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Abstract 

Cardiovascular diseases are a leading global cause of death, particularly in low to middle-income countries. Early 
and accurate diagnosis of Acute Coronary Syndrome (ACS) is vital, but limited access to healthcare hinders 
effective management. This study utilized machine learning to develop mathematical models for ACS risk 
detection. Data from 249 individuals with ACS or suspected heart disease were used to construct twelve models 
with different parameters and classifiers. Performance indicators, including accuracy, Matthews correlation 
coefficient, and precision, were employed for evaluation. The Random Forest classifier demonstrated superior 
performance, achieving 90.45% accuracy for internal validation and 86% for external validation. Critical criteria 
for ACS diagnosis were CK-MB, age, coronary artery disease, and Troponin T value. The models developed in 
this study significantly prevent potential deaths via rapid intervention and reduce healthcare expenditures by 
minimizing unnecessary human resources and repeat tests.                                                                                         

    
Keywords: Cardiovascular diseases; acute coronary syndrome; heart attack; machine learning; model 
performance.  

1. Introduction 

Cardiovascular diseases (CVDs) encompass conditions that cause damage to the heart and 
blood vessels, including cerebrovascular, coronary heart, and rheumatic heart diseases. The 
World Health Organization (WHO) identifies CVDs as the leading global cause of mortality 
[1], presenting a significant public health challenge. A 2016 study on the Global Burden of 
Non-Communicable Diseases reveals that 40% of non-communicable diseases in women and 
50% in men can be attributed to cardiovascular and related diseases. In contrast, only 20% of 
female and 24% of male patients experience cardiovascular diseases alone [2]. 

Acute Coronary Syndrome (ACS), a specific type of cardiovascular disease, refers to heart 
tissue damage resulting from blockages in the coronary arteries, commonly known as a heart 
attack. ACS accounts for 4 out of 5 deaths related to CVDs, with 1 out of 3 deaths occurring in 
individuals below 70 years of age [3]. Chest pain serves as the prominent symptom of 
cardiovascular diseases and ACS, and it is challenging to distinguish between common chest 
pain and suspected ACS. Despite advances in treatment, readmission rates for ACS patients 
remain elevated [4]. 

Cardiovascular diseases (CVDs) claim the lives of approximately 18 million individuals 
annually, making them the leading cause of global mortality in 2019. Most of these deaths occur 
in middle- and low-income countries, including Central Asia, Eastern Europe, and other low-
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income regions [5]. The economic impact of CVDs is substantial, with significant costs reported 
in various countries, such as Serbia, the Fiji Islands, sub-Saharan Africa, Turkey, Brazil, and 
India [6-11]. 

To ensure early diagnosis and treatment for individuals at high risk of CVDs, universal access 
to primary healthcare services is imperative within the next 25 years. Currently, many people 
in low-income countries need access to such services [12]. Artificial intelligence algorithms 
offer a promising solution by expanding primary healthcare and enabling early detection of 
ACS and other diseases such as COVID-19 without the need for costly tests or excessive human 
resources [13-15]. Mathematical models employing machine learning techniques have been 
developed to identify ACS risk using data from individuals who experienced ACS and those 
with suspected heart conditions but no ACS diagnosis. 

Our research underscores the notable success achieved in early Acute Coronary Syndrome 
(ACS) diagnosis through the implementation of sophisticated mathematical machine-learning 
models. The overarching aim is to prevent avoidable deaths by facilitating timely intervention, 
and curbing unnecessary resource utilization, and redundant testing, thereby resulting in a 
tangible reduction in healthcare expenditures. Significantly, our model equips healthcare 
professionals with a streamlined approach to promptly assess patients with suspected ACS, 
eliminating the need for extensive and costly diagnostic procedures. 

A groundbreaking aspect of our study is the introduction of an innovative approach that 
harnesses artificial intelligence algorithms for the early detection of ACS. Through the 
integration of intricate mathematical models and advanced machine learning techniques, our 
research endeavors to enhance early diagnosis of mortal diseases such as ACS, COVID-19, 
ebola virus, etc, mitigating the necessity for costly tests a pivotal advancement in optimizing 
healthcare resource allocation [13-15]. 

Central to our contributions is the development and validation of mathematical machine-
learning models specifically tailored for the early diagnosis of ACS. Emphasizing the model's 
remarkable success rates, we highlight its capacity to empower healthcare practitioners to 
efficiently evaluate patients presenting with suspected ACS, leading to more targeted and cost-
effective interventions. 

