Eq. (5) and x1, x2, x3 are given in Eq. (3).

Proof. Using Eqs. (4) and (6), we manage to prove:

Tn =
P̃ xn

1

(x1−x2)(x1−x3)
+

R̃xn
2

(x2−x1)(x2−x3)
+

S̃xn
3

(x3−x1)(x3−x2)

+
(

P̃ xn+1
1

(x1−x2)(x1−x3)
+

R̃xn+1
2

(x2−x1)(x2−x3)
+

S̃xn+1
3

(x3−x1)(x3−x2)

)
j1

+
(

P̃ xn+2
1

(x1−x2)(x1−x3)
+

R̃xn+2
2

(x2−x1)(x2−x3)
+

S̃xn+2
3

(x3−x1)(x3−x2)

)
j2

+
(

P̃ xn+3
1

(x1−x2)(x1−x3)
+

R̃xn+3
2

(x2−x1)(x2−x3)
+

S̃xn+3
3

(x3−x1)(x3−x2)

)
j3 .

Finally, we reach Tn =
P̃ xn

1 x̃1

(x1−x2)(x1−x3)
+

R̃xn
2 x̃2

(x2−x1)(x2−x3)
+

S̃xn
3 x̃3

(x3−x1)(x3−x2)
. □

Theorem 3. The generating function of BGTN is as follows:
∞∑

n=0

Tnx
n =

T0 + (T1 − rT0)x+ (T2 − rT1 − sT0)x
2

1− rx− sx2 − tx3
. (10)

Proof. Let the following function

G(x) =

∞∑
n=0

Tnx
n = T0 + T1x+ T2x

2 + . . .+ Tnx
n + . . .
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be generating function of Tn. Then, if both sides of this equation are multiplied by
rx, sx2, tx3, the followings are obtained:

rxG(x) = rT0x+ rT1x
2 + rT2x

3 + . . .+ rTnx
n+1 + . . .

sx2G(x) = sT0x
2 + sT1x

3 + sT2x
4 + . . .+ sTnx

n+2 + . . .

tx3G(x) = tT0x
3 + tT1x

4 + tT2x
5 + . . .+ tTnx

n+3 + . . .

Then, by using Eq. (8), we get:

(1− rx− sx2 − tx3)G(x) = T0 + (T1 − rT0)x+ (T2 − rT1 − sT0)x
2.

Consequently, we obtain Eq. (10). □

Theorem 4. The exponential generating function of BGTN is as follows:
∞∑

n=0

Tn

yn

n!
=

P̃ x̃1e
x1y

(x1 − x2)(x1 − x3)
+

R̃x̃2e
x2y

(x2 − x1)(x2 − x3)
+

S̃x̃3e
x3y

(x3 − x1)(x3 − x2)

(see x̃1, x̃2 and x̃3 in Eq. (9)).

Proof. By using Eq. (2), we get:
∞∑

n=0

Tn
yn

n!

=

∞∑
n=0

(
P̃ xn

1 x̃1

(x1 − x2)(x1 − x3)
+

R̃xn
2 x̃2

(x2 − x1)(x2 − x3)
+

S̃xn
3 x̃3

(x3 − x1)(x3 − x2)

)
yn

n!

=

∞∑
n=0

P̃ xn
1 x̃1

(x1 − x2)(x1 − x3)

yn

n!
+

∞∑
n=0

R̃xn
2 x̃2

(x2 − x1)(x2 − x3)

yn

n!

+

∞∑
n=0

S̃xn
3 x̃3

(x3 − x1)(x3 − x2)

yn

n!

=
P̃ x̃1

(x1 − x2)(x1 − x3)

∞∑
n=0

(x1y)
n

n!
+

R̃x̃2

(x2 − x1)(x2 − x3)

∞∑
n=0

(x2y)
n

n!

+
S̃x̃3

(x3 − x1)(x3 − x2)

∞∑
n=0

(x3y)
n

n!

=
P̃ x̃1e

x1y

(x1 − x2)(x1 − x3)
+

R̃x̃2e
x2y

(x2 − x1)(x2 − x3)
+

S̃x̃3e
x3y

(x3 − x1)(x3 − x2)
.

