
Research Article

Enhanced Histopathological Image Classification through the fusion
of Thepade Sorted Block Truncation Code and Otsu Binarization
features
Sudeep D. Thepade1a, Ashwin Acharya1b,
1 Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune, India

sudeepthepade@gmail.com

DOI : 10.31202/ecjse.1380112
Received: 23.10.2023 Accepted: 20.02.2024
How to cite this article:
Sudeep D. Thepade, Ashwin Acharya, “ Enhanced Histopathological Image Classification through the fusion of Thepade Sorted Block
Truncation Code and Otsu Binarization features", El-Cezeri Journal of Science and Engineering, Vol: 11, Iss:2, (2024), pp.(175-185).
ORCID: a0009-0007-9520-9972; b0000-0001-7809-4148.

Abstract : Histopathology is the branch of pathology that investigates the structure of cells and tissues
of organisms at a microscopic level. Histopathological images are crucial in the decision-making process
for effective therapies, determining the health of a particular biological structure and identifying diseases
like cancer. With machine learning models, it may be feasible to increase the accuracy of medical data,
decrease patient rate variations, and cut costs associated with medical care. Most medical scientists are
drawn to such new technologies of predictive models in chronic disease forecasting. A novel approach for
more accurate classification of histopathological images is proposed in this paper. The technique involves
fusing the features extracted from two methods, namely Otsu’s binarization and Thepade Sorted Block
Truncation Code, to achieve improved results. The KIMIA Path960 dataset comprising 960 images is utilized
for experimental validation with performance indicators like accuracy, specificity, and sensitivity. Ensembles
of Simple Logistics, Multilayer Perceptron, LogisticsModel Tree, as well as Simple Logistics, Random Forest,
and Logistic Model Tree classifiers, demonstrated superior performance for the fusion of Thepade Sorted
Block Truncation Code 7-ary and Otsu features, achieving an accuracy of 97.39 percent in a 10-fold cross-
validation scenario.
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1 Introduction
According to current records, millions have died of diseases like cancer. The probability of receiving appropriate care and
achieving favourable survival rates is markedly increased through early diagnosis. However, this diagnostic procedure is
characterized by its protracted nature frequently engenders professional discord among pathologists. Several studies have raised
concerns about the global shortage of medical professionals needed to handle the rising number of cancer patients. With cancer
cases skyrocketing and a global shortfall of expert medical practitioners, machine learning can play a significant role. Machine
learning (ML) algorithms can be trained to discern complex data trends, potentially revolutionizing diagnostic processes. A
range of conventional ML algorithms has been applied to this problem, with varying degrees of success.

Though techniques such as X-rays and MRIs were used to diagnose cancer, biopsy remains the primary method for cancer
diagnosis. Standard biopsy methods include surgical, vacuum-assisted, fine-needle aspiration, Core needle, and image-guided
biopsy. The methodology involves a series of sequential steps, starting with collecting tissue or cell samples, then placing them
onto a microscope slide, and concluding with applying a stain to facilitate visual differentiation. Subsequently, a diagnosis is
established based on the examination of histopathological images with the knowledge of professionals. With Machine learning,
this problem can be resolved. The classification of histopathological images using machine learning typically involves three
key stages: classification, feature reduction, and feature extraction. A multitude of unique characteristics can be extracted from
digital images, which is essential for precise categorization. The scientific literature has proposed numerous techniques for
feature extraction, which are subsequently utilized for training and evaluating various machine learning algorithms. The paper
presents an innovative approach to improve the classification performance of histopathological images by integrating features
obtained from Otsu’s binarization and Thepade SBTC methods.

Listed below are the key contributions of the presented work

• Ensemble: A methodology involving amalgamating multiple base models to form a unified predictive model that aims
to optimize predictive performance.
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• Feature Fusion: The method proposed uses a feature fusion of Otsu thresholding and Thepade SBTC(TSBTC) global
features.

• Experimented Evaluation on the images of KIMIADataset: Experimentations are performed onKIMIAPATH960, which
consists of images of epithelial, connective tissue and muscle.

