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A NOTE FOR THE (p,q)-FIBONACCI AND LUCAS
QUATERNION POLYNOMIALS

ARZU OZKOG AND AYHAN PORSUK

ABSTRACT. In this article, we have introduced the (p, ¢)—Fibonacci and Lu-
cas quaternion polynomials which are based on the (p, ¢)—Fibonacci and Lucas
polynomials respectively. Some new identities are derived for these polynomi-
als. The various results obtained here, include Binet formula, Catalan identity,
binomial sum formula and generating function.

1. INTRODUCTION

Fibonacci, Lucas, Pell and the other special numbers and their generalizations
are famous in science. Fibonacci numbers form a sequence defined by the following
recurrence relation: Fy =0, F; =1 and F,, = F,_1 + F,,_5 for all n > 2. The

characteristic equation of F}, is 2 —x—1 = 0 and hence the roots of it are o = %

and 8 = 1_7\/5 Also it has Binet’s formula F,, = aa—,g for n > 0. Lucas numbers

L, are defined by Lo =2,L1 =1and L, = L,_1+ L,_5 for n > 2.

In fact all of them are the special case of the second order linear recurrence R =
{R;}2, = R(P,Q, Ry, Ry) if the recurrence relation fori > 2, R, = PR;_1 —QR;_»
holds for its terms, where P and @ are integers such that D = P? — 4Q # 0 and
Ry, R, are fixed integers. Define the sequences

(11) U, = Un(P7 Q) =PU,_1 - QUn—Q
Vi = Vn(P7Q) =PV, 1 - QVn—Q
for n > 2. The characteristic equation of them is 22 — Pz + @ = 0 and hence the

roots of it are o = %ﬁ and (= # . So by Binet formula, U,, = a::gn
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and V,, = a? + 2. Further the generating function for U,, and V,, is

> T > 2 — Px
Upa" = ————— and > Vya"= ——
7;) nt 1 — Pz + Q2 o Z nt 1— Pz + Q2

n=0

[5, 9].

Polynomials can be defined by Fibonacci-like recursion relations are called Fi-
bonacci polynomials. More mathematicians were involved in the study of Fi-
bonacci polynomials, such as P.F.Byrd, M. Bicknell-Johnson and others. The
h(z)—Fibonacci quaternion polynomials @}, () are defined by the recurrence re-
lation

3
(1.2) Qnn(®) =Y Frnti(x)e
=0

where F}, () is the n — th,the h(x)—Fibonacci polynomial [3, 6].

In [2] they introduce the (p, ¢)—Fibonacci quaternion polynomials that general-
ized the h(z)—Fibonacci quaternion polynomials. Let p(x) and ¢(z) be polynomials
with real coefficients the (p, ¢)—Fibonacci polynomials are defined by the recurrence
relation

(1.3) Fpgn+1=p@)Fpgn + (@) Fpgn-1

with the initial conditions Fp,0 = 0, F, 41 = 1. Also for the p(z) and ¢(x)
polynomials with real coefficients the (p, q)—Lucas polynomials are defined by the
recurrence relation

Ly gnt1 = P(I)prqm + q(I)LP»an—l

with initial conditions Ly g0 = 2, Lp g1 = p() [1, 2]. Let ay (z) = 2EHVE @) He()
and as(z) = )=y p22(1:)+4q(a7) denote the roots of the characteristic equation

a® —p(x)a —g(zx) =0
on the recurrence relation of (1.3). Binet formulas for the (p,¢)— Fibonacci and
Lucas polynomials are

af (z) — a3 (x)

Fpgn(z) = ar(z) — as(z) and Ly qn(7) = of () + a3 (z)
respectively.
Note that
aq(z) + as(z) = p(x)
o (z) —az(z) = Vp*(2)+4q(2)
(1.4) oy (z).an(z) = —q(z)
o (2) —aj(z)
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Division algebras are search topic of great interest, that are real numbers R,
complex numbers C, quaternions H, and octonions Q. The quaternions H are
on commutative normed division algebra over the real numbers R and due the
commutativity, one cannot directly extend various results on real and complex
numbers to quaternions. Also studies on different types of sequences of quaternions
are; Fibonacci Quaternions, Split Fibonacci Quaternions and Complex Fibonacci
Quaternions.