The proof is completed. □

Thanks to the study [52], we can get the summation formulae for BGTN in the
following theorem. The proof is omitted due to the fact that it can be completed
with mathematical induction, easily.
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Theorem 5. ∀m ∈ N, the following summation formulae for BGTN are satisfied:

(i)
m∑

n=0
Tn =

Tm+3 + (1− r)Tm+2 + (1− r − s)Tm+1 − T2 + (r − 1)T1

+(r + s− 1)T0

r + s+ t− 1
,

(ii)
m∑

n=0
T2n =

(1− s)T2m+2 + (t+ rs)T2m+1 + (t2 + rt)T2m + (s− 1)T2

+(−t− rs)T1 + (r2 − s2 + rt+ 2s− 1)T0

(r + s+ t− 1)(r − s+ t+ 1)
,

(iii)
m∑

n=0
T2n+1 =

(r + t)T2m+2 + (s− s2 + t2 + rt)T2m+1 + (t− st)T2m

+(−r − t)T2 + (−1 + s+ r2 + rt)T1 + (−t+ st)T0

(r − s+ t+ 1)(r + s+ t− 1)
,

where denominators are not equal to zero.

Particular Case 1. If s = 1, we can get the following summation formulae for
special cases of part (ii) and (iii) of the previous Theorem 5:

(i)
m∑

n=0
T2n =

T2m+1 + tT2m − T1 + rT0

r + t
,

(ii)
m∑

n=0
T2n+1 =

T2m+2 + tT2m+1 − T2 + rT1

r + t
,

where denominators are not equal to zero.

Thanks to the study [11], we get the following Theorem 6:

Theorem 6. ∀m ∈ N, the following summation property holds for BGTN :

m∑
n=0

Tn =
Tm+2 + (1− r)Tm+1 + tTm + η

δ
,

where


δ =r + s+ t− 1,

λ =(r + s− 1)a+ (r − 1)b− c,

η =λ+ (λ− δa)j1 + (λ− δ(a+ b))j2 + (λ− δ(a+ b+ c))j3.
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Proof. Using Eq. (6) and utilizing the Lemma 2.3 on page 6 in the study [11], then
we can complete the proof:

m∑
n=0

Tn =

m∑
n=0

(Tn + Tn+1j1 + Tn+2j2 + Tn+3j3)

=

m∑
n=0

Tn +

m∑
n=0

Tn+1j1 +

m∑
n=0

Tn+2j2 +

m∑
n=0

Tn+3j3

=
1

δ


Tm+2 + (1− r)Tm+1 + tTm + λ

+ (Tm+3 + (1− r)Tm+2 + tTm+1 + λ− δa) j1

+ (Tm+4 + (1− r)Tm+3 + tTm+2 + λ− δ (a+ b)) j2

+ (Tm+5 + (1− r)Tm+4 + tTm+3 + λ− δ (a+ b+ c)) j3


=
Tm+2 + (1− r)Tm+1 + tTm + η

δ
.

We get the desired result. □

Theorem 7. ∀n ∈ N, the following properties are satisfied:

(i) Tn + Tn
j1

= 2(Tn + Tn+1j1),

(ii) Tn + Tn
j2

= 2(Tn + Tn+2j2),

(iii) Tn + Tn
j3

= 2(Tn + Tn+3j2).

Proof. (i) Using Eqs. (6) and (7), the proof is completed as:

Tn + Tn
j1

=Tn + Tn+1j1 + Tn+2j2 + Tn+3j3 + Tn + Tn+1j1 − Tn+2j2 − Tn+3j3

=2(Tn + Tn+1j1).

By the same way, the other parts can be obtained. □

Theorem 8. ∀n ∈ N, the following property holds:

Tn − Tn+1j1 − Tn+2j2 − Tn+3j3 =Tn − Tn+2 − Tn+4 + Tn+6 − 2Tn+3j3.

Proof. Using Eqs. (6) and (1), we have:

Tn − Tn+1j1 − Tn+2j2 − Tn+3j3 =Tn + Tn+1j1 + Tn+2j2 + Tn+3j3

− (Tn+1 + Tn+2j1 + Tn+3j2 + Tn+4j3)j1

− (Tn+2 + Tn+3j1 + Tn+4j2 + Tn+5j3)j2

− (Tn+3 + Tn+4j1 + Tn+5j2 + Tn+6j3)j3

=Tn − Tn+2 − Tn+4 + Tn+6 − 2Tn+3j3.