2 Experimental Methods
2.1 Related Works
Studies on histopathological image classification have employed various techniques, including analyzing image spatial structure,
classification through segmentation, and using global and window-based features. Deep feature-based classification has become
increasingly popular in recent years. However, deep learning techniques necessitate intensive training and access to a balanced
and extensive dataset.

Meghana et al.[1] conducted a comparative study to assess the effectiveness of different feature extraction techniques for
histopathological image classification in the KIMIA Path960 dataset. The dataset consisted of 960 histopathological images
belonging to 20 unique classes. The study compared the performance of bag-of-visual words (BoVW), deep features and local
binary patterns (LBP) and found that LBP had an accuracy of 90.62%, deep features achieved 94.72% accuracy, and BoVW
produced the highest accuracy of 96.50%. These findings highlight the superiority of BoVW over other feature extraction
techniques when classifying the KIMIA Path960 dataset. This study enhances our understanding of how feature extraction
affects histopathological image classification performance. In a study by Taha et al.[2], features were extracted using a pre-
trained deep network, histogram of gradients and LBP from the KIMIA Path960 dataset. The extracted features were classified
using standard image classification methods like artificial neural networks, decision trees and support vector machines. The
findings showed that SVM yielded the highest accuracy among the three techniques at 90.52% when features were extracted
using LBP. Conversely, when deep features were utilized for feature extraction, the accuracy was recorded at 81.14%. However,
the results obtained using HOG were unsatisfactory.

The study by Ganguly et al. [3] investigates the influence of optimization algorithms on the accuracy of deep learning models
applied to histopathological images. Two models, a pre-trained Resnet50 and a five-layer CNN, were utilized. The performance
of three optimization algorithms, namely Radam, AdamW, and AdaMax, was evaluated on the KIMIA Path960 and NIA-curated
lymphoma images dataset. Utilizing AdamW optimization algorithm with KIMIA Path960 dataset resulted in an accuracy of
99.9%, according to the study’s findings. A slightly lower accuracy of 98.13% was achieved when the same approach was
applied to the dataset of lymphoma images. The study highlights the significance of considering the optimization algorithm
in conjunction with network architecture. The findings suggest that selecting the most appropriate optimization algorithm is
critical in achieving optimal results in classifying histopathological images.

Anish et al.[4] utilized a pre-trained CNN for the classification of histopathological images on the KIMIA Path 960 dataset.
The study aimed to explore various combinations between MobileNetV2 and GLCM (Gray-Level Co-occurrence Matrix) for
histopathological image classification. The study revealed that combining theMean of SortedGrayValues andGLCMperformed
better than the other methods, with an AUC (Area Under the Curve) score of 0.999. Furthermore, the approach exhibited
impressive results concerning F1 score (0.951), Precision (0.951), and Recall (0.951), emphasizing the potential of this method
for improving diagnostic tools for cancer detection.

In a study by Rania et al. [5], the authors utilized the HOG feature extractor to computationally derive features from
histopathological images, explicitly focusing on identifying invasive ductal carcinoma. A random subset of images, specifically
100, 200, 400, 1000, and 2000, was chosen from the histopathology dataset. These extracted statistical features were then
utilized to train a range of ML algorithms. The study’s primary objective was to discern between cancerous and noncancerous
growth depicted in the histopathology images. The algorithms’ performance was evaluated using various assessment metrics,
such as AUC, F1 Score, precision, sensitivity, and accuracy. Notably, the algorithms demonstrated optimal performance when
the number of images was restricted to 100, while their effectiveness diminished with a more significant number of images.

Irum et al. [6] proposed Pa-DBN-BC, a patch-based deep-learningmethod for histopathological image classification in breast
cancer diagnosis. The method employs a Deep Belief Network (DBN) and utilizes logistic regression for image classification.
The method proposed achieved an accuracy of 86%, outperforming previous deep learning methods. The authors attribute this
superior performance to the ability of the method to automatically learn the best features, which sets it apart from traditional
classification methods. BCHisto-Net was proposed to classify breast histopathological images at a hundred times magnification
by Rashmi et al.[7] The proposed system classified breast histopathological images based on global and local features. The
features were combined by a proposed feature aggregation branch, which was used to classify 100 images. The effectiveness of
integrating the global and local features was observed in the paper as it accomplished an overall accuracy of 89% and 95% on
the BreakHis and KMC datasets, respectively. Table 1 gives a gist of all the related work.