In positioning our proposed model, we assert its pivotal role in averting preventable deaths 
through timely interventions, curbing unwarranted resource consumption, and ultimately 
reducing overall healthcare expenditures. This strategic alignment aligns with broader 
healthcare objectives, including the enhancement of efficiency, cost reduction, and 
improvement of patient outcomes. 

 
2. Material and Methods 

To create predictive models for the early detection of acute coroner syndrome, (Waikato 
Environment for Knowledge Analysis (WEKA) (https://www.cs.waikato.ac.nz/ml/weka) was 
utilized in this study [35]. The development process for these models is outlined in Figure 1. 
The initial step involved preprocessing the dataset, which included removing noisy data, 
normalizing the dataset, and determining the applicable range. Subsequently, the dataset was 
divided into a training set (80% of the data) and a test set (20% of the data). Various techniques 
were employed to identify the most suitable parameters for constructing accurate predictive 
machine-learning models. Twelve machine learning modeling algorithms were utilized to 
diagnose obesity based on blood analysis, and their performance was evaluated using measures 
derived from the confusion matrix for internal and external validation. 
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Fig. 1. The model development process for early diagnoses of acute coroner syndrome. 

 
2.1. Details of the dataset 

The study comprised 249 participants, some experiencing ST-elevation myocardial infarction 
or myocardial infarction without ST elevation, collectively called ACS. Among the 
participants, 191 individuals had a history of heart attack, while the remaining 58 did not exhibit 
signs of ACS. Detailed patient information, including age, gender, blood test results, and 
medical conditions like smoking, hypertension, and diabetes, which contribute to ACS risk, can 
be found in Table 1. The dataset provides further insights and is presented in Table 1. 

Table 1. Features and risk factors of acute coronary syndrome 
Serial 
Number Group Feature Names Features Descriptions 

1 Patient record data Age Age in years 

2 Patient record data Sex 1 = female; 2 = male 

3 Patient record data Smoke 1 = smoker; 0 = non smoker 

4 Patient record data Hypertension History of hypertension 

5 Patient record data Diabetes 1 = history of diabetes; 0 = no such history 

6 Patient record data Troponin T Troponin T value in blood test 

7 Patient record data CK-MB CK-MB value in blood test 

8 Patient record data Hyperlipidemia 1 = high cholestrol; 0 = no high cholestrol 

9 Patient record data Heart failure 1 = History of heart failure; 0 = no such history 

10 Patient record data Coronary artery 
disease 

1 = History of having a previous heart attack; 0 = 
no such history 

11 Patient record data Coronary Artery 
Graft 

1 = History of having coronary angiography; 0 = no 
such history 

12 Patient record data Coronary by-
pass 

1 = History of having coronary artery by-pass 
surgery; 0 = no such history 

13 Patient record data Chronic renal 
failure 

1 = History of chronic renal failure; 0 = no such 
history 

The details of the dataset used in the study are as follows: 
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a. Patient's age: Age is a significant risk factor for coronary artery disease, and the risk of acute 
coronary syndrome (ACS) and mortality increases steadily. After accounting for other risk 
factors, the risk of ACS-related death rises by two to three times per decade [16]. Most ACS-
related deaths happen in individuals aged 65 or older [17], with over half of these deaths 
occurring in those aged 70 or above. 
 

b. Gender: Research has indicated that being male is an independent risk factor for coronary 
artery disease [18]. On average, men develop coronary artery disease 7-10 years earlier than 
women [19]. This disparity is attributed to the protective influence of estrogen, which may 
explain the heightened risk in women who undergo premature menopause [20]. 

 
c. Smoke: Smoking is a substantial and separate predictor for the onset of coronary artery 

disease, and quitting smoking reduces the risk of acute coronary syndrome (ACS) [21]. 
Smoking elevates blood pressure and heart rate, resulting in heightened peripheral vascular 
resistance and the release of catecholamines. It diminishes flow-mediated dilation in the 
coronary artery, promotes blood clot formation, and lowers HDL cholesterol levels. 
Moreover, smoking directly damages the endothelial lining, contributing to the development 
of atherosclerosis [17]. 

 
d. Hypertension: Numerous observational studies have established a robust association 

between elevated blood pressure and the likelihood of coronary artery disease [18]. Each 
increment of 20 mm/Hg in systolic blood pressure or 10 mm/Hg in diastolic blood pressure 
doubles the risk of ACS-related mortality and stroke [22]. 