Hence, this proof is completed. □
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Theorem 9. ∀n ∈ Z+, the following is obtained: Tn+2

Tn+1

Tn

 =

 r s t
1 0 0
0 1 0

n T2

T1

T0

.

Proof. The proof can be conducted by mathematical induction, therefore we omit
it. □

By inspiring the study [32], we present the following determinant equation for
BGTN which enables a different way to find the nth term.

Theorem 10. ∀n ∈ N, the following equation holds:

Tn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T0 −1 0 0 0 . . . 0 0
T1 0 −1 0 0 . . . 0 0
T2 0 0 −1 0 . . . 0 0
0 t s r −1 . . . 0 0
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0
. . . r −1

0 0 0 0 0
. . . s r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

. (11)

Proof. It can be proved by using Eq. (8) and Theorem 5 on page 5 in [32]. □

In the following, we construct a numerical algorithm (Algorithm 2) with respect
to the determinant equation given by Theorem 10.

Algorithm 2 A numerical algorithm for finding nth term of BGTN

1: Begin
2: Input T0,T1 and T2

3: Form Tn with respect to Eq. (11)
4: Compute Tn

5: Output Tn = Tn + Tn+1j1 + Tn+2j2 + Tn+3j3
6: Complete

Also, thanks to the study [16] and [14], we get the other method which can be
examined in Theorem 11, in order to calculate the nth terms of BGTN .
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Theorem 11. ∀n ∈ N, the following equation is satisfied:

Tn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T0 1 0 0 0 0 . . . 0 0

rT0 − T1 r
1

T0
0 0 0 . . . 0 0

0 rT1 − T2 r t 0 0 . . . 0 0

0 T0 −
s

t
r t 0 . . . 0 0

0 0
1

t
−
s

t
r t . . . 0 0

...
. . . . . . . . . . . . . . . . . . . . .

...
0 0 0 0 0 0 . . . r t

0 0 0 0 0 0 . . . −
s

t
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

(12)
where T0 T0

j1
T0

j2
T0

j3 ̸= 0 and t ̸= 0.

Proof. For the sake of brevity, we also skip this proof. □

Now, let us give a numerical algorithm in the following (Algorithm 3) related to
the Theorem 11.

Algorithm 3 A numerical algorithm for finding nth term of BGTN

1: Begin
2: Input T0,T1 and T2

3: Form Tn according to Eq. (12)
4: Compute Tn

5: Output Tn = Tn + Tn+1j1 + Tn+2j2 + Tn+3j3
6: Complete

According to the Theorem 1-Theorem 11, we can get the following two corollaries
consisting of several features for bihyperbolic Tribonacci numbers and bihyperbolic
Padovan numbers, respectively. With the same logic, these concepts are also valid
for the other BGTN which are not need to be written here for the sake of brevity
(see subfamilies in Table 3 and a small part of them in Table 4).

Corollary 1. Let consider the nth bihyperbolic Tribonacci number An with the
initial values 

A0 = j1 + j2 + 2j3,

A1 = 1 + j1 + 2j2 + 4j3,

A2 = 1 + 2j1 + 4j2 + 7j3.

Then the followings hold:
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(i) The recurrence relation for An is as:

An = An−1 +An−2 +An−3, n ≥ 3.

(ii) The Binet formula of An is as:

An =
xn+1
1 x̃1

(x1 − x2)(x1 − x3)
+

xn+1
2 x̃2

(x2 − x1)(x2 − x3)
+

xn+1
3 x̃3

(x3 − x1)(x3 − x2)
.

(iii) The generating function of An is as:

∞∑
n=0

Anx
n =

A0 + (A1 −A0)x+ (A2 −A1 −A0)x
2

1− x− x2 − x3
.

(iv) The exponential generating function of An is as:

∞∑
n=0

An

yn

n!
=

x1x̃1e
x1y

(x1 − x2)(x1 − x3)
+

x2x̃2e
x2y

(x2 − x1)(x2 − x3)
+

x3x̃3e
x3y

(x3 − x1)(x3 − x2)
.