Despite the application of diverse techniques for histopathological image analysis in previous works, such as the examination
of spatial structure, classification through segmentation, and the utilization of global and window-based features, feature fusion
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Table 1: Related Works - Summary
Authors Year of

Publication
Dataset Methodology Advantage Limitation

Meghana et
al. [1]

2017 KIMIA Path960 LBP, Deep Features,
BoVW

The automatic extraction
of features is performed
by Deep learning after the
completion of data
training

Deep Features need
extensive training to
achieve high accuracy.

Taha et al.
[2]

2018 KIMIA Path960 Classification using SVM,
Decision Tree and ANN
on LBP, HOG and deep
features

LBP offers significant
advantages in
discrimination and
computational efficiency

HOG yielded
unsatisfactory results due
to model
underperformance.

Ganguly et
al. [3]

2020 KIMIA Path960, NIA
dataset of lymphoma
images

Pretrained Resnet50
model customized with
several optimization
algorithms, layered CNN

The model’s extensive
23+ million trainable
parameters enhance its
efficacy in image
recognition

Training Residual Neural
Networks (ResNet) is time
and resource-intensive.

Anish et al.
[4]

2021 KIMIA Path960 Neural Networks +
Gray-Level
Co-Occurrence Matrix +
Mean of sorted grey
values

It exhibits a higher
capacity to execute
intricate tasks than other
algorithms

It demands a substantial
volume of data and entails
significant computational
costs.

Rania et al.
[5]

2022 IDC subtype of breast
cancer images

Statistical features
extracted using HOG
features extractor

The proposed method is
easy to set up and operate

Performance of the model
decreases when the
number of images
increases.

Rashmi et
al. [7]

2021 BreakHis and KMC
dataset

CNN-based architecture
called BCHisto-Net

Global and local features
extracted were combined
by a feature aggregation
branch

Relatively new; hence, not
much research has been
done on this method.

Figure 1: Block Diagram of the Proposed System

or combining both local and global features has yet to be explored extensively. Additionally, considering ensemble classifiers
rather than individual ones has not been thoroughly investigated.

2.2 Proposed System
The method proposed for classifying Histopathological images consists of a training and Testing phase. Figure ?? gives an
overview of the same. The extraction of image features during the training phase involves the utilization of Thepade SBTC
n-ary and Otsu thresholding algorithms. Also, a fusion of extracted features from Thepade SBTC and Otsu thresholding is
considered. Individual ML algorithms and classifiers and the ensemble of several classifiers and algorithms are then trained
with the extracted features.

The trained classifiers and algorithms are then used to test the extracted features from the query image. The image class
is identified, and the correctness accuracy is calculated. Other performance metrics, like Specificity, Sensitivity, True Positive
ECJSE Volume 11, 2024 177



Sudeep D. Thepade, Ashwin Acharya, et al.

Rate (TPR), and False Positive Rate (FPR), are also considered.
The features extraction algorithms TSBTC, Otsu’s thresholding, the machine learning algorithms and classifiers and feature

fusion are further elaborated in the following subsections.

a. Thepade’s Sorted Block Truncation Code (TSBTC) [8][9][10] :
Consider a histopathological image of size p x q and let R, G, and B represent red, green and blue planes, respectively. Each

plane is then converted to a one-dimensional vector and sorted in increasing order. Each vector is divided into N distinct parts
where N refers to the N-ary in Thepade SBTC N-ary. The feature vector comprises the centroid of each N part for the colour
plane. So, in general, the feature vector will be composed of R1, R2, R3, . . ., RN, G1, G2, G3, . . ., GN, B1, B2, B3, . . ., BN. The
general formula for calculating any Ri can be given as

Ri =
N
pq

(i) pqN∑
k=(i−1) pqN

Vr [k] (1)

Where Vr is the one-dimensional vector for the red plane sorted in increasing order, pq is the dimension of the image, and
N represents the nth ary in Thepade SBTC n-ary. Similarly

Bi =
N
pq

(i) pqN∑
k=(i−1) pqN

Vb [k] (2)

