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A NOTE FOR THE (p, q)−FIBONACCI AND LUCAS

QUATERNION POLYNOMIALS

ARZU ÖZKOÇ AND AYHAN PORSUK

Abstract. In this article, we have introduced the (p, q)−Fibonacci and Lu-

cas quaternion polynomials which are based on the (p, q)−Fibonacci and Lucas

polynomials respectively. Some new identities are derived for these polynomi-
als. The various results obtained here, include Binet formula, Catalan identity,

binomial sum formula and generating function.

1. Introduction

Fibonacci, Lucas, Pell and the other special numbers and their generalizations
are famous in science. Fibonacci numbers form a sequence defined by the following
recurrence relation: F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for all n ≥ 2. The

characteristic equation of Fn is x2−x−1 = 0 and hence the roots of it are α = 1+
√

5
2

and β = 1−
√

5
2 . Also it has Binet’s formula Fn = αn−βn

α−β for n ≥ 0. Lucas numbers

Ln are defined by L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2.

In fact all of them are the special case of the second order linear recurrence R =
{Ri}∞i=0 = R(P,Q,R0, R1) if the recurrence relation for i ≥ 2, Ri = PRi−1−QRi−2

holds for its terms, where P and Q are integers such that D = P 2 − 4Q 6= 0 and
R0, R1 are fixed integers. Define the sequences

Un = Un(P,Q) = PUn−1 −QUn−2(1.1)

Vn = Vn(P,Q) = PVn−1 −QVn−2

for n ≥ 2. The characteristic equation of them is x2 − Px + Q = 0 and hence the

roots of it are α = P+
√
D

2 and β = P−
√
D

2 . So by Binet formula, Un = αn−βn

α−β
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and Vn = α2 + β2. Further the generating function for Un and Vn is

∞∑
n=0

Unx
n =

x

1− Px+Qx2
and

∞∑
n=0

Vnx
n =

2− Px
1− Px+Qx2

[5, 9].
Polynomials can be defined by Fibonacci-like recursion relations are called Fi-

bonacci polynomials. More mathematicians were involved in the study of Fi-
bonacci polynomials, such as P.F.Byrd, M. Bicknell-Johnson and others. The
h(x)−Fibonacci quaternion polynomials Qh,n(x) are defined by the recurrence re-
lation

(1.2) Qh,n(x) =

3∑
l=0

Fh,n+l(x)el

where Fh,n(x) is the n− th,the h(x)−Fibonacci polynomial [3, 6].

In [2] they introduce the (p, q)−Fibonacci quaternion polynomials that general-
ized the h(x)−Fibonacci quaternion polynomials. Let p(x) and q(x) be polynomials
with real coefficients the (p, q)−Fibonacci polynomials are defined by the recurrence
relation

(1.3) Fp,q,n+1 = p(x)Fp,q,n + q(x)Fp,q,n−1

with the initial conditions Fp,q,0 = 0, Fp,q,1 = 1. Also for the p(x) and q(x)
polynomials with real coefficients the (p, q)−Lucas polynomials are defined by the
recurrence relation

Lp,q,n+1 = p(x)Lp,q,n + q(x)Lp,q,n−1

with initial conditions Lp,q,0 = 2, Lp,q,1 = p(x) [1, 2]. Let α1(x) =
p(x)+

√
p2(x)+4q(x)

2

and α2(x) =
p(x)−

√
p2(x)+4q(x)

2 denote the roots of the characteristic equation

α2 − p(x)α− q(x) = 0

on the recurrence relation of (1.3). Binet formulas for the (p, q)− Fibonacci and
Lucas polynomials are

Fp,q,n(x) =
αn1 (x)− αn2 (x)

α1(x)− α2(x)
and Lp,q,n(x) = αn1 (x) + αn2 (x)

respectively.
Note that

α1(x) + α2(x) = p(x)

α1(x)− α2(x) =
√
p2(x) + 4q(x)

α1(x).α2(x) = −q(x)(1.4)

α1(x)

α2(x)
=
−α2

1(x)

q(x)

α2(x)

α1(x)
=
−α2

2(x)

q(x)
.(1.5)



38 A. ÖZKOÇ AND A. PORSUK

Division algebras are search topic of great interest, that are real numbers R,
complex numbers C, quaternions H, and octonions Q. The quaternions H are
on commutative normed division algebra over the real numbers R and due the
commutativity, one cannot directly extend various results on real and complex
numbers to quaternions. Also studies on different types of sequences of quaternions
are; Fibonacci Quaternions, Split Fibonacci Quaternions and Complex Fibonacci
Quaternions.

