
Abstract
Aim: Most common and most deadly primary central nervous tumors, glial tumors harbor many hetero-
geneous clones of cells. Noninvasive determination of the genomic profiles of these tumors would have 
important implications regarding the classification, management, and prognostication of these tumors. 
Isocitrate dehydrogenase mutation is a key genomic signature that can downgrade the expected dismal 
course of these tumors. In this study we aimed to build a performant prediction model which can deter-
mine the Isocitrate Dehydrogenase (IDH) mutation status of glial tumors, using radiomics and leveraging 
automatic computation of domain knowledge-inspired features.
Methods: Radiomics methods based on high throughput feature extraction and application of data sci-
ence principles to these extracted features are promising tools for the noninvasive classification of lesions. 
Domain knowledge-inspired features besides radiomics features can contribute positively to the perfor-
mance of the models. Some efforts particularly a joint approach to standardize the magnetic resonance 
imaging (MRI), reporting of glial tumors are mainstay for domain knowledge-inspired features. However, 
this requires active involvement and reporting of the radiologist which hampers automatization efforts. 
Additionally, this feature set evaluates a small subset of all possible signal and spatial-based computa-
tions. In this study, we combined domain knowledge-inspired features with radiomics features along with 
a multiparametric multihabitat comprehensive lesion description strategy.
Results: Our best model which consisted of a combination of radiomics, and radiologist knowledge-in-
spired features reached a 0.93 f1 score (standard deviation (SD): 0.03), 0.93 accuracy (SD:0.03), and 0.98 
area under curve (AUC), (SD:0.02).
Conclusion: The multiparametric and multiregional approach employed in this study coupled with the 
integration of both radiomics and domain knowledge-inspired features resulted in a high-performance 
model emphasizing the contribution of each strategy to the outcome.
Keywords: Glial cell tumors; mutation; radiomics  

Öz
Amaç: En yaygın ve en ölümcül birincil merkezi sinir tümörleri olan glial tümörler, heterojen hücre klonları 
barındırırlar. Glial tümörlerin genomik profillerinin invazif olmayan bir şekilde belirlenmesi, bu tümörlerin 
sınıflandırılması, yönetimi ve prognostikasyonu ile ilgili önemli etkilere sahip olacaktır. İzositrat dehidro-
genaz mutasyonu varlığı bu tümörler için önemli bir genetik belirteç olup daha iyi prognoz göstergesi-
dir. Radyomik yöntemler, lezyonların non invazif sınıflandırılması için umut verici bir araçtır. Bu çalışmada 
radyomik özelliklerin yanı sıra alan bilgisinden ilham alan özelliklerle, yapay zekâ ile manyetik rezonans 
görüntüleme (MRI),  görüntülerinden İzositrat Dehidrogenaz (IDH) mutasyon tahmini yapacak bir model 
geliştirilmesi amaçlanmıştır. 
Yöntemler: Radyomik öznitelik kümesi çıkarılmış buna ek olarak radyologların lezyon tariflemede kullan-
dığı belirteçler kodlanarak otomatik olarak elde edilmeye çalışılmıştır. Her iki yöntem ile elde edilen öznite-
likler ile sınıflayıcı modeler geliştirilmiştir.
Bulgular: Radyomik ve radyolog bilgisinden ilham alan özelliklerin kombinasyonundan oluşan en iyi mo-
delimiz 0,93 f1 puanı (Standart Sapma (SD): 0,03), 0,93 doğruluk (SD:0,03) ve 0,98 eğri altındaki alan 
(EAA)'ya (SD:0,02) ulaştı.
Sonuç: Bu çalışmada kullanılan çok parametreli ve çok bölgeli yaklaşım hem radyomik hem de alan bil-
gisinden ilham alan özelliklerin entegrasyonu ile birleştiğinde, nihai sonuç için her bir stratejinin katkısını 
vurgulayan yüksek performanslı bir modelle sonuçlandı.
Anahtar Sözcükler: Glial hücreli tümörler; mutasyon; yapay zeka