Gi =
N
pq

(i) pqN∑
k=(i−1) pqN

Vg [k] (3)

Where Vb and Vg are the one-dimensional vectors sorted in increasing order for the blue and green planes, respectively
b. Otsu Thresholding Algorithm [11][12]:
Otsu’s algorithm disregards the heterogeneity and variousness of the background, assuming the image comprises just the

background and foreground(object). To address the issue of overlapping class distributions, the Otsumethod employs a threshold
to divide the image into two sections: P0 (representing darker pixels) and P1 (representing lighter pixels). P0 is characterized by
intensity levels ranging from 0 to t, denoted as P0 = 0, 1, ..., t, while P1 encompasses intensity levels from t to l-1, denoted as
P1 = t, t + 1, ..., l - 1, l. Here, t represents the threshold value, and l denotes the highest grey level of the image (e.g., 256). It is
worth noting that P0 and P1 can be set to either foreground and background or vice versa, as the light region does not necessarily
correspond to the object. This method involves an exhaustive examination of all possible threshold values to determine the
optimal division between P0 and P1 based on the minimum pixel intensity values for each side of the threshold.

Given: For the observed grey value i=1, ..., l, the histogram probabilities are given as H(i)

H (i) =
number {(r , c) | image(r , c) = i}

(R,C)
(4)

The column and row indices of the image are represented by c and r, respectively, while the number of columns and rows
in the image are represented by C and R, respectively. The variance, mean, and weight of class T0 with intensity from 0 to t is
given by σ2

b (t), µb (t), and wb (t), respectively.
The variance, mean, and weight of class T1 with intensity from t+1 to 1 are given σ2

f (t), µf (t), and wf (t), respectively.
σ2
w is the tallied average of the group variances. The value with the lowest within-class variance is the ideal threshold value,

or t*. The within-class variance can be represented as follows:

σ2
w = wb (t) ∗ σ2

b (t) + wf (t) ∗ σ2
f (t) (5)

Where,

w (t) = Σt
i=1 H (i) (6)

wf (t) = Σl
i=t+1 H (i) (7)

µb (t) =
Σt
i=1 i ∗ H (i)
wb (t)

(8)
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µf (t) =
Σl
i=t+1 i ∗ H (i)

wf (t)
(9)

σ2
b (t) =

Σt
i=1 (i− µb (t))

2 ∗ H (i)
wb (t)

(10)

σ2
f (t) =

Σt
i=t+1 (i− µf (t))

2 ∗ H (i)
wf (t)

(11)

After obtaining t*, the input image I (r , c) is segmented as

S(R,C) =

{
1, if I (r , c) > t∗
0, if I (r , c) ≤ t∗

(12)

Utilizing the segmentation result S (R,C), the intensity values of the input image I (R,C) are partitioned into two clusters,
facilitating the generation of the feature vector [O1,O2], as delineated in equations 13 and 14.

O1 =
1∑r

i = 1

∑c
j = 1 S( i, j )

r∑
i = 1

c∑
j = 1

I( i , j ) ∗ S( i, j ) (13)

O2 =
1∑r

i = 1

∑c
j = 1 (1− S ( i, j ))

r∑
i = 1

c∑
j = 1

I( i , j ) ∗ (1− S ( i, j )) (14)

In this study, color images sourced from the KIMIA Path960 dataset are examined. The individual Red, Green, and Blue color
channels of these images are isolated, yielding an Otsu Thresholding-based feature vector [OR1,OR2,OG1,OG2,OB1,OB2]
for each image in the dataset.

c. Feature Fusion of Thepade SBTC and Otsu Thresholding features of Histopathological images[13][14]:
The fusion of Thepade SBTC n-ary features and Otsu’s thresholding is employed to achieve feature fusion for the

classification of histopathological images. Considering a histopathological image with R, G and B representing the Red, Green,
and Blue colour planes, respectively, the feature fusion vector combining Otsu’s thresholding features and Thepade SBTC n-ary
features can be denoted as [TR1, TR2, . . ., TRn, TG1, TG2, . . ., TGn, TB1, TB2, . . ., TBn, OR1, OR2, OG1, OG2, OB1, OB2],
where TRi, TGi and TBi represent features of TSBTC n-ary while the rest represent features extracted using Otsu’s Thresholding
algorithm. Thus, it can be said that the feature vector will have the size 3n+6 where n is from TSBTC n-ary.