 
e. Diabetes: Both type 1 and type 2 diabetes are linked to an increased risk of acute coronary 

syndrome (ACS) [23]. Individuals with diabetes who have a history of ACS face a greater 
risk of mortality compared to those without diabetes. Diabetes amplifies the risk of ACS by 
two to four times and, when combined with high cholesterol, serves as a significant predictor 
of coronary disease. Approximately 80% of patients with diabetes develop coronary 
atherosclerosis [21, 23]. 

 
f. Troponin T: Cardiac troponins play a crucial role in regulating the calcium-dependent 

interaction between actin and myosin in the heart [24]. Numerous studies have demonstrated 
a correlation between troponin levels and the risk of mortality in acute coronary syndrome 
(ACS) [25]. Troponin T, primarily present in the myocardium, exhibits high clinical 
sensitivity, enabling the detection of even minor increases [26, 27]. 

 
g. CK-MB: Creatine is a vital protein present in muscle cells, with notable concentrations in 

skeletal and cardiac muscles. In conditions that compromise muscle cell integrity, creatine 
kinase can be released into the bloodstream, leading to a substantial elevation in blood 
creatine kinase levels [28]. Among the three isoenzymes of creatine kinase, CK-MB was 
incorporated into the model due to its predominant occurrence in cardiac muscle cells and 
its tendency to increase in the blood during ischemic heart disease. 

 
h. Hyperlipidemia: Hyperlipidemia denotes elevated levels of fats in the bloodstream. 

Numerous studies have established a robust association between low-density lipoprotein 
(LDL) cholesterol and the progression of atherosclerotic vascular disease. Additionally, 
reduced levels of high-density lipoprotein (HDL) cholesterol serve as a risk factor for 
heightened coronary artery disease risk [29]. 

 
i. Congestive heart failure: Heart failure can arise due to multiple factors, with the most 

prevalent causes being ischemic heart disease and acute coronary syndrome (ACS) induced 
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by atherosclerotic vascular disease. Malnutrition and myocardial necrosis resulting from 
ACS can result in impaired contraction function of the heart muscle [30]. 

 
j. Coronary artery disease: The coronary arteries play a critical role in providing the heart with 

essential oxygen and nutrients. Diseases affecting these arteries have a direct impact on heart 
function and efficiency. The buildup of substances, primarily cholesterol, results in the 
narrowing and blockage of the coronary arteries, giving rise to atheromatous plaques that 
progressively restrict the vessel's lumen. This narrowing hampers blood flow to the heart, 
leading to issues associated with coronary artery disease, often presenting as acute coronary 
syndrome (ACS) [31]. 

 
k. Coronary artery imaging and coronary bypass: For patients experiencing acute coronary 

syndrome (ACS), coronary angiography and angioplasty are employed to reinstate blood 
flow in the coronary artery obstructed by atheromatous plaque. In instances where coronary 
angioplasty fails to achieve revascularization, coronary bypass surgery is the preferred 
approach. This surgical intervention enhances symptoms and enhances the disease 
prognosis, leading to improved outcomes [32]. 

 
l. Chronic kidney disease: Chronic kidney disease is a condition marked by a decline in kidney 

function, resulting in the loss of nephrons and a gradual decrease in glomerular filtration rate 
(GFR) over time [33]. While chronic kidney disease itself is not a direct risk factor for acute 
coronary syndrome (ACS), it can lead to false-positive Troponin T levels in individuals with 
this condition [26]. 

 
2.2. Data preprocessing  

The preprocessing and data cleaning stages are crucial for the success and accuracy of machine 
learning modeling. Some collected data may require correction or may be missing due to noise 
[34]. During preprocessing, the noise was removed from the data set. Rows containing invalid 
data were deleted, and missing values were updated by taking the average of corresponding 
data groups. Duplicates were also removed. Additionally, names and last names were removed 
to avoid possible confusion. Normalization was applied by rescaling data between 0 and 1 to 
improve accuracy.  
 
2.3. Data Division 

The data was split into two sets: 80% for training and 20% for testing. The training and test data 
were independently separated to avoid a false accuracy rate, which can occur when using exact 
data for training and testing. 
 