Automatic prediction of isocitrate 
dehydrogenase mutation status of low-grade 
gliomas using radiomics and domain knowledge 
inspired features in magnetic resonance imaging
Düşük evreli gliomların radiomic ve alan bilgisi 
temelli öznitelikler aracılığı ile manyetik rezonans 
görüntülerinden izositrat dehidrogenaz mutasyon 
durumunun otomatik tahmini
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INTRODUCTION
Glial tumors are the most common primary malign 
neoplasms of the central nervous system (1). The pres-
ence of isocitrate dehydrogenase (IDH1) mutation 
which involves arginine in position 132 may be seen in 
50-80 % of low-grade glioma (LGG) and 12% of high-
grade glioma (HGG) (2,3). IDH mutation may render 
the glial tumors into a less aggressive type which ex-
hibits significantly higher survival times regardless of 
histological grade (2,4). Its critical role in prognostica-
tion leads to its inclusion in World Health Organisa-
tion (WHO) 2016 and 2021 glial tumor classification 
criteria (5,6). The glial tumors are subdivided into 
four grades according to WHO classification. Signifi-
cant survival differences appear on the same grade 
based on IDH mutation presence or absence (7). IDH 
enzyme takes place in oxygenated respiration of cell 
metabolism. In the wild form, the cell normally con-
verts isocitrate into alpha-ketoglutarate in the Krebs 
cycle while in the mutated form conversion is driven 
to 2-hydroxyglutarate which inhibits downstream his-
tone demethylases (8). Current state-of-the-art IDH 
mutation detection is based on immunohistochemi-
cal staining or genetic profiling which requires surgi-
cal or interventional tissue sampling. However spatial 
and spectral heterogeneity of tumors may sometimes 
result in over or underestimation of genomic status of 
the tumor (9,10). 

Identification of the IDH status of glial tumors 
can help clinicians in several aspects. LGG with IDH 
mutation can be subject to and see approach. Addi-
tionally, IDH mutant cells have increased sensitivity 
to chemotherapy and radiotherapy which can deter-
mine the choice of treatment (11). Therefore, non-
invasive determination of IDH status is an important 
and unsolved problem in the literature. Some studies 
use conventional imaging features, Visually Accessible 
Rembrandt Images (VASARI) features, radiomics, and 
deep learning to propose solutions to this problem 
(12-15). Conventional imaging features and VASARI 
features are based on the knowledge of human radi-
ologists. The former approach depends on the vector-
ization of the imaging clues for further utilization of 
statistical methods and the latter is based on scoring 
standardized properties of a tumor including location, 

various proportions of different habitats of the tumor, 
and certain imaging features (16). These approaches 
are limited to large-scale analysis of images which 
can roughly reflect underlying molecular and cellular 
characteristics. However human eye is not sensitive to 
the above second-order relationship of individual im-
age components (17). Deep learning studies based on 
imaging features require many images to automatically 
find relevant features in the images. However, in medi-
cal imaging, image resources are limited due to strict 
regulations of sensitive data. Radiomics which can 
be interpreted as digital biopsy is based on its central 
dogma which states that images are reflections of un-
derlying molecular, cellular, and metabolic processes 
and they can be represented by various computational 
tools (18). Recently radiomics methods have been 
used to analyze various Computer Tomography (CT) 
and Magnetic Resonance Imaging (MRI) classification 
tasks successfully (19-22). We hypothesized that dif-
ferent MRI sequences and different habitats in these 
sequences may harbor complementary information 
regarding the explanation of underlying biology.

In this study, our aim was to explore the multipa-
rametric multihabitat radiomics methods to build a 
robust classifier model that can successfully determine 
the IDH status of glial tumors in MR images.

MATERIAL AND METHODS
Patients
We obtained genetic and MR imaging low-grade glio-
ma (LGG) data from the Cancer Imaging Archive (23). 
The ethical board approval of the data was handled 
by the providers of this publicly available repository. 
Therefore, we did not obtain additional ethical board 
approval and informed patient consent since this kind 
of data is exempt from additional ethical board approv-
al and consent requirements. The MR image data sets 
were downloaded from the Cancer Imaging Archive in 
July 2022 (www.cancerimagingarchive.net) and origi-
nated from five centers (Thomas Jefferson University, 
Philadelphia, MD, Henry Ford Hospital, Detroit, MI, 
Saint Joseph Hospital and Medical Center, Phoenix, 
AZ, Case Western Reserve University, Cleveland, OH 
and University of North Carolina, Chapel Hill, NC). 
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The inclusion criteria for this study were presurgical 
axial T1, contrast-enhanced T1 (T1CE), T2 and Fluid 
Attenuated Inversion Recovery (FLAIR) images, and 
treatment-naive gene expression data (Figure 1). We 
included 108 patients who had readily available an-
notation masks for tumor necrotic zone, enhancing 
tumor and peritumoral edema regions. 7 patients were 
additionally excluded since they did not have data in-
dicating their IDH status. All the analyses were held on 
the remaining 101 patients (Figure 2).