d. ML Classifiers and Algorithms Used:
Simple Logistics, Logistic Model Tree (LMT), KStar, Random Forest, Multilayer perceptron, IBK, Bayes’ Net, Naive Bayes
e. Ensemble:
The ensemble is a machine learning methodology that involves amalgamating multiple base models to form a unified

predictive model that aims to optimize predictive performance. Combining many models, an ensemble improves ML outcomes.
Instead of using one single model, ensembles enable better prediction performance.

f. Majority Voting:
The majority voting technique integrates predictions from several machine learning models and ensembles to enhance model

performance. By aggregating the results of different models, this method aims to produce superior outcomes compared to any
single model used in the ensemble.

2.3 Experimentation Environment
The histopathological image classification method proposed is accomplished in Python with the help of Weka tool. The KIMIA
Path960 dataset is considered for the entire experimentation. The dataset employed in this study comprises 400 images of various
tissue types, including connective, muscle, and epithelial tissues. From these images, 20 scans representing distinct classes are
selected, and 48 regions of interest of equal size are extracted from each whole slide image. These regions are then down-
sampled to 308x168 patches for further analysis. Hence, a total of 960 (20x48) images are obtained. The images are saved as
colour Tagged Image File (TFF) files. Figure ?? displays a subset of the images from the dataset.

The performance appraisal of all variations is done using percentage accuracy, Sensitivity, and Specificity. The values of
these performances depend on False Positive, False Negative, True Positive, True Negative where,

TP - True Positive: When the histopathological picture is correctly identified, the outcome is a true positive.
FP - False Positive: When the histopathological picture is wrongly identified, the consequence is a false positive.
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Figure 2: Samples from the KIMIA PATH960 dataset

Figure 3: Binarized image of a sample from the dataset using Otsu’s Thresholding Algorithm

TN - True Negative: It is an outcome in which the technique accurately detects the histopathological image that does not fit
into the class of the image considered.

FN - False Negative: When a method mistakenly classifies a histopathological image as not in its original category, the result
is a False Negative.

Then, the formulae for Specificity, Sensitivity, and accuracy can be given as follows:

Sensitivity =
TP

FN + TP
= TPRate (15)

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(16)

Specificity =
TN

TN + FP
= 1− FPRate (17)

3 Results and Discussions
The technique proposed experiments on 960 images of the KIMIA PATH960 dataset, where Thepade SBTC N-ary and Otsu
thresholding algorithms are used for extracting global features. Twelve ML algorithms and eight ensembles are then used to
train and test the features.

The percentage accuracy for histopathological image classification for TSBTC n-ary global features for twelve ML
algorithms, namely SMO, Naive Bayes, Bayes’ Net, Simple Logistics, Random Tree, Multilayer Perceptron, Random Forest,
LMT, REPTree, KStar, IBK and J48 is shown in the table 1.

It can be inferred from Table 2 that the performance of Thepade SBTC bests Otsu’s Thresholding for nearly all classifiers.
The peak classification accuracy for the features extracted using TSBTC is 97.29% for TSBTC 7-ary with the LMT classifier,
while the highest for Otsu’s features was 94.48% with the LMT classifier. The graphical representation of the above data sheds
further light on the performance of each feature extractor with individual classifiers. Figure ?? shows that for each classifier, the
percentage accuracy for the features extracted using TSBTC n-ary increases from 2- ary to 7-ary and remains almost constant
180 ECJSE Volume 11, 2024
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Table 2: Percentage Accuracy for TSBTC N-ary and Otsu for different classifiers
Classifiers 2ary 3ary 4ary 5ary 6ary 7ary 8ary 9ary 10ary Otsu
SMO 70.42 74.69 80.21 82.29 83.96 85.00 85.42 86.56 87.19 72.40
Bayes’ Net 79.79 83.13 84.27 84.48 85.73 85.21 85.73 86.35 87.03 77.81
Naive Bayes 80.21 83.96 85.31 85.94 86.35 86.56 86.77 86.88 86.88 79.79
REPTree 81.46 82.81 83.96 86.25 86.04 85.42 86.98 85.83 87.64 81.56
LMT 93.54 95.94 96.46 96.56 96.25 97.29 96.56 96.88 96.67 94.48
SimpleLogistic 93.75 95.10 95.94 96.56 95.94 96.67 96.56 96.67 96.04 92.19
MultilayerPerceptron 93.33 93.65 95.21 95.63 95.10 95.31 95.21 95.94 96.35 88.75
RandomForest 90.63 91.77 93.13 94.06 94.17 94.27 94.48 95.79 94.48 88.44
KStar 90.31 92.19 92.60 93.54 93.85 94.38 94.27 94.27 94.48 88.44
lBk 90.21 91.25 92.71 93.13 93.02 93.23 93.23 93.23 93.54 89.48
J48 86.15 86.56 88.44 88.65 89.69 90.63 88.85 88.23 88.75 83.23
RandomTree 84.69 87.71 85.83 85.94 88.23 86.56 88.85 88.96 89.48 82.40