2.4. Parameter Selection 

Real-time intrusion detection is nearly impossible due to the large amount of data flowing 
over the network. Feature selection can reduce the calculation time and complexity of the 
model. Feature selection is selecting the relevant and vital features by removing the most 
irrelevant and redundant features from the dataset to build an effective and efficient model. Two 
attribute selection techniques were used in this study. The CfsSubsetEval evaluator, combined 
with the Best First search method, is a correlation-based attribute selection method that 
determines the prediction power of each attribute. The CorrelationAttributeEval evaluator 
works with the Ranker search method and selects the attributes that will create the best models 
based on Pearson’s correlation logic. Feature selection reduces calculation time and model 
complexity by selecting relevant and vital features and removing irrelevant and redundant ones 
from the dataset.                                                                                                                             
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2.5. Algorithms 

In this study, four classifiers, namely Bayes Net, Logistic, IBk, and Random Forest were chosen 
and applied to the dataset. The selection of Bayes Net, Logistic Regression, IBk (k-Nearest 
Neighbors), and Random Forest classifiers was based on a strategic consideration of the 
dataset's characteristics. Bayes Net and Logistic Regression were chosen for their 
interpretability, IBk for its effectiveness in handling diverse data distributions, and Random 
Forest for its robustness and ability to capture complex relationships. These choices aim to 
provide a comprehensive evaluation, ensuring a balanced exploration of methodological 
approaches in addressing the study objectives. A summary of these classifiers is provided 
below. 
 
2.5.1. Bayes Net 

The Bayes Net classifier is a statistical classifier that uses multiple search algorithms and quality 
measures based on the Bayes network classifier [36]. It is based on Bayes’ Theorem [37], which 
calculates the conditional probability of 𝐸", given A, from the probabilities of 𝐸#, 𝐸%, . . . , 𝐸' and 
the conditional probabilities of A was given 𝐸(, i=1,2, …, k is calculated by 

 
 

𝑃(𝐸"|𝐴) =
𝑃(𝐴 ∩ 𝐸")
𝑃(𝐴) =

𝑃(𝐸")𝑃(𝐴|𝐸")
∑ 𝑃(𝐸()𝑃(𝐴|𝐸()'
(1#

. 
(1) 

   
   

2.5.2. Logistic 

The Logistic regression classifier is a popular classification method with extensive usage [38]. 
It is easy to implement and has exhibited excellent performance across various issues, including 
spam prediction. The classification model is appropriate for estimating discrete probabilities, 
such as outcomes in the form of yes, no, win, or lose. Additionally, this classifier is 
straightforward to execute and has demonstrated competent performance across various issues 
[39]. 
 
2.5.3. IBk 

The IBk algorithm predicts the outcome of a test pattern in real-time without requiring the 
construction of a model during classification. To make predictions, the algorithm measures the 
distance between each test sample and k neighboring instances in the training data, selecting a 
particular distance measure to make an estimation. The classification function then incorporates 
the results obtained and the similarity function to determine which instances to include in the 
description concept [40]. 
 
2.5.4. Random forest 

The random forest classifier combines decision trees to increase the classifier value. The 
algorithm generates multiple decision trees during classification and combines them to form a 
decision forest. Each classifier is created by randomly sampling a vector from the input [41]. 
The algorithm replaces the original sets to form training sets, and a new subset and random 
attribute selection create the tree. The node is then split using the best splitting on the randomly 
chosen attributes [42]. 
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2.6.Evaluation of the Models 

In this section, the metrics utilized in this study are described. These metrics are based on the 
four values (TP, FN, TN, FP) from the confusion matrix [56, 57]. As shown in Figure 2, the 
confusion matrix has labels for both positive and negative classes in both actual and predicted 
outcomes. When data has a positive label in the actual class and a positive label in the predicted 
class, it is considered a "True Positive (TP)," while a positive label in the predicted class but a 
negative label in the actual class is considered a "False Negative (FN)." Conversely, when data 
has a negative label in the actual class and a positive label in the predicted class, it is considered 
a "False Positive (FP)," while a negative label in both actual and predicted classes is considered 
a "True Negative (TN)." 

 

 
Fig. 2. Confusion matrix for binary classification 

 
(a) Precision refers to the ratio of the truly positive or negative results to the total number of 

results. 

 
Precision =

TN
TN + FP. 

(2) 

 
(b) Recall is the ratio of the data that a machine learning model correctly identifies as belonging 

to a class of interest. 

 
Recall =

TP
TP + FN. 

(3) 

 
(c) MCC evaluates the correlation between actual data and the data predicted by the model. 

 

 
MCC =

TP × TN − TP × FN
E(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. 
(4) 

 
(d) ROC Area: It is one of the most critical metrics for machine learning models. It shows the 

false positive and true positive rates, providing information about the model's overall 
performance. 

(e) Accuracy: The Accuracy value is calculated as the ratio of correctly predicted values to the 
total dataset in the model. 