(v) ∀m ∈ N, the summation formulae for An are satisfied:

•
m∑

n=0
An = 1

2 (Am+3 −Am+1 −A2 +A0),

•
m∑

n=0
A2n = 1

2 (A2m+1 +A2m −A1 +A0),

•
m∑

n=0
A2n+1 = 1

2 (A2m+2 +A2m+1 −A2 +A1).

(vi) ∀m ∈ N, the following summation property holds for An:

m∑
n=0

An =
Am+2 +Am + (−1− j1 − 3j2 − 5j3)

2
.

(vii) The following properties are derived:
• An +An

j1
= 2(An +An+1j1),

• An +An
j2

= 2(An +An+2j2),

• An +An
j3

= 2(An +An+3j2).

(viii) The following property for An is supplied as:

An −An+1j1 −An+2j2 −An+3j3 =An −An+2 −An+4 +An+6 − 2An+3j3.

(ix) The following property for An is maintained as: An+2

An+1

An

 =

 1 1 1
1 0 0
0 1 0

n A2

A1

A0

.
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(x) The following equation for An holds as:

An =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 −1 0 0 0 . . . 0 0
A1 0 −1 0 0 . . . 0 0
A2 0 0 −1 0 . . . 0 0
0 1 1 1 −1 . . . 0 0
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0
. . . 1 −1

0 0 0 0 0
. . . 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

(xi) Since the value of A0 A0
j1
A0

j2
A0

j3 is zero, we cannot construct the method
with respect to the determinant equation for the bihyperbolic Tribonacci
numbers given in Eq. (12) written in the Theorem 11.

Now, let us present an example with respect to the method given in part (x) of
Corollary 1. Consider n = 7 and let us calculate the 7th term of the BGTN :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 −1 0 0 0 0 0 0
A1 0 −1 0 0 0 0 0
A2 0 0 −1 0 0 0 0
0 1 1 1 −1 0 0 0
0 0 1 1 1 −1 0 0
0 0 0 1 1 1 −1 0
0 0 0 0 1 1 1 −1
0 0 0 0 0 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
8×8

= 24 + 44j1 + 81j2 + 149j3 = A7.

Corollary 2. Let consider the nth bihyperbolic Padovan number Gn with the initial
values 

G0 = 1 + j1 + j2 + 2j3,

G1 = 1 + j1 + 2j2 + 2j3,

G2 = 1 + 2j1 + 2j2 + 3j3.

Then, the followings hold:
(i) The recurrence relation for Gn is as:

Gn = Gn−2 + Gn−3, n ≥ 3.

(ii) The Binet formula of Gn is as:

Gn =
(x2 − 1)(x3 − 1)xn

1 x̃1

(x1 − x2)(x1 − x3)
+

(x1 − 1)(x3 − 1)xn
2 x̃2

(x2 − x1)(x2 − x3)
+

(x1 − 1)(x2 − 1)xn
3 x̃3

(x3 − x1)(x3 − x2)
.

(iii) The generating function of Gn is as:
∞∑

n=0

Gnx
n =

G0 + G1x+ (G2 − G0)x
2

1− x2 − x3
.
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(iv) The exponential generating function of Gn is as:
∞∑

n=0

Gn

yn

n!
=
(x2 − 1)(x3 − 1)x̃1e

x1y

(x1 − x2)(x1 − x3)
+

(x1 − 1)(x3 − 1)x̃2e
x2y

(x2 − x1)(x2 − x3)

+
(x1 − 1)(x2 − 1)x̃3e

x3y

(x3 − x1)(x3 − x2)
.

(v) ∀m ∈ N, the summation formulae for Gn are satisfied:

•
m∑

n=0
Gn = Gm+3 + Gm+2 − G2 − G1,

•
m∑

n=0
G2n = G2m+1 + G2m − G1,

•
m∑

n=0
G2n+1 = G2m+2 + G2m+1 − G2.

(vi) ∀m ∈ N, the following summation property holds for Gn:
m∑

n=0

Gn = Gm+2 + Gm+1 + Gm + (−2− 3j1 − 4j2 − 5j3).

(vii) The following properties for Gn are derived:
• Gn + Gn

j1
= 2(Gn +Gn+1j1),

• Gn + Gn
j2

= 2(Gn +Gn+2j2),

• Gn + Gn
j3

= 2(Gn +Gn+3j2).