A quaternion a is defined by

a = a0 + a1i1 + a2i2 + a3i3

where a0, a1, a2, a3 ∈ R and i1, i2 and i3 are the fundemental quaternion units that
i21 = i22 = i23 = −1, i1i2 = −i2i1 = i3 , i2i3 = −i3i2 = i1 i3i1 = −i1i3 = i2 and
i1i2i3 = −1.

The algebra of quaternions is denoted by H and it is a four-dimensional asso-
ciative normed division algebra over the real numbers.

The n−th Fibonacci quaternion number of order n is defined by

Qn = Fn + Fn+1i1 + Fn+2i2 + Fn+3i3

where Fn is the n−th Fibonacci number and i1, i2, i3 satisfy the identities stated
in the previous definition and n = 0,±1,±2, · · · .

The k−Fibonacci quaternion number of order n is defined by

Qk,n = Fk,n + Fk,n+1i1 + Fk,n+2i2 + Fk,n+3i3

where Fk,n is the n−th, k−Fibonacci number and i1, i2, i3 and n = 0,±1,±2, · · · .
Note that,

Qk,n = (kFk,n−1 + Fk,n−2) + Fk,n+1i1 + Fk,n+2i2 + Fk,n+3i3,

another expression for the k−Fibonacci quaternion number of order n.
By definition of the generating function of some polynomials for example ( 1.2),

the generating function associated gQF (t) is defined by

(1.6) gQ(t) =

∞∑
n=0

Qh,n(x)tn

[4, 7, 8, 10].

2. Main Theorems of (p, q)−Fibonacci Quaternion Polynomials.

In this section, we introduce the (p, q)−Fibonacci quaternion polynomials and de-
rive the Binet formula, the generating function and some identities of the (p, q)−Fibo-
nacci quaternion polynomial sequences.

The (p, q)−Fibonacci quaternion polynomials QFp,q,n(x) are defined by the re-
currence relation

QFp,q,n(x) =

3∑
k=0

Fp,q,n+k(x)ek

where Fp,q,n+k is the (n+k)− th, the (p, q)−Fibonacci polynomials. Note that the
initial conditions of this sequence are given by

QFp,q,0(x) =

3∑
k=0

Fp,q,k(x)ek = e1 + p(x)e2 + (p2(x) + q(x))e3
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QFp,q,1(x) =

3∑
k=0

Fp,q,1+k(x)ek

= e0 + p(x)e1 + (p2(x) + q(x))e2 + (p3(x) + 2p(x)q(x))e3.

Also QFp,q,n(x) is written by a recurrence relation of order two;

QFp,q,n+1(x) =

3∑
k=0

Fp,q,n+k+1(x)ek

=

3∑
k=0

(p(x)Fp,q,n+k(x) + q(x)Fp,q,n−1+k(x))ek

= p(x)

3∑
k=0

Fp,q,n+k(x)ek + q(x)

3∑
k=0

Fp,q,n−1+k(x)ek

and so on,

QFp,q,n+1(x) = p(x)QFp,q,n(x) + q(x)QFp,q,n−1(x).

For the (p, q)−Lucas quaternion polynomials QLp,q,n(x) =
∑3
k=0 Lp,q,n+k(x)ek

where Lp,q,n+k(x) is the (n+ k)− th, the (p, q)−Lucas polynomials. So for n ≥ 1,

QLp,q,n+1(x) = p(x)QLp,q,n(x) + q(x)QLp,q,n−1(x).

with initial conditions

QLp,q,0(x) =

3∑
k=0

Lp,q,k(x)ek

QLp,q,1(x) =

3∑
k=0

Lp,q,k+1(x)ek.

