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Abstract: In this paper, we prove Ambarzumyan type theorems for an impulsive Sturm–Liouville problem with 

eigenparameter in the boundary conditions. 
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Bir Sınıf Sturm-Liouville Problemi için Ambarzumyan Tipi Teoremler 

Özet: Bu makalede, sınır koşulları parametreye bağlı, bir geçiş koşullu Sturm–Liouville problemi için 

Ambarzumyan tipi teoremler ispatlanmaktadır.  

Anahtar Kelimeler: Ambarzumyan teoremi, Sturm-Liouville denklemi, Ters problem. 

INTRODUCTION 

Inverse spectral problems consist in recovering 

the coefficients of an operator from their 

spectral characteristics. The first study which 

started inverse spectral theory for Sturm-

Liouville operator was investigated by 

Ambarzumyan [1] in 1929. He proved that if 

)(xq  is continuous function on (0,1)  and the 

eigenvalues of the problem 
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are given as ,= 22 nn  0n , then 0.)( xq  

We refer to some Ambarzumyan type 

theorems for the Sturm-Liouville and Dirac 

operators in [2]-[11]. 

 

Particularly, in [2], an extension of 

Ambarzumyan’s theorem is given for Sturm-

Liouville problem with general boundary 

conditions. In [3], the classical Ambarzumyan’s 

theorem is proven for the regular Sturm-

Liouville problem with the eigenvalue 

parameter in the boundary conditions. In [4], 

some particular generalizations of the classical 

Ambarzumyan theorem are proven for the 

regular Sturm-Liouville problem with the 

discontinuity conditions. 

The aim of this paper is to prove two 

Ambarzumyan type theorems for the impulsive 

Sturm-Liouville problem with the eigenvalue 

parameter in one boundary condition.  
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1. Preliminaries: 

We consider the boundary value problem 









21,,,= 

b

a
qLL  generated by the regular 

Sturm-Liouville equation 

 0,1,=)(  xyyxqy   (1.1) 

subject to the boundary conditions 

  0=0y                                               (1.2) 

        0=11 ybya         (1.3) 

and the discontinuity conditions 
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where   is the spectral parameter;  xq  is a 

continuous function on (0,1) ; 1, 21 R  

and for  , , Rba kk  0,ma
Zmbm  1,=  

    . =    ,=
0=1=

k
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bbaa           (1.5) 

Let us denote a solution of (1.1) by   ,x  

satisfying the initial conditions 

    0=0,  ,  10,    (1.6) 

and the discontinuity conditions (1.4). 

The following asymptotics are given in [12]: 
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and 
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where     ,
2
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. =  Im  

The function  

          1,1,:=   ba  (1.11) 

is entire on  and the roots of   0=  are 

coincide with eigenvalues of the problem .L  

From (1.8), (1.10) and (1.11), we have 
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Let    
0

=
nnL   be the set of the 

eigenvalues of .L  The numbers 
n  satisfy the 

following asymptotic formula for :n  
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2. Main Results: 

We consider the problem 







210 ,,0,= 

b

a
LL  

together with .L  It is obvious that eigenvalues 

of the problem 0L  satisfy the following 

asymptotic relation for n  

 

 
 

. 
1

1
1

=0































n
o

aa
mn

mn

m

mn

m

n









 (2.1) 

Lemma 1 If 
0= nn    for sufficiently large n , 

then   . 0=

1

0

dxxq  

Proof. If 
0= nn   as ,n  then  
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for sufficiently large .n  Therefore, we get  
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Thus   0=1  i.e.   . 0=

1

0

dxxq  

Theorem 1 If 
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for some ,0 Nn  then   0xq  a.e. on  .0,1   

Proof. From Lemma 1, it is obtained that 

  . 0

1

0

 dxxq  On the other hand, since 

 L0 , we get   0xq  a.e. on  0,1  from 

the classical Ambarzumyan theorem.  

Theorem 2 If s  is an eigenvalue of the problem 

L  such that   0sb   and 
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  , then   ,sxq   a.e. 

on  0,1  and   0.=sa   

Proof. Let )(xys  be the eigenfunction 

corresponding to .s  Then we can write for 

 1,0x  
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  (2.2) 

It is clear that 0(0) sy  and 0.(1)sy  

Otherwise, since   , 0sb     0=0sy  or 
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  . 0=1sy  In both cases,   0xys
 by the 

uniqueness of the solution of an initial value 

problem. 

The function  xys
 has finitely many 

isolated nodes on  0,1  and   0=is xy  yields 

0=)( is xy   but 0)( 
is xy . Then the function 

)(

)(
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 is bounded in the neighborhood of each 

.ix   

From (2.2) and the relation 

2

)(

)(

)(

)(
=

)(

)(









 













 

xy

xy

xy

xy

xy

xy

s

s

s

s

s

s
 , we get 

. 
)(

)(
)(=

)(

)(
2








 











 

xy

xy
xq

xy

xy

s

s
s

s

s   

By integrating of both sides from 0  to 1 , the 

following equality is obtained  
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Thus 0)(  xys  and so )(xys constant. 

Hence, it is concluded from (2.2) that   sxq =  

a.e. on  0,1  and   . 0=sa   
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