Preprocessing:
These scans were initially skull-stripped and co-regis-
tered to SR124 atlas, before their tumor segmentation 
labels were produced by an automated hybrid gener-
ative-discriminative method, ranked first during the 
International Multimodal Brain Tumor Segmentation 
Challenge (BRATS 2015) (23). These segmentation la-
bels were revised, and any label misclassifications were 
manually corrected by an expert board-certified neu-
roradiologist (23). Images were resampled into 1mm 
resolution and signal intensity was normalized to the 
0-1 range. Sample MRI images from both classes were 
provided in Figure 1.

Feature Extraction:
Two different feature extraction strategies were em-
ployed. One was radiomics with a radionics package 
and the other one was the automatization of a radi-
ologist decision-making process inspired by VASARI 
features (16).

Pyradiomics (18) an open-source Python package 
(v3.0 https://pyradiomics.readthedocs.io/en/latest/) 
was used for feature extraction. Voxels were resa-
mpled into 1x1x1 mm resolution by a cubic b-spline 
algorithm to correct acquisition-related variations and 
discretized into a bin width of 25 followed by normal-
ization with the normalized scale of 300. Laplacian of 
Gaussian (LoG) filter transformation with 5 distinct 
sigma values and one level 3D wavelet transformation 
was used along with original images yielding 1218 fea-
tures. The same strategy was applied for 3 sequences 
(T1CE, T2, and FLAIR) and 2 habitats (tumor core and 
whole tumor). There were 4 possible sequences includ-
ing T1 and 7 possible tissue types (necrosis, enhancing 

tumor, tumor core which consists of the former two, 
edema, whole tumor, edema plus enhancing tumor, 
and normal appearing peritumoral brain region). This 
would yield 7x4x1218 = 34104 features. After initial 
exploration we decided to proceed with 2 tissue types 
(tumor core and whole tumor) and 3 different MRI 
sequences) which produced a better feature set. This 
approach effectively reduced the number of features 
to 3X2X1218= 7308. Then we applied unsupervised 
feature selection to decrease the number of features. 
First, we eliminated the features with less than 5% 
variance. Because the additional contribution of these 
to the model would be limited. Then we eliminated the 
features with a correlation coefficient higher than 0.8. 
Since the information they would provide would be 
similar, their contribution would be low, on the con-
trary, they would complicate the model’s performance 
due to multicollinearity. 

For the second feature extraction approach we 
calculated the signal and spatial properties of the im-
ages. For spatial features, the volumes of each tissue 
type (necrosis, enhancing tumor, tumor core, edema, 
and whole tumor) were calculated and compared 
with each other. Thus, 20 different ratios (5x4) were 
obtained by the permutations of volumes of 5 tissue 
types. In MR, the signal properties are affected by the 
imaging parameters and the equipment used, as well 
as the tissue type displayed. For this reason, using 
the absolute value of the signal may give misleading 
results due to the images obtained on different ma-
chines. However, proportioning the signals in differ-
ent sequences or different tissue regions in the same 
sequence to each other can eliminate this problem by 
creating an internal normalization. For this reason, 
we calculated the mean, minimum, maximum, and 
standard deviation values of the signals of each of the 
5 tissue types in every 4 sequences and obtained the 
comparative signal summarizing features by calculat-
ing them. Additionally, we used the region properties 
function of the scikit_learn package of Python pro-
gramming language to find the center of gravity and 
the major orientation axis of the mass. In this way, we 
obtained 666 attributes. After eliminating low vari-
ance and redundant features, high variance, and non-
redundant domain knowledge-inspired features were 
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retained. After preparing the dimensionality-reduced 
and cleaned data set described in the previous para-
graph, we applied supervised feature selection for each 
of the datasets using recursive feature elimination 
(RFE) to obtain the most relevant features (24). Recur-
sive feature elimination is a model-based supervised 
feature selection method that tests all possible permu-
tations of features and finds the best subset for a given 
task. The selection is based on the performance scores 
of many sub-models which test different combinations 
of features and sort the feature importance scores for 
the target task. The desired number of highest-ranking 
features are kept and the remaining are discarded in 
this feature selection method.