We continue with the generating function results

Theorem 2.1. The generating function for the (p, q)−Fibonacci and Lucas quater-
nion polynomials QFp,q,n(x) and QLp,q,n(x) are

gQF (t) =
QFp,q,0(x) + [QFp,q,1(x)− p(x)QFp,q,0(x)]t

1− p(x)t− q(x)t2

gQL(t) =
QLp,q,0(x) + [QLp,q,1(x)− p(x)QLp,q,0(x)]t

1− p(x)t− q(x)t2
.(2.1)

Proof. The generating function gQF (t) for QFp,q,n(x) must be of the form
(2.2)
∞∑
n=0

QFp,q,n(x)tn = QFp,q,0(x)+QFp,q,1(x)t+QFp,q,2(x)t2+· · ·+QFp,q,n(x)tn+· · · .
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The formal power series expansions of −p(x)tgQF (t),−q(x)t2gQF (t) and gQF (t) are

gQF (t) =

∞∑
n=0

QFp,q,n(x)tn = QFp,q,0(x) +QFp,q,1(x)t+QFp,q,2(x)t2

+ · · ·+QFp,q,n(x)tn + · · ·
−p(x)tgQF (t) = −p(x)QFp,q,0(x)t− p(x)QFp,q,1(x)t2 − p(x)QFp,q,2(x)t3

− · · · − p(x)QFp,q,n(x)tn+1 − · · ·
−q(x)t2gQF (t) = −q(x)QFp,q,0(x)t2 − q(x)QFp,q,1(x)t3 − q(x)QFp,q,2(x)t4

− · · · − q(x)QFp,q,n(x)tn+2 − · · ·

respectively. So the expansion for gQF (t)− gQF (t)p(x)t− gQF (t)q(x)t2 is

gQF (t)(1− p(x)t− q(x)t2) = QFp,q,0(x) +QFp,q,1(x)t− p(x)QFp,q,0(x)t

+[QFp,q,2(x)− p(x)QFp,q,1(x)− q(x)QFp,q,0(x)]t2

+[QFp,q,3(x)− p(x)QFp,q,2(x)− q(x)QFp,q,1(x)]t3

+...

+[QFp,q,n(x)− p(x)QFp,q,n−1(x)− q(x)QFp,q,n−2(x)]tn

+...

= QFp,q,0(x) + [QFp,q,1(x)− p(x)QFp,q,0(x)]t.

Hence QFp,q,0(x) + (QFp,q,1(x) − p(x)QFp,q,0(x))t is a finite series, so we can
rewrite [1−p(x)t− q(x)t2]gQF (t) = QFp,q,0(x) + [QFp,q,1(x)−p(x)QFp,q,0(x)]t and
hence

(2.3) gQF (t) =
QFp,q,0(x) + [QFp,q,1(x)− p(x)QFp,q,0(x)]t

1− p(x)t− q(x)t2

as we claimed.
The other assertion can be proved similarly. �

Another way to defination of the generating function is in the following corollary.

Corollary 2.1. The generating function for the (p, q)−Fibonacci and Lucas quater-
nion polynomials QFp,q,n(x) and QLp,q,n(x) are

gQF (t) =
e1 + p(x)e2 + p2(x)e3 + q(x)e3 + [e0 + q(x)e2 + p(x)q(x)e3] t

1− p(x)t− q(x)t2

gQL(t) =

{
2e0 + p(x)e1 +

[
p2(x) + 2q(x)

]
e2 +

[
p3(x)− 3p(x)q(x)

]
e3

+(−p(x)e0 + 2q(x)e1 + q(x) [3p(x)− 1] e2 + q(x)
[
p2(x) + 2q(x)

]
e3)t

}
1− p(x)t− q(x)t2

.

Now we can give the following theorems.

Lemma 2.1. For the generating function given in Theorem 2.1 we have

gQF (t) =

QFp,q,1(x)−α2(x)QFp,q,0(x)
1−α1(x)t − QFp,q,1(x)−α1(x)QFp,q,0(x)

1−α2(x)t

α1(x)− α2(x)

gQL(t) =

QLp,q,1(x)−α2(x)QLp,q,0(x)
1−α1(x)t − QLp,q,1(x)−α1(x)QLp,q,0(x)

1−α2(x)t

α1(x)− α2(x)
.
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Proof. From the expression of gQF (t) in Teorem 2.1 and the use of (1.4) ,we have:

QFp,q,0(x) + [QFp,q,1(x)− p(x)QFp,q,0(x)]t

1− p(x)t− q(x)t2

=
QFp,q,0(x) + [QFp,q,1(x)− p(x)QFp,q,0(x)]t

(1− α1(x)t)(1− α2(x)t)