Figure 4: Performance Comparison of ML classifiers for Thepade SBTC n-ary

from 8-ary onwards. Also, it is worth noting that the classifiers KStar, RandomForest, Multilayer Perceptron, Simple Logistic
and LMT gave better classification accuracies than the rest.

When the global features extracted from TSBTC and Otsu’s Thresholding were fused, trained, and tested on the twelve
classifiers, no performance amelioration was observed compared to TSBTC n-ary. The highest accuracy of 97.29%was obtained
for the features of TSBTC 5-ary and Otsu with LMT classifier, which is the same for TSBTC 7-ary as observed before. Figure
?? shows a graphical representation of the same.

From Figure ?? and Figure ??, it can be contemplated that the classifiers of KStar, Random Forest, Simple Logistic,
Multilayer Perceptron, and Logistic Model Tree (LMT) performed better than the rest. Hence these classifiers are
considered to form 8 distinct ensembles, namely – ’Logistic Model Tree+Simple Logistic+Multilayer Perceptron+Random
Forest+KStar (LMT+SL+MP+RF+KS)’, ’Simple Logistic+Multilayer Perceptron+Random Forest+Logistic Model Tree
(SL+MP+RF+LMT)’, ’Simple Logistic+Multilayer Perceptron+Random Forest (SL+MP+RF)’, ’Simple Logistics+ Multilayer
Perceptron+LMT (SL+MP+LMT)’, ’Simple Logistic+Logistic Model Tree +Random Forest (SL + LMT + RF)’, ’Simple
Logistic+Logistic Model Tree (SL+LMT)’, ’Simple Logistic+Multilayer Perceptron (SL+MP)’, ’Random Forest+Simple
Logistic (RF+SL).’

The extracted features are then trained and tested with the ensemble of classifiers to analyze performance improvement.
Tables 3, 4 and 5 depict the result when ensembles are used to train and test the features extracted using TSBTC n-ary, Otsu and
fusion of TSBTC and Otsu, respectively.

According to Table 3, the ensembles of LMT + Simple Logistics + Multilayer Perceptron + Random Forest + KStar and

Table 3: Performance (Accuracy) of Thepade SBTC n-ary for different ensembles
Classifiers 2ary 3ary 4ary 5ary 6ary 7ary 8ary 9ary 10ary
LMT + SL + MP + RF + KS 95.10 95.73 96.67 96.77 97.08 97.29 96.88 97.08 96.88
SL + MP + RF + LMT 95.10 96.15 96.98 96.77 96.98 97.29 97.08 97.08 96.98
SL + MP + RF 94.90 95.00 96.04 96.56 96.35 96.88 96.67 97.08 96.98
SL + MP 93.75 95.42 96.67 96.04 96.56 96.56 96.98 96.88 96.35
SL + RF 94.27 95.21 95.94 96.46 96.88 97.08 96.98 96.98 96.25
SL + RF + LMT 94.48 95.94 96.46 96.67 96.25 96.98 96.56 96.98 96.56
SL + LMT 93.85 96.04 96.56 96.67 96.46 97.08 96.56 96.98 96.46
SL + MP + LMT 94.79 95.94 96.77 96.56 96.25 97.19 96.56 96.88 96.67

ECJSE Volume 11, 2024 181



Sudeep D. Thepade, Ashwin Acharya, et al.