A quaternion « is defined by

a = agp + a1i1 + agig + a3i3

where ag, a1, a2,a3 € R and i1, i and i3 are the fundemental quaternion units that
i? = i3 = i2 = —1, iyipg = —igiy = i3 ,igl3 = —igiy = i1 izi; = —i1i3 = iz and
i1igi3 = —1.

The algebra of quaternions is denoted by H and it is a four-dimensional asso-
ciative normed division algebra over the real numbers.

The n—th Fibonacci quaternion number of order n is defined by
Qn - Fn + FnJrlil + Fn+2i2 + Fn+3i3

where F), is the n—th Fibonacci number and i1, 40,43 satisfy the identities stated
in the previous definition and n = 0, +1,£2,--- .
The k—Fibonacci quaternion number of order n is defined by

Qin = Frp + Fint1t1 + Finyoto + Fi nysis

where Fj, ,, is the n—th, k—Fibonacci number and 41, 42,43 and n = 0, £1,£2,--- .
Note that,

Qun = (kFgn—1+ Fin-2) + Fint1i1 + Finyoio + Fi nisis,

another expression for the k—Fibonacci quaternion number of order n.
By definition of the generating function of some polynomials for example ( 1.2),
the generating function associated ggr(t) is defined by

(1.6) 90(t) = Quul@)t"
n=0
4,7, 8,10].

2. MAIN THEOREMS OF (p,q)—FIBONACCI QUATERNION POLYNOMIALS.

In this section, we introduce the (p, ¢)—Fibonacci quaternion polynomials and de-
rive the Binet formula, the generating function and some identities of the (p, ¢)—Fibo-
nacci quaternion polynomial sequences.

The (p, ¢)—Fibonacci quaternion polynomials QF), ,,(x) are defined by the re-
currence relation

3
QFpqn(z) = Z Fp qn+k(T)er
k=0

where F), ; 4k is the (n+ k) —th, the (p, ¢)—Fibonacci polynomials. Note that the
initial conditions of this sequence are given by

3
QFpq0(@) =) Fpqu(@)ex = e +p(@)es + (0 (2) +q(x))es
k=0
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QFpqa(z) = Z a4k (T

= e +p(9€)€1 + (P*(2) + q(x))e2 + (P (x) + 2p(x)q(x))es.

Also QF), 4.n(z) is written by a recurrence relation of order two;

3
QFpgnt1(z) = Z Fyqntk+1(T)er
k=0
3
= Z(p($>Fp,q,n+k<x) + q(@) Fpgn-141())ex
k=0
3 3
= p(x)Zqun+k z)ex + q(z Zqun 1+k(T)ex
k=0 k=0
and so on,

QFpqn+1(x) = p() QL .n(2) + ¢(2) QL g,n—1(7).

For the (p, q)—Lucas quaternion polynomials QLy g (%) = S5 _o Ly gnik(T)ex
where Ly g nyk(x) is the (n + k) — th, the (p, ¢)—Lucas polynomials. So for n > 1,

QLp.,q,n+1(x) = p(x)QLp,q,n(x) + Q(x)QLp,q,n—l(x)~

with initial conditions
3
QLpgo(z) = Z Lyp,q(2)ek
k=0

3
QLpga(x) = Z Lpqr+1(2)er
k=0

We continue with the generating function results

Theorem 2.1. The generating function for the (p, q)— Fibonacci and Lucas quater-
nion polynomials QF, ¢n(x) and QL, 40 () are

_ QF0(@) +[QF 41(x) = p(2)QF, 4 0(x)]t
por(®) = 1= pla)t — 4)
QLp,q,O(x) + [QLp,q,l(x) - p(z)QLp,q,O(x)]t
1—p(z)t — q(x)t? '

Proof. The generating function gor(t) for QF) 4. (z) must be of the form
(2.2)