=

(
QFp,q,0(x) + [QFp,q,1(x)− (α1(x) + α2(x))QFp,q,0(x)]t

(1− α1(x)t)(1− α2(x)t)

)
×
(
α1(x)− α2(x)

α1(x)− α2(x)

)

=

 α1(x)QFp,q,0(x) + α1(x)QFp,q,1(x)t− α2
1(x)QFp,q,0(x)t

−α1(x)α2(x)QFp,q,0(x)t− α2(x)QFp,q,0(x)− α2(x)QFp,q,1(x)t
+α1(x)α2(x)QFp,q,0(x)t+ α2

2(x)QFp,q,0(x)t+QFp,q,1(x)−QFp,q,1(x)


(α1(x)− α2(x))(1− α1(x)t)(1− α2(x)t)

=

{
QFp,q,1(x)(1− α2(x)t) + α2(x)QFp,q,0(x)(−1 + α2(x)t)

+QFp,q,1(x)(−1 + α1(x)t) + α1(x)QFp,q,0(x)(1− α1(x)t)

}
(α1(x)− α2(x))(1− α1(x)t)(1− α2(x)t)

=

{
(1− α2(x)t)(QFp,q,1(x)− α2(x)QFp,q,0(x))
−(1− α1(x)t)(QFp,q,1(x)− α1(x)QFp,q,0(x))

}
(α1(x)− α2(x))(1− α1(x)t)(1− α2(x)t)

=
1

α1(x)− α2(x)

[
QFp,q,1(x)− α2(x)QFp,q,0(x)

1− α1(x)t
− QFp,q,1(x)− α1(x)QFp,q,0(x)

1− α2(x)t

]
.

The other cases can be proved similarly. �

Lemma 2.2. Let the (p, q)−Fibonacci and Lucas polynomials are Fp,q,n(x) and
Lp,q,n(x). We have

(1)

Fp,q,k+1(x)− α2(x)Fp,q,k(x) = αk1(x)

Fp,q,k+1(x)− α1(x)Fp,q,k(x) = αk2(x)

(2)

Lp,q,k+1(x)− α2(x)Lp,q,k(x)

α1(x)− α2(x)
= αk1(x)

α1(x)Lp,q,k(x)− Lp,q,k+1(x)

α1(x)− α2(x)
= αk2(x).

Proof. We prove it by induction. Let k = 1, then

Fp,q,2(x)− α2(x)Fp,q,1(x) = p(x)− α2(x) = α1(x).
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Let us assume that the equation is Fp,q,n(x) − α2(x)Fp,q,n−1(x) = αn−1
1 (x) for

k = n − 1. For k = n it becomes

αn1 (x) = αn−1
1 (x)α1(x)

= (Fp,q,n(x)− α2(x)Fp,q,n−1(x))α1(x)

= α1(x)Fp,q,n(x)− α1(x)α2(x).Fp,q,n−1(x)

= (p(x)− α2(x))Fp,q,n(x)− (−q(x))Fp,q,n−1(x)

= p(x)Fp,q,n(x) + q(x)Fp,q,n−1(x)− α2(x)Fp,q,n(x)

= Fp,q,n+1(x)− α2(x)Fp,q,n(x).

So we get the desired result. (2) can be proved similarly. �

Now we want to derive the Binet formulas for QFp,q,n(x) and QLp,q,n(x). To get
this we can give the following theorems.

Theorem 2.2. For n ≥ 0, the (p, q)−Fibonacci and Lucas quaternion polynomials
QFp,q,n(x) and QLp,q,n(x) are

QFp,q,n(x) =
α∗1(x)αn1 (x)− α∗2(x)αn2 (x)

α1(x)− α2(x)

QLp,q,n(x) = α∗1(x)αn1 (x) + α∗2(x)αn2 (x)

where α∗1(x) =
3∑
k=0

αk1(x)ek and α∗2(x) =
3∑
k=0

αk2(x)ek .