U.U. Tiryaki, G. Karaduman, S.N. Cuhadar, A.Uyanik, H.Durmaz  
 

 23 

 
Accuracy =

TP + TN
TP + FP + TN + FN. 

(5) 

 
(f) Kappa statistic obtains a value between 0 and 1 in the calculation. The statistics obtained 

between 0.00-0.20 are low, 0.20-0.40 are below average, 0.40-0.60 are average, 0.60-0.80 
are strong, and 0.80-1.00 are excellent [43]. The kappa value is calculated as follows: 
 

 
Kappa	statistic =

observed	aggrement − expected	aggrement
1 − expected	aggrement . 

(6) 

   
   

 
2.7. Validation of the Models 

Validation is a crucial statistical resampling technique that plays a pivotal role in objectively 
and accurately assess the performance of a machine learning model when applied to unseen 
data. We conducted internal and external validations to ensure a comprehensive and unbiased 
evaluation of the methods employed in our modeling process. These validations serve as robust 
and reliable mechanisms to gauge the effectiveness and reliability of our chosen approaches, 
enabling us to obtain a more thorough understanding of the model's performance and its 
potential for generalization to new, unseen data. By employing these validation techniques, we 
aim to minimize any potential biases or overfitting issues, allowing us to confidently ascertain 
the true efficacy of our machine learning methods and their suitability for accurately diagnosing 
obesity based on the parameters derived from blood test results. 

 
3. Results 

In our study, we embarked on the development of a diverse set of twelve machine learning 
models, which were created by employing a combination of four distinct classification 
algorithms and three feature selection options. This approach allowed us to explore various 
avenues and harness the potential of different techniques to enhance the predictability and 
reliability of our models. To comprehensively evaluate the performance and effectiveness of 
these models, we conducted both internal and external validations, each serving a unique 
purpose in assessing their capabilities. 

Internal validation, a crucial component of our evaluation framework, involved the utilization 
of a 10-fold cross-validation technique. This technique provided a robust and objective means 
of gauging the models' performance by partitioning the available data into ten equally sized 
subsets. By iterative training and evaluating the models on different combinations of training 
and validation sets, we were able to obtain a comprehensive understanding of their 
generalization ability and reliability in different scenarios. 

Furthermore, external validation was conducted to assess the predictive power of the models 
on unseen data. This validation process involved evaluating the performance of the trained 
models on a dedicated test set, which was kept completely separate from the training data. By 
subjecting the models to this rigorous evaluation on an independent dataset, we were able to 
gauge their real-world applicability and assess their ability to accurately predict obesity based 
on the parameters derived from blood test results. 

Through this extensive and rigorous validation process, we aimed to ensure that our machine 
learning models not only demonstrated strong performance during internal validation but also 
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exhibited a high degree of reliability and predictive capability when confronted with new, 
unseen data. By adopting these comprehensive validation procedures, we gained confidence in 
the efficacy and generalizability of our models, enabling us to make informed decisions about 
their suitability for diagnosing obesity based on blood analysis. 
 
3.1. Internal Validation Performance 

Among the various machine learning models and feature selection techniques evaluated in our 
study, the Random Forest classifier with CfsSubsetEval feature selection emerged as the top-
performing model in terms of accuracy. It achieved an impressive accuracy rate of 90.4523%, 
accompanied by notable metrics such as an MCC (Matthews Correlation Coefficient) of 0.726, 
ROC (Receiver Operating Characteristic) of 0.942, Precision of 0.903, Recall of 0.905, and 
Kappa Statistic of 0.7251. These results highlight the model's ability to make accurate 
predictions and capture the complexity of the underlying data. 

Furthermore, the Random Forest classifier also exhibited superior performance in the training 
data analysis, further validating its efficacy. This classifier utilizes an ensemble approach, 
building numerous decision trees on subsets of the data and combining their outcomes to 
enhance prediction accuracy. The strength of this approach lies in its ability to mitigate the 
limitations of individual decision trees and capture diverse patterns in the data. 

However, it is important to acknowledge that the Random Forest classifier has some drawbacks. 
One notable drawback is its computational requirements and resource-intensive nature, which 
necessitates substantial computational power to achieve optimal accuracy. Additionally, 
compared to other models, training the Random Forest classifier may take a longer time due to 
its ensemble nature and the need to construct multiple decision trees. 