Model Building and Selection:
Support vector machines (SVM) and Random Forest 
(RF) are two successful classifiers that were common-
ly used in medical image analysis literature (25,26). 
The class imbalance problem was high in our dataset 
which can hamper the predictive ability of our models. 
Therefore, we implemented 2 strategies to combat with 
data imbalance problem. The first one was the class_
balance method implemented in Random Forest and 
SVM itself, and the second one was the synthetic mi-
nority oversampling technique (SMOTE) which can 
create synthetic data points for the minority class (27). 

Since the number of data points was low, we em-
ployed a cross-validation algorithm for training the 
models and applied the feature standardization, fea-
ture selection, and model training together in a nest-
ed cross-validation scheme so that there was no data 
leakage (28). 10 times 5-fold cross-validation training 
scheme was used to better estimate the skill of built 
models.

Statistical Analyses
Python scripting language with a scikit-learn package 
was used for statistical analysis. We reported the f1 
scores of all models as mean and standard deviation 
and the Receiver operating curve area under curve 
(ROC_AUC) and accuracy values of the most suc-
cessful model. The overall workflow is summarized in 
Figure 3.

RESULTS
Of the 101 included patients 80 were IDH mutant 
(80%) and 21 were IDH wild type (20%). 

In the domain knowledge-guided dataset, selected 
final features were presented in Table 1. Starting from 
666 features, 639 remained after variance threshold-
ing and 140 remained after redundancy elimination. 
Finally, 6 features were selected after supervised fea-
ture selection by Recursive Feature Elimination (RFE). 
One of these features was FLAIR and 4 of them were 
T1CE based. FLAIR sequence-based selected feature 
was the ratio of the minimum value of the signal in 
the necrosis region to that of the minimum signal 
in the peritumoral normal-appearing brain. 3 of the 
4 T1CE-derived selected features were ratios of the 
maximum, minimum, and standard deviation of the 
signals of the necrotic region to enhance tumor region. 
The last T1CE-derived selected feature was the ratio of 
the standard deviation of the whole tumor region to 
that of the normal-appearing brain. The last selected 
feature for the domain knowledge-guided dataset was 
a spatial feature which was the ratio of volumes of ne-
crotic region to edema region.

In the radiomics dataset, RFE selected final features 
were presented in Table 1. Starting from 7308 features, 
we obtained 6 high variance nonredundant relevant 
features after the application of the same unsupervised 
and supervised feature selection steps. Two of these 
features were FLAIR derived one with tumor core and 
wavelet transformed image and one with whole tu-
mor region and LoG transformed images. Both were 
second-order features. The third selected feature was 
90. Percentile of the histogram of the original image 
in T1CE sequence with tumor core mask. Remaining 
three features were T2 sequence-based second-order 
features.

The combined dataset was constructed by combin-
ing radiomics and domain knowledge-based features 
dataset and subsequent application of the same unsu-
pervised and supervised feature selection. 2 signals, 1 
spatial, and 2 radiomics-based features were selected. 
Selected signal and radiomics features were T2 and 
FLAIR based with varying contributions of tumor 
core and whole tumor regions. The selected features 
are presented in Table 1.

AI prediction IDH mutation in magnetic resonance imagingKoska et al.

181Anatolian Clinic Journal of Medical Sciences, May 2024; Volume 29, Issue 2



Anadolu Klin / Anatol Clin

Best best-performing model with domain knowl-
edge-based features was Random Forest with SMOTE 
which achieved a 0.92 f1 score. SVM without SMOTE 
reached 0.77 and with SMOTE reached 0.89 f1 scores 
indicating the importance of data balancing strategies 
in imbalanced dataset conditions.

For the radiomics-based features RF with SMOTE 
had the best performance with a 0.90 f1 score followed 
by SVM with SMOTE with a 0.88 f1 score. 

On the other hand, combined feature set yielded 
the best scores. With this strategy, both RF and SVM 
models achieved similar performance with a 0.93 f1 
score whereas SVM without SMOTE yielded still a 
good score of 0.84 f1 score. The performance metrics 
of the built models were provided in Table 2 (Table 2) 
and bar plots in Figure 4.