Proof. Using the Lemma 2.2, we easily get

gQF (t) =
1

α1(x)− α2(x)

[
(QFp,q,1(x)− α2(x)QFp,q,0(x))

∞∑
n=0

αn1 (x)tn

−(QFp,q,1(x)− α1(x)QFp,q,0(x))

∞∑
n=0

αn2 (x)tn

]

=

{ ∑3
k=0(Fp,q,1+k(x)− α2(x)Fp,q,k(x))ek

∑∞
n=0 αn1 (x)tn

−
∑3
k=0(Fp,q,1+k(x)− α1(x)Fp,q,k(x))ek

∑∞
n=0 αn1 (x)tn

}
α1(x)− α2(x)

=
1

α1(x)− α2(x)

[
3∑
k=0

αk1(x)ek

∞∑
n=0

αn1 (x)tn −
3∑
k=0

αk2(x)ek
∞∑
n=0

αn2 (x)tn

]

=

∞∑
n=0

α∗1(x)αn1 (x)− α∗2(x)αn2 (x)

α1(x)− α2(x)
tn

and by the identity (1.6). This completes the proof. �

Now we can also formulate the Catalan identity and Cassini identity by using
Binet formulas.

Theorem 2.3. (Catalan identity) Let the generating function for the (p, q)−Fibonacci
and Lucas quaternion polynomials are QFp,q,n(x) and QLp,q,n(x). For n and α,
nonnegative integer numbers, such that α ≤ n , we have
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QFp,q,n+r(x)QFp,q,n−r(x)−QF 2
p,q,n(x) =

(−1)r+n+1α∗1(x)α∗2(x)qn−r(x)(α1(x)− α2(x))r

(α1(x)− α2(x))
2

QLp,q,n+r(x)QLp,q,n−r(x)−QL2
p,q,n(x) = (−1)r+nα∗1(x)α∗2(x)qn−r(x)(α1(x)− α2(x))r.

Proof. Using the Binet formula of Theorem 2.3 and Lemma 2.2 also some identity
of (1.4) involving the roots α1(x) and α2(x), we have

QFp,q,n+r(x)QFp,q,n−r(x)−QF 2
p,q,n(x)

=
α∗1(x)αn+r

1 (x)− α∗2(x)αn+r
2 (x)

α1(x)− α2(x)
× α∗1(x)αn−r1 (x)− α∗2(x)αn−r2 (x)

α1(x)− α2(x)

−
(
α∗1(x)αn1 (x)− α∗2(x)αn2 (x)

α1(x)− α2(x)

)2

=


α∗1(x)2α2n

1 (x)− α∗1(x)α∗2(x)αn−r1 (x)αn+r
2 (x)

−α∗1(x)α∗2(x)αn+r
1 (x)αn−r2 (x) + α∗2(x)2α2n

2 (x)
−α∗1(x)2α2n

1 (x) + 2α∗1(x)α∗2(x)αn1 (x)αn2 (x)
−α∗2(x)2α2n

2 (x)


(α1(x)− α2(x))

2

=

 −α
∗
1(x)α∗2(x)αn−r1 (x)αn+r

2 (x)
−α∗1(x)α∗2(x)αn+r

1 (x)αn−r2 (x)
+2α∗1(x)α∗2(x)αn1 (x)αn2 (x)


(α1(x)− α2(x))

2

=
−α∗1(x)α∗2(x)(αn−r1 (x)αn+r

2 (x) + αn+r
1 (x)αn−r2 (x)− 2αn1 (x)αn2 (x))

(α1(x)− α2(x))
2

=
−α∗1(x)α∗2(x)αn1 (x)αn2 (x)

[(
−α

2
2(x)
q(x)

)r
+
(
−α

2
1(x)
q(x)

)r
− 2 (α1(x)α2(x))r

qr(x)

]
(α1(x)− α2(x))

2

=
(−1)r+n+1α∗1(x)α∗2(x)qn−r(x)(α1(x)− α2(x))r

(α1(x)− α2(x))
2 .

The other case can be proved similarly. �

Theorem 2.4. (Cassini identity) For the (p, q)−Fibonacci quaternion polynomials
QFp,q,n(x) and the (p, q)−Lucas quaternion polynomials are QLp,q,n(x), we have

QFp,q,n+1(x)QFp,q,n−1(x)−QF 2
p,q,1(x) =

(−1)nα∗1(x)α∗2(x)qn−1(x)

α1(x)− α2(x)

QLp,qn+r(x)QLp,q,n−r(x)−QL2
p,q,n(x) = (−1)1+nα∗1(x)α∗2(x)qn−1(x)(α1(x)−α2(x))

for any natural number n .