Table 2. Internal Validation Performance 

Algorithm Feature Selection 
Metric 

ACC MCC ROC Precision Recall Kappa 
Statistics 

BayesNet 
No attribute selection 87.43 0.655 0.918 0.878 0.874 0.6544 
CfsSubEval_BestFirst 87.43 0.655 0.918 0.878 0.874 0.654 
CorAttEval_Ranker 87.43 0.655 0.918 0.878 0.874 0.6544 

Logistic 
No attribute selection 87.43 0.644 0.937 0.873 0.874 0.6439 
CfsSubEval_BestFirst 87.93 0.678 0.939 0.886 0.879 0.6755 
CorAttEval_Ranker 89.94 0.699 0.935 0.893 0.889 0.6982 

IBk 
No attribute selection 77.88 0.378 0.782 0.779 0.779 0.3779 
CfsSubEval_BestFirst 79.39 0.425 0.872 0.796 0.794 0.4247 
CorAttEval_Ranker 81.40 0.481 0.856 0.816 0.814 0.2088 

Random 
Forest 

No attribute selection 90.45 0.720 0.940 0.902 0.905 0.7163 
CfsSubEval_BestFirst 90.45 0.726 0.942 0.903 0.905 0.7251 
CorAttEval_Ranker 90.45 0.726 0.939 0.903 0.905 0.7251 

ACC: Accuracy of classification, MCC: Matthews correlation coefficient, ROC: area under the receiver operating 
characteristic curve  

In terms of computational efficiency, our study revealed varying processing times for different 
models. Specifically, Bayes Net and IBk models completed their training in 0 seconds, while 
Logistic took 0.01 seconds. On the other hand, the Random Forest classifier required relatively 
more time, taking approximately 0.04 seconds for training. These time differences can be 
important considerations when deploying the models in real-world applications that require 
prompt responses. 

 



U.U. Tiryaki, G. Karaduman, S.N. Cuhadar, A.Uyanik, H.Durmaz  
 

 25 

3.2. External Validation Performance 

In Table 3, we present the performance evaluation of twelve different models on the external 
validation set, providing insightful statistical results that shed light on the comparative 
effectiveness of each model. Among these models, the Random Forest classifier with 
CorAttEval_Ranker feature selection stands out as the top-performing model, demonstrating its 
exceptional capability in accurately predicting outcomes. 

The success rate achieved by the Random Forest model, reaching an impressive 86%, 
showcases its remarkable predictive power. This high success rate indicates the model's ability 
to correctly classify instances and accurately predict the unseen data in the external validation 
set. 

Furthermore, the Random Forest model outperforms the other models in several key metrics, 
highlighting its superiority. Specifically, it exhibits higher values for the MCC (Matthews 
Correlation Coefficient) at 0.583, Precision at 0.860, and Recall at 0.860 compared to the 
alternative models. These metrics are essential indicators of the model's performance, 
demonstrating its ability to strike a balance between true positive and true negative rates, as 
well as its precision in correctly classifying instances belonging to the positive class. 

The exceptional performance of the Random Forest model with CorAttEval Ranker feature 
selection suggests its suitability for accurately predicting outcomes in this specific context. Its 
robustness and ability to capture the relevant patterns and relationships in the data set it apart 
from the other models considered in this study. 

Table 3. External Validation Performance 

Algorithm Feature Selection 
Metric 

ACC MCC ROC Precision Recall Kappa 
Statistics 

BayesNet 
No attribute selection 82.00 0.448 0.865 0.808 0.820 0.4246 
CfsSubEval_BestFirst 82.00 0.448 0.865 0.808 0.820 0.4246 
CorAttEval_Ranker 82.00 0.448 0.865 0.808 0.820 0.4246 

Logistic 
No attribute selection 84.00 0.539 0.919 0.833 0.840 0.5349 
CfsSubEval_BestFirst 84.00 0.521 0.925 0.831 0.840 0.5050 
CorAttEval_Ranker 84.00 0.521 0.925 0.831 0.840 0.5050 

IBk 
No attribute selection 78.00 0.380 0.696 0.774 0.780 0.3792 
CfsSubEval_BestFirst 82.00 0.437 0.784 0.817 0.820 0.3836 
CorAttEval_Ranker 76.00 0.304 0.817 0.747 0.760 0.3023 

Random 
Forest 

No attribute selection 80.00 0.393 0.893 0.783 0.800 0.3812 
CfsSubEval_BestFirst 84.00 0.513 0.883 0.839 0.840 0.4709 
CorAttEval_Ranker 86.00 0.583 0.893 0.860 0.860 0.5224 

ACC: Accuracy of classification, MCC: Matthews correlation coefficient, ROC: area under the receiver operating 
characteristic curve 

By carefully considering these statistical findings, we can confidently assert that the Random 
Forest model with CorAttEval_Ranker feature selection exhibits the highest performance 
among the twelve models evaluated for the external validation set. Its impressive success rate 
and superior values in metrics such as MCC, Precision, and Recall showcase its effectiveness 
and reinforce its potential as a reliable predictive model for the given problem domain. 