Table 1: Distribution of selected features

MRI sequence Tissue mask Feature type Feature name

Radiologist inspired and
Radiomics 
Combined

T2 Whole tumor Signal Mean ratio

FLAIR Whole tumor Signal Std ratio

T2/FLAIR Enhancing/Core Signal Std ratio

General Necrosis Spatial Volume
FLAIR
LoG sigma=5 Whole tumor GLSZM

2nd order
Large Area Low
Gray Emphasis

FLAIR
Wavelet HLL Tumor core First order Minimum

Radiomics

FLAIR
Wavelet LLH Tumor core GLRLM

2nd order Run Entropy

T1CE
Original Tumor core First order 90. percentile

T2
Wavelet LHH Tumor core GLCM

2nd order Cluster Shade

T2
Original Whole tumor GLSZM

2nd order Zone entropy

FLAIR
Wavelet HLL Tumor core First order Minimum

FLAIR
LoG sigma=5 Whole tumor GLSZM

2nd order
Large Area Low
Gray Emphasis

FLAIR: Fluid Attenuated Inversion Recovery, LoG: Laplace of Gaussian, Wavelet HLL: Wavelet High Low Low, T1CE: T1 contrast enhanced, 
LHH: Low High High, LLL: Low low low, GLSZM: Gray Level Size Zone Matrix, GLRLM: Gray Level Run Length Matrix,  GLCM: Gray Level 
Co-occurance matrix 

Table 2: Performance metrics

SVM SVM_SMOTE SVM_classwg RF RF_SMOTE

Radiologist
knowledge
Inspired

F1 0.77, 0.14 0.89, 0.05 0.76, 0.10 0.68, 0.18 0.92, 0.04

Acc 0.91, 0.05 0.89, 0.04 0.87, 0.06 0.86, 0.04 0.92, 0.04

AUC 0.89, 0.04 0.97, 0.04 0.95, 0.08 0.85, 0.06 0.96, 0.06

Radiomics

F1 0.64, 0.14 0.88, 0.04 0.64, 0.11 0.61, 0.16 0.90, 0.04

Acc 0.86, 0.05 0.88, 0.04 0.81, 0.06 0.82, 0.04 0.89, 0.05

AUC 0.92, 0.08 0.94, 0.04 0.91, 0.07 0.83, 0.08 0.96, 0.06

Combined

F1 0.84, 0.10 0.93, 0.03 0.81, 0.09 0.70, 0.21 0.93, 0.03

Acc 0.93, 0.04 0.93, 0.03 0.91, 0.04 0.91, 0.05 0.94, 0.04

AUC 0.96, 0.06 0.98, 0.02 0.96, 0.06 0.93, 0.07 0.98, 0.02
Acc: Accuracy, AUC: Area Under Curve, SVM: Support Vector Machine, SVM_SMOTE: Support Vector Machine with Syntheric Minority 
Oversampling Technique, SVM_classwg: Support Vector Machine with class weighting, RF: Random Forest RF_SMOTE: Random Forest 
with Synthetic Minority Oversampling Technique
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DISCUSSION AND CONCLUSION
The major finding of this study was radiomics-based 
multiparametric multihabitat features enriched with 
domain knowledge guided features and reduced to a 
minimal subset by extensive usage of feature selection 
methods allowed for better predictive performance 
than the literature for prediction of IDH status of gli-
al tumors in MRI. The multiregional multisequence 
model outperformed all other models when radiolo-
gist knowledge-based features were integrated. Some 
recent studies showed local distinct heterogeneous 
subregions in gliomas (9,10). However, few studies 
acknowledged this regional heterogeneity in their re-
search plan (29,30). Additionally, multiparametric as-
sessments that leverage the information gained from 
different sequences are also few (31). Additionally, we 
explored the value of integration of automatized in-
formation gained from human reader assessment ap-
proach. To the best of our knowledge, there is no study 
exploring a multihabitat, multiparametric radiomics 
model leveraged with automized vectorized human 
knowledge integrated into the predictive model. Some 
studies did not consider the curse of dimensionality, 
a basic data science principle that dictates the total 
number of predictive features should be a fraction of a 
total number of samples which may otherwise hamper 

their generalizing capacity (31,32). Recalling taking 
care of this limitation which can lead to overfitting, the 
above studies exhibited the mean area under a curve of 
0.79 to 0.92. Our 6-feature combined model achieved 
a higher AUC (0.94). The accuracy of this model was 
0.93. Our initial feature set for the combined features 
dataset comprised 7974 features, including 1218 fea-
tures from each of T1CE, T2, and FLAIR-based tumor 
core and whole tumor-based region of interests and 
666 domain knowledge-based features. This rich com-
prehensive feature set effectively characterized the tu-