Theorem 2.5. The (p, q)−Fibonacci and Lucas quaternion polynomials are QFp,q,n(x)
and QLp,q,n(x), for n ≥ 0, we have
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(1)

q(x)(QFp,q,n(x))2 + (QFp,q,n+1(x))2 =
(α∗1)2(x)α2n+1

1 (x)− (α∗2)2(x)α2n+1
2 (x)

α1(x)− α2(x)

q(x)(QLp,q,n(x))2 + (QLp,q,n+1(x))2 =

{
(α1(x)− α2(x))(α∗1)2(x)α2n+1

1 (x)
−(α∗2)2(x)α2n+1

2 (x)

}
(2)

QFp,q,1(x)− α1(x)QFp,q,0(x) = α∗2(x)

QFp,q,1(x)− α2(x)QFp,q,0(x) = α∗1(x)

and

QLp,q,1(x)− α1(x)QLp,q,0(x) = (α1(x)− α2(x))α∗2(x)

QLp,q,1(x)− α2(x)QLp,q,0(x) = (α1(x)− α2(x))α∗1(x).

Proof. In order to prove the identity (1), we use the formulas to get

q(x)(QFp,q,n(x))2 + (QFp,q,n+1(x))2

= q(x)

(
α∗1(x)αn1 (x)− α∗2(x)αn2 (x)

α1(x)− α2(x)

)2

+

(
α∗1(x)αn+1

1 (x)− α∗2(x)αn+1
2 (x)

α1(x)− α2(x)

)2

=


q(x)(α∗1)2(x)α2n

1 (x)− 2q(x)α∗1(x)αn1 (x)α∗2(x)αn2 (x)
+q(x)(α∗2)2(x)α2n

2 (x) + (α∗1)2(x)α2n+2
1 (x)

−2α∗1(x)αn+1
1 (x)α∗2(x)αn+1

2 (x) + (α∗2)2(x)α2n+2
2 (x)


(α1(x)− α2(x))2

=

 (α∗1)2(x)α2n
1 (x)

[
q(x) + α2

1(x)
]

+(α∗2)2(x)α2n
2 (x)

[
q(x) + α2

2(x)
]

−2α∗1(x)αn1 (x)α∗2(x)αn2 (x) [q(x) + α1(x)α2(x)]


(α1(x)− α2(x))2

=
(α∗1)2(x)α2n

1 (x)
(
q(x)− q(x)α1(x)

α2(x)

)
+ (α∗2)2(x)α2n

2 (x)
(
q(x) + q(x)α2(x)

α1(x)

)
(α1(x)− α2(x))2

=
(α∗1)2(x)α2n+1

1 (x)− (α∗2)2(x)α2n+1
2 (x)

α1(x)− α2(x)

and the result follows.The other cases can be done similarly. Also the proof of the
identity for the (p, q)−Lucas quaternion polynomials (2) is similar to (1). �

Then we can give the following theorem relative to binomial sum.

Theorem 2.6. For the (p, q)−Fibonacci and Lucas quaternion polynomials are
QFp,q,n(x) and QLp,q,n(x), n ≥ 0 we have following binomial sum formula for odd
and even terms,

(1)

QFp,q,2n(x) =

n∑
m=0

(
n

m

)
q(x)n−mp(x)mQFp,q,m(x)

QFp,q,2n+1(x) =

n∑
m=0

(
n

m

)
q(x)n−mp(x)mQFp,q,m+1(x)
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(2)

QLp,q,2n(x) =

n∑
m=0

(
n

m

)
q(x)n−mp(x)mQLp,q,m(x)

QLp,q,2n+1(x) =

n∑
m=0

(
n

m

)
q(x)n−mp(x)mQLp,q,m+1(x).

Proof. For (1) from (1.4) and Binet formulas, we get

n∑
m=0

(
n

m

)
q(x)n−mp(x)mQFp,q,m(x)

=

n∑
m=0

(
n

m

)
q(x)n−mp(x)m

α∗1(x)αm1 (x)− α∗2(x)αm2 (x)

α1(x)− α2(x)

=
α∗1(x)

α1(x)− α2(x)

n∑
m=0

(
n

m

)
q(x)n−m(p(x)α1(x))m

− α∗2(x)

α1(x)− α2(x)

n∑
m=0

(
n

m

)
q(x)n−m(p(x)α2(x))m

=
α∗1(x)

α1(x)− α2(x)
(q(x) + p(x)α1(x))n − α∗2(x)

α1(x)− α2(x)
(q(x)− p(x)α2(x))n

=
α∗1(x)α2n

1 (x)− α∗2(x)α2n
2 (x)

α1(x)− α2(x)

= QFp,q,2n(x).