Our investigation identified the Troponin T value as the most influential criterion among the 
thirteen parameters used to build our predictive model. This finding aligns with existing 
research, which highlights Troponin as a primary biomarker that provides crucial insights into 
the development of Acute Coronary Syndrome (ACS) [44, 45]. Consequently, our prediction 
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model's reliance on the Troponin T value reinforces its ability to detect ACS based on this 
essential biomarker effectively. 

By taking into account these factors, including the Random Forest classifier's outstanding 
performance, its computational requirements, and the significance of the Troponin T value in 
our predictive model, we can assert that our approach provides a robust and accurate means of 
diagnosing ACS based on relevant criteria obtained from blood tests. 

 
4. Discussion 

The results obtained from the evaluation of the models in Tables 2 and 3 reveal distinct levels 
of prediction power exhibited by each model. In terms of internal validation, it is evident that 
the Random Forest (RF) model with CorAttEval_Ranker evaluator stands out as the model with 
the highest prediction power. The RF model achieved an impressive accuracy rate (ACC) of 
90.45%, indicating its suitability and efficacy in predicting early diagnoses of acute coronary 
syndrome (ACS). This finding emphasizes the RF model's potential in accurately identifying 
instances of ACS at an early stage, enabling timely intervention and treatment. 
Similarly, when considering external validation, the Random Forest model with 
CorAttEval_Ranker evaluator once again emerges as the frontrunner, boasting a notable 
percentage rate of 86.00%. This result further supports the notion that the RF model, with its 
chosen feature selection technique, excels in making accurate predictions on unseen data, 
reinforcing its reliability and generalizability in real-world scenarios. The findings from our 
study strongly indicate that the Random Forest algorithm consistently outperforms the other 
models examined across both internal and external validation. Numerous studies have 
acknowledged the suitability of Random Forest and similar ensemble models in handling 
medical data, especially in cardiovascular-related prediction tasks. The robust performance of 
RF, as demonstrated in our study, reinforces the utility of these models for early ACS diagnosis. 
However, it is essential to acknowledge the variability in model performance across different 
datasets and study contexts, as mentioned in our discussion [58,59].                                                         

 
Table 4: The selected parameters 

Parameter Selection Number of Parameters Parameters 

CfsSubsetEval, BestFirst 4 

TroponinT 
CK-MB 

Age 
CABG 

CorrelationAttributeEval, Ranker 6 

Age 
CK-MB 
CABG 

HT 
TroponinT 

KAG 
CfsSubsetEval: Correlation-based attribute evaluator, CorrelationAttributeEval: Correlation-based attribute 
evaluator, BestFirst: Search method, Ranker: Search method 

Additionally, the emphasis on parameter tuning in our study resonates with the literature's 
acknowledgment of the critical role that well-calibrated parameters play in enhancing the 
predictive performance of machine learning models [60, 61]. Table 4 provides an overview of 
the parameters employed in this study, underscoring their significance in the predictive 
performance of the Random Forest model with the CorAttEval_Ranker evaluator. By fine-
tuning and selecting the appropriate parameters, researchers can enhance the model's ability to 
capture relevant patterns and accurately predict the desired outcomes. 
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Cardiac troponins, which were initially described in 1965, emerged as a reliable method for 
measuring their levels in the blood. However, it was only in the late 1990s that the methodology 
for assessing cardiac troponins was fully developed. These specific biomarkers indicate cardiac 
muscle damage and play a crucial role in diagnosing acute coronary syndrome (ACS) [46, 47]. 
Recent advancements have demonstrated the remarkable sensitivity of troponin detection, even 
at minimal levels associated with cardiac muscle damage. This heightened sensitivity has 
contributed to the widespread acceptance of troponin as a standard biomarker for diagnosing 
ACS, endorsed by esteemed organizations such as the European Society of Cardiology (ESC) 
and the American College of Cardiology (ACC) since 2000. The specificity and sensitivity of 
troponin to cardiac muscle damage make it an invaluable tool in diagnosing and monitoring 
unstable angina pectoris (UAP), a condition recognized by the ACC and the American Heart 
Association (AHA) [48]. CK-MB is one of the three iso-enzymes of creatine kinase in the heart 
muscle and 3% of skeletal muscle. It has been reported that, compared to other iso-enzymes, 
CK-MB is more specific to the myocardium. CK-MB levels rise between 4 and 12 hours after 
cardiac injury and peak in the blood at 24 hours [49, 50]. Biomarkers associated with troponin, 
glucose, CK-MB, cholesterol along with age are also used to diagnose COVID-19 with machine 
learning  [13,62,63].  