Figure 1: Sample images from IDH dataset. Upper row IDH mutated; lower row IDH wild.
a) FLAIR b) T2 c) T1 d) T1 post contrast e) Segmentation mask overlay 
(Red: Necrosis, Yellow: Tumor, Green: Peritumoral edema).
IDH: Isocitrate dehydrogenase

Figure 2: Patient selection process.
TCIA: The cancer imaging Archive. LGG: Low grade Glioma N: 
Number
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mors. Unsupervised and supervised feature selection 
methods each having different strengths applied to this 
feature set reduced the radiomics feature set effective-
ly. Features from different MRI sequence tissue habitat 
combinations along with domain knowledge-guided 
features provided a more comprehensive feature set. 
TCIA data was collected from 5 centers and exhibit-
ed considerable variability. We resampled the images 
into 1 mm resolution, and 0-1 intensity range to ob-
tain spatial and signal normalization. To combat with 
imbalance dataset problem, we applied class weighting 
and SMOTE. These steps along with optimized feature 
extraction and selection strategy improved the predic-
tive ability of our model.

Our results show that among all regions tumor core 
and whole tumor equally contributed to radiomics 
relevant features, emphasizing the importance of the 
multihabitat approach while for the multiparametric 
options T2 sequence contributed more. Nevertheless, 
the contribution from T1CE and FLAIR sequences 
could not be neglected as well as a contribution from 
signal and spatial-based features. This observation in-
dicated that the imaging phenotypes within distinct 
tumor subregions and from different MRI sequences 
may contribute differently to the outcome. In ref. (33) 
The authors demonstrated that tumor heterogene-
ity is not limited to the tumor core but also involves 
the edema area. In ref. (34) The authors have shown 
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Figure 3: Overall workflow. Three MRI sequences and two tissue masks were given to the system. After radiomic and domain knowledge-based 
feature extraction, robust, non-redundant, relevant features were selected, followed by model training coupled with imbalance data combatting 
strategies.
SMOTE: Synthetic Minority Oversampling Technique, ROC_AUC: Receiver Operating Characteristic Area Under Curve

Figure 4: Bar plots of performance metrics.
SVM: Support Vector Machine SVM_SMOTE: Support Vector Machine with Synthetic Minority Oversampling SVM_cw: Support Vector 
Machine with class weighting RF: Random Forest RF_SMOTE: Random Forest with Synthetic Minority Oversampling Technique
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that radiomics features from the peritumoral edema 
area could predict survival better than from enhanc-
ing tumor and necrosis areas. The authors in ref. (35) 
showed that a higher ratio of non‐enhancing areas is 
associated with IDH1 mutation in HGG. Similarly in 
our study, necrosis volume, and signal of the peritu-
moral region in T2 and FLAIR had high coefficients.

Glial tumors harboring IDH mutation accumu-
late 2-hydroxyglutarate within the tumor that can be 
identified by MR spectroscopy which is a promising 
technique to detect IDH mutation noninvasively in 
glial tumors (33). Another promising modality is T2 
perfusion imaging which showed that IDH mutant 
gliomas tend to present lower regional cerebral blood 
volume than wild counterparts (36). Nevertheless, 
these techniques are advanced and cannot be used 
outside specialized centers (37,38). On the other hand, 
our algorithm has broader applicability due to the ad-
vantage that it is based on routinely acquired standard 
protocols. The readily availability of the system oper-
ating on standard sequences could help better clinical 
adoption of our model. This may help the clinician in 
decision-making process for further evaluation or tak-
ing actions for intervention. Providing that our results 
are validated on large cohorts, our model might reduce 
the interventions for determination of IDH subtype, 
the morbidity to the patient based on additional oper-
ations, the business of neurosurgery departments, and 
the overall cost to the healthcare system. This might 
have additional positive effects on the society.

The most important limitation of our dataset was 
that it was a public dataset so we could not explore 
clinical variables besides imaging features. Another 
limitation was the small sample size. Finally, as most 
of the radiomics studies feature stability over external 
validation sets was an important issue that should be 
tested in large cohorts.

In conclusion, the IDH mutation phenotype of 
glial tumors can be predicted by a combination of hu-
man radiologist-imitated features and multiparamet-
ric multihabitat radiomics features. 
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