Figure 5: Performance Comparison of ML classifiers for the fusion of TSBTC n-ary + Otsu features

Table 4: Accuracy of Otsu for different ensembles
Classifiers Otsu
LMT + SL + MP + RF + KS 92.3958
SL + MP + RF + LMT 93.8542
SL + MP + RF 91.8750
SL + RF + LMT 93.8542
SL + MP + LMT 93.9583
SL + MP 91.1458
SL + LMT 94.2708
SL + RF 93.0208

Simple Logistics + Multilayer Perceptron + Random Forest + LMT performed better for TSBTC 7-ary features, achieving an
accuracy of 97.29%. Notably, the performance with ensemble learning was still the same as the highest accuracy achieved with
the individual classifiers using Thepade SBTC n-ary features. FromTables 2 and 3, it can be concluded that Thepade SBTC 7-ary
outperformed the other feature extractors with both individual classifiers and ensembles. A comparison of the best-performing
Thepade SBTC 7-ary with the best-performing classifiers and ensembles is presented in Figure ??. Although the ensemble of
classifiers outperformed most individual classifiers, it is still evident from Figure ?? that further improvement is required to
achieve the highest accuracy.

Ensemble learning was ineffective for the features extracted using Otsu’s Thresholding, as the performance did not improve
when an ensemble of classifiers was used. The highest accuracy obtained in this case was 94.27% for the Simple Logistic and
LMT classifiers ensemble, which was lower than the 94.48% accuracy achieved by the LMT classifier alone, as shown in Table
2.

Nevertheless, the application of ensemble learning demonstrated notable success when combining Thepade SBTC and Otsu

Figure 6: Performance comparison of ML classifiers and ensemble of classifiers for TSBTC 7-ary
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Table 5: Performance (Accuracy) of TSBTC n-ary with various ensemble of classifiers
Classifiers 2ary 3ary 4ary 5ary 6ary 7ary 8ary 9ary 10ary
LMT + SL + MP + RF + KS 95.83 95.73 96.56 96.77 96.46 97.29 96.77 96.77 96.67
SL + MP + RF + LMT 96.15 95.83 96.67 97.08 97.08 97.29 96.77 96.98 96.35
SL + MP + RF 95.21 95.10 96.15 96.15 96.04 96.88 96.46 96.56 96.04
SL + MP 95.10 95.31 96.25 96.25 96.56 97.08 96.67 96.56 96.35
SL + RF 95.63 95.31 96.46 96.56 96.88 97.08 96.77 96.77 96.77
SL + RF + LMT 95.63 95.83 96.88 97.19 96.88 97.39 96.67 96.77 96.67
SL + LMT 95.31 95.31 96.56 97.08 96.98 97.29 96.67 96.56 96.67
SL + MP + LMT 95.52 95.94 96.88 97.08 97.08 97.39 96.67 96.98 96.67

Figure 7: Performance comparison of ML classifiers and ensemble of classifiers

features. From the results in Table 3, it can be observed that for feature fusion, better performance was obtained with ensembles
of Simple Logistic, Multilayer Perceptron, and Logistics Model Tree, as well as with ensembles of Simple Logistic, Random
Forest, and LMT classifiers. These ensembles achieved an accuracy of 97.39%, which outperformed the accuracy obtained with
the LMT classifier alone for the same features. A comparison chart of the classification accuracy for 7-ary + Otsu with the best
classifiers and ensembles is shown in Figure ??.

While ensemble learning did not yield significant improvements for features extracted by TSBTC or Otsu, it did demonstrate
performance improvements for a fusion of the features extracted through these techniques. It is important to note that the fusion
of features obtained through Otsu and TSBTC 7-ary with the aforementioned ensembles achieved the best overall performance
compared to all other feature extraction techniques described in the research.