Age is recognized as a significant risk factor for the development of coronary artery disease 
(CAD). Specifically, individuals who are 45 years or older (for men) and 55 years or older (for 
women) are considered to be potentially at higher risk for CAD. This association between age 
and CAD persists even after accounting for other known risk factors. Notably, research has 
indicated that the probability of developing vascular disease doubles with each passing decade 
of age, further highlighting the impact of aging on CAD risk [18]. 

Hypertension, commonly referred to as high blood pressure, represents another silent yet 
prevalent risk factor for cardiovascular diseases. Numerous studies have demonstrated a strong 
association between hypertension and cardiovascular conditions, encompassing both elevated 
systolic and diastolic blood pressure readings. For instance, one study revealed that patients 
with hypertension exhibited a 63.3% risk of developing coronary artery disease, whereas 
individuals with normal blood pressure showed a comparatively lower risk of 46.1% [51]. 

Acute coronary syndrome (ACS) can manifest as a consequence of lesions or blockages 
occurring in vessels subjected to revascularization through angioplasty, as well as in native or 
graft vessels used post-surgery, in patients who have previously undergone coronary 
angiography (CAG) or coronary artery bypass graft surgery (CABG) [52, 53]. 

Notably, patients with a history of coronary angioplasty or coronary artery bypass graft surgery 
and subsequently experiencing ACS tend to have a more favorable prognosis compared to 
individuals with ACS who have not undergone prior interventions. Research findings indicate 
that the prognosis for patients with prior CAG or CABG who develop ACS is generally more 
favorable, while those without a history of such interventions tend to have a poorer prognosis 
[54, 55].  

Several limitations should be also considered in the interpretation of our study findings. First, 
the dataset's representativeness may affect model generalizability, emphasizing the need for 
diverse datasets. Second, sensitivity to algorithm and feature selection choices underscores 
considerations for model applicability across datasets. Third, temporal considerations highlight 
the need for periodic model updates to align with evolving healthcare landscapes. Finally, the 
clinical applicability of models, including integration into healthcare practices and real-world 
validation, requires further investigation, presenting avenues for future research.                        
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In summary, our comprehensive analysis highlights the superiority of the Random Forest 
algorithm, particularly when combined with the CorAttEval_Ranker feature selection method, 
in terms of prediction power for diagnosing ACS. These findings emphasize the importance of 
selecting appropriate algorithms and parameters to maximize the accuracy and reliability of 
machine-learning models in specific contexts. 

 
5. Conclusion 

In this study, our primary objective was to develop effective machine-learning models for the 
early diagnosis of acute coronary syndrome (ACS). We constructed twelve distinct machine 
learning models, leveraging 13 relevant features associated with ACS. Through our analysis, 
we aimed to identify the most accurate model capable of predicting ACS at its early stages. Our 
findings demonstrated that the Random Forest algorithm outperformed the other models we 
developed, showcasing its superior predictive capabilities. This highlights the effectiveness of 
the Random Forest algorithm in accurately identifying ACS cases early on, potentially enabling 
timely interventions and treatments. 

Furthermore, our analysis revealed that several key parameters play a crucial role in the early 
diagnosis of ACS. Notably, Troponin T, CK-MB, age, and the presence of coronary artery 
disease emerged as vital factors for accurate prediction. These findings provide valuable 
insights into the risk factors and diagnostic indicators associated with acute coronary artery 
disease. Importantly, the proposed methodology and models developed in this study hold 
promise for real-world applications beyond ACS diagnosis. By applying similar approaches 
and feature selection techniques, our models can be adapted to analyze more extensive datasets 
and explore risk factors for various other diseases. This versatility underscores the potential of 
our method to contribute to medical research and improve diagnostic practices across different 
healthcare domains. 

In summary, our study contributes to the field of early ACS diagnosis by presenting a robust 
and accurate machine-learning model. The superior performance of the Random Forest 
algorithm and the identified key parameters pave the way for improved early detection of ACS. 
Furthermore, our methodology and models offer potential for broader applications in medical 
diagnostics, facilitating the identification of risk factors and enhancing our understanding of 
various diseases when applied to larger datasets. 
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