(viii) The following property for Gn is supplied:

Gn − Gn+1j1 − Gn+2j2 − Gn+3j3 =Gn −Gn+2 −Gn+4 +Gn+6 − 2Gn+3j3.

(ix) The following property for Gn is maintained as: Gn+2

Gn+1

Gn

 =

 0 1 1
1 0 0
0 1 0

n G2

G1

G0

.

(x) The following equality for Gn holds:

Gn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G0 −1 0 0 0 . . . 0 0
G1 0 −1 0 0 . . . 0 0
G2 0 0 −1 0 . . . 0 0
0 1 1 0 −1 . . . 0 0
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0
. . . 0 −1

0 0 0 0 0
. . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.
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(xi) The following equation for Gn is satisfied:

Gn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G0 1 0 0 . . . 0 0

−G1 0
1

G0
0 . . . 0 0

0 −G2 0 1 . . . 0 0
0 G0 −1 0 . . . 0 0
0 0 1 −1 . . . 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

,

where G0 G0
j1
G0

j2
G0

j3
= 5 ̸= 0.

Let us give an example with respect to the method given in part (xi) of Corollary
2. Consider n = 3, and let us calculate the 3th term of the BGTN :∣∣∣∣∣∣∣∣∣∣

G0 1 0 0

−G1 0
1

G0
0

0 −G2 0 1
0 G0 −1 0

∣∣∣∣∣∣∣∣∣∣
4×4

= 2 + 2j1 + 3j2 + 4j3 = G3.

4. Conclusions

In this present study, we introduce the BGTN by examining several well-known
relations and identities. By putting this theory into literature, we have an extended
framework for third-order linear recurrence sequences with bihyperbolic number
components.

For future works, let us make a brief introduction associated with the topic:
quaternions with BGTN components. Quaternions were defined by W. R. Hamil-
ton [23, 24], and the algebra of quaternions is associative, non-commutative, and
4-dimensional Clifford algebra. Quaternions have huge significance in lots of areas
such as; pure/applied mathematics, motion geometry, differential geometry, graph
theory, differential equations, computer animation, robotics, and so on. A quater-
nion is represented by q = q0 + q1i+ q2j+ q3k where q0, q1, q2, q3 ∈ R and i, j, k are
quaternionic units which satisfy:

i2 = −1, j2 = −1, k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (13)

Hence, the nth quaternion with BGTN components can be defined as:

Tn = Tn + Tn+1i+ Tn+2j + Tn+3k, n ≥ 0
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with the initial conditions T0,T1 and T2 considering Eq. (13). As an illustration
T0 =a+ bj1 + cj2 + (rc+ sb+ ta)j3

+

{
b+ cj1 + (rc+ sb+ ta) j2 +

[(
r2 + s

)
c

+ (rs+ t) b+ rta] j3

}
i

+


c+ (rc+ sb+ ta) j1
+
[(
r2 + s

)
c+ (rs+ t) b+ rta

]
j2

+

[ (
r3 + 2rs+ t

)
c+

(
r2s+ s2 + rt

)
b

+
(
r2t+ st

)
a

]
j3

 j

+



rc+ sb+ ta+
[(
r2 + s

)
c+ (rs+ t) b+ rta

]
j1

+

[ (
r3 + 2rs+ t

)
c+

(
r2s+ s2 + rt

)
b

+
(
r2t+ st

)
a

]
j2

+

 (r3t+ 2str + t2
)
a

+
(
r3s+ r2t+ 2s2r + 2st

)
b

+
(
r4 + 3r2s+ s2 + 2tr

)
c

 j3


k.

Additionally, the recurrence relation Tn = rTn−1 + sTn−2 + tTn−3, n ≥ 3 holds
for Tn. So, quaternions with several members of BGTN components can be easily
understood by taking into account Table 3 and Table 4.

As an another aspect, the type of quaternion can also be changed in line with this
objective, for instance generalized quaternion case. Additionally, with the guidance
of the study [57], combining 3-parameter generalized quaternions (as a special gen-
eralization of 2-parameter generalized quaternions) with Tribonacci numbers and
bihyperbolic number are our another forthcoming goals. We intend to examine
these topics exhaustively in future works.
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