From all the graphs and tables, it can be implied that among TSBTC n-ary features, the features extracted by TSBTC 7-ary
performed better than the rest when tested with both individual as well as ensemble of classifiers. Though global features were
extracted using TSBTC and Otsu, the features extracted using TSBTC performed better than that of Otsu. When the global
features extracted through the aforementioned algorithms were combined, the feature fusion performed better than the rest of
the ensemble of classifiers. Though 5-ary + Otsu features with LMT classifier performed better than the rest with individual
classifiers, an ensemble of classifiers with feature fusion of TSBTC 7-ary + Otsu bettered it. A comparison of 7-ary, Otsu and
7-ary + Otsu features for different ensembles and best classifiers is shown in figure ??.

Performance metrics like specificity, sensitivity and f-measure were also considered to investigate the performance further.
A graphical plot of the same is shown in Figure ??.

The feature fusion exhibited the highest precision, Recall, sensitivity, and specificity values, as observed in Figure ??. In
comparison, using individual features of Thepade SBTC 7-ary or Otsu yielded lower values. The chart further reinforces the
notion that feature fusion does help in the classification of histopathological images.
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Figure 8: Comparison of TSBTC 7-ary, Otsu and TSBTC 7-ary + Otsu (feature fusion)

Figure 9: Plot of precision, recall, sensitivity and specificity for TSBTC 7-ary, Otsu and TSBTC 7-ary + Otsu

Table 6: Comparison of all related work on KIMIA path 960 dataset
Authors Methodology Dataset Technique employed Performance metrics

Meghna et al. [1] LBP, BoVW, CNN KIMIA Path960
BoVW Accuracy 96.50%
LBP Accuracy 90.62%
Deep features Accuracy 94.72%

Taha et al. [2] Deep Features,
HOG and LBP KIMIA Path960

SVM + LBP feature Accuracy 90.52%
SVM + deep features Accuracy 81.14%
ANN + HOG Accuracy 34.37%

Ganguly et al. [3]

Optimization Algorithms
in Combination
with Deep
Learning Models

KIMIA Path960

ResNet50 + Radam Accuracy 99.27%
ResNet50 + AdaMax Accuracy 99.79%
ResNet50 + Adam Accuracy 99.77%
ResNet50 + AdamW Accuracy 99.90%

Anish et al. [4] Feature Blending KIMIA Path960

Sorted gray value Mean +
GLCM + NN

Recall 0.951
Precision 0.951
F1 score 0.951
AUC 0.999

Sorted gray value Mean +
GLCM + RF

Recall 0.926
Precision 0.927
F1 score 0.926
AUC 0.997

Sorted gray value Mean+
GLCM + SVM

Recall 0.917
Precision 0.919
F1 score 0.916
AUC 0.998

Proposed Method Fusion of TSBTC
and Otsu features KIMIA Path960

Ensemble of SL + MP +
LMT with TSBTC 7-ary

Otsu features

Specificity 0.999
Sensitivity 0.974
Accuracy 97.39%

Ensemble with Thepade
SBTC 7-ary features

Specificity 0.999
Sensitivity 0.973
Accuracy 97.29%

LMT with Otsu features
Specificity 0.997
Sensitivity 0.947
Accuracy 94.70%

184 ECJSE Volume 11, 2024



Enhanced Histopathological Image Classification...

4 Conclusions
Feature extraction is a crucial step in the classification of histopathological images. Literature has given several feature extraction
techniques. This paper proposes Thepade SBTC and Otsu Binarization techniques for feature extraction. The fusion of these
features is also considered to enhance the classification accuracy of histopathological images. Also, in an attempt to create a
more robust model for accurate prediction, ensembles of classifiers were considered. It was observed from the experimentation
that almost all classifiers and ensemble combinations gave better performance for the global features extracted using Thepade
SBTC in comparison to Otsu. The classification accuracy was improved when the features were combined, and the resultant
features were trained and tested using ensemble of classifiers. Better performance is observed by ensembles of Simple Logistics,
Multilayer Perceptron, Logistics Model Tree and also Simple Logistics, Random Forest, and LMT classifiers for the fusion
of TSBTC 7ary and Otsu features with an accuracy of 97.39% in 10-fold cross-validation scenario. The results emphasize the
optimality of feature fusion and ensemble learning in the classification of histopathological images. Additionally, the application
of this method to classify histopathological images, particularly in the context of diseases like cancer, presents an exciting
opportunity for future investigations.
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