The other cases (2) can be done similarly. �

We formulate the sum of the first n terms of these sequences of (p, q)−Fibonacci
quaternion polynomials.

Theorem 2.7. The sum of the first n−terms of the sequence QFp,q,n(x) and
QLp,q,n(x) is given by

n∑
m=0

QFp,q,m(x) =

{
−q(x)QFp,q,n(x)−QFp,q,n+1(x)

+QFp,q,0(x)− α∗
1(x)α2(x)−α∗

2(x)α1(x)
α1(x)−α2(x)

}
(α1(x)− 1)(α2(x)− 1)

n∑
m=0

QLp,q,m(x) =

{
−q(x)QLp,q,n(x)−QLp,q,n+1(x) +QLp,q,0(x)

− [α∗1(x)α2(x) + α∗2(x)α1(x)]

}
(α1(x)− 1)(α2(x)− 1)

.
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Proof. Note that using Binet formula and some identities related with the roots
α1(x) and α2(x), we get
n∑

m=0

QFp,q,n(x) =
α∗1(x)αs1(x)− α∗2(x)αs2(x)

α1(x)− α2(x)

=
1

α1(x)− α2(x)

n∑
m=0

(α∗1(x)αs1(x)− α∗2(x)αs2(x))

=
1

α1(x)− α2(x)
(α∗1(x)

n∑
m=0

αs1(x)− α∗2(x)

n∑
m=0

αs2(x))

=
1

α1(x)− α2(x)
(α∗1(x)

αn+1
1 (x)− 1

α1(x)− 1
− α∗2(x)

αn+1
2 (x)− 1

α2(x)− 1
)

=
α∗1(x)(αn+1

1 (x)− 1)(α2(x)− 1)− α∗2(x)(αn+1
2 (x)− 1)(α1(x)− 1)

(α1(x)− α2(x))(α1(x)− 1)(α2(x)− 1)
.

The other cases can be done similarly. �

References

[1] J. Wang. Some New Results for the (p, q)−Fibonacci and Lucas Polynomials. Advances in

Difference Equations 2014, 2014: 64.
[2] G. Y. Lee and M. Asci, Some Properties of the (p, q)−Fibonacci and (p, q)−Lucas Poly-

nomials. Journal of Applied Mathematics, Volume 2012, Article ID 264842, 18 pages

doi:10.1155/2012/264842.
[3] G. B. Djordjevic, G.V. Milovanovic. Special Classes of Polynomials. University of Nis, Faculty

of Technology, Leskovac, 2014.
[4] P. Catarino. The h(x)−Fibonacci Quaternion Polynomials:Some Combinatorial Properties.

Adv. App Clifford Algebras 26(2016)71-79.

[5] A Tekcan, A. Özkoç, M. Engür, M.E. Özbek. On Algebraic Identities on a New Integer
Sequence with Four Parameters. Ars Combinatoria. 127(2016) 225-238.

[6] A .Nalli, P. Haukkanen. On generalized Fibonacci and Lucas Polynomials. Chaos Solitons

and Fractals 42(2009) 3179-3186.
[7] S. Halici. On Fibonacci Quaternions. Adv. Appl. Clifford Algebras 22 (2012), 2, 321-327.

[8] P. Catarino. A Note on h(x)−Fibonacci Quaternion Polynomials. Chaos, Solitons and Frac-

tals 77(2015)1–5.
[9] P. Ribenboim. My Numbers, My Friends, Popular Lectures on Number Theory. Springer-

Verlag, New York, Inc. 2000.
[10] J.P. Ward. Quaternions and Cayley Numbers. Kluwer Academic Publishers, Springer Science,

1997.

Duzce University, Science and Art Faculty, Department of Mathematics, Duzce-

TURKEY
E-mail address: arzuozkoc@duzce.edu.tr

Duzce University, Science and Art Faculty, Department of Mathematics, Duzce-
TURKEY

E-mail address: ayhanporsuk@gmail.com