Z QFp g ()" = QF;4,0(2)+QFp g1 (2)t+QFy q.2(2)t* + - -+ QFp g n (x)t"+- -
n=0

(2.1) gor(t) =
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The formal power series expansions of —p(z)tgqr(t), —q(x)t*gor(t) and gor(t) are

gor(t) = ZQ p,q,m = QFpq0(7) + QFpq1(2)t +Q p,q,()t2
4.4 Qprqﬁn(x)t” + .-
—p(@)tgor(t) = —p(@)QFpq0(@)t = p(2)QFp g1 (2)t — p(2)QFpq2(2)t’
- p(m)QFp,q,n(x)tn+l -
*Q(x)tngF(t) = 7q($)QFp q, o(z )tz - Q(x)QFp,q,l(x)tB - Q<x)QFp,q,2($)t4

— = q(@)QFp ()t —
) = 9ar (Op(@)t — gor (t)g(x)t? is
gor(t)(1 = p(2)t — q(2)t*) = QFpq0(2) + QFpq1(2)t — p(2)QFp q0(2)t
+HQRF)p,q2(z) — p(x)QFpq.1(x) — gz )QFp,q,O(x)]t2
+[QFp,q,3(x) - p(x)QFp,q,Z(x) - Q(x)QFp,q,l(x)]tS
+...
+[QFp,q,n(‘r) - p(x)QFp,q,nfl(x) - Q(x)QFp,q,n72(m)]tn
+
= Q P,q,0 ( ) [Q p,q,1 ( ) ( )Q P,q,0 ( )]

Hence QF, q0(z) + (QFp q1(x) — p(2)QF, 4.0(x))t is a finite series, so we can

rewrite [1 —p(x)t — q¢(2)t*]gor(t) = QFp.4.0(x) +[QFp.q1(x) — p(2)QF, 4 0(z)]t and
hence

respectively. So the expansion for ggr(t

(2.3 sar(t) = Lraol )+ QFpan(0) =o)L 0o

as we claimed.
The other assertion can be proved similarly. (I

Another way to defination of the generating function is in the following corollary.

Corollary 2.1. The generating function for the (p, q)— Fibonacci and Lucas quater-
nion polynomials QF, ¢ »(z) and QL ¢ n(z) are

gor(t) = e1 + p(@)ez + p*(x)es + q(x)es + [eo + q(@)ez + p(x)q(z)es] t
or 1 —p(z)t — q(z)t?

{ 2eq + p(x)er + [p?(x) + 2q(x)] ea + [p*(2) — 3p(x)q(x)] es }
) +(—p(x)eo + 2q(x)er + q(x) [Bp(x) — 1] ez + q(x) [p*(z) + 2q(z)] es)t
gar 1= p(a)t — q(2)2

Now we can give the following theorems.

Lemma 2.1. For the generating function given in Theorem 2.1 we have
QFp,q,1(x)—a2(z)QFp,q,0(z) _ QFp,q,1(x)—a1(2)QFp,q,0(z)
1—aq (z)t 1—aq(x)t
o (x) — oz ()

QLp,g1(z)—a2(x)QLp,q,0(x) _ QLp,q,1()—1(2)QLp,q,0(x)
1—aq(x)t 1—aq(x)t

grlt) = o)~ ()

gor(t) =




A NOTE FOR THE (p,q)—FIBONACCI AND LUCAS QUATERNION POLYNOMIALS 41

Proof. From the expression of gop(t) in Teorem 2.1 and the use of (1.4) ,we have:

QF}pq0() + [QFp4,1(x) — p(2)QF} g0(2)]t
1 —p(z)t — q(z)t?

_ QFpq0(7) + [QFp41(z) — p(@)QF) 4.0(@)]t
(1—a1( (1 — az(2)t)
_ (Qquo + [QFpq,1(x) — (a1(z) + a2(2))QF) q0(x )ﬁ) " <a1($)az z
(1 —ar(@)t)(1 — az(x)t) a1 (z) — az(x)
QquO( ) + a1 (2)QF, 41 (2)t — af(x )QquO
{ —a1 2)QF} q.0(2)t — a2(z)QF} q0( ) Qqul }
_ +a1 :Dq0< )t+a2() pqO( )t+Q pql pql
(a1 (x) — az(2))(1 — a1 (z)t)(1 — ao(2)t)
{ QFpq1(2)(1 — az()t) + ao(2)QF)p g,0(x)(—1 + az(z)?) }
_ +QFpq,1(2)(=1+ an(2)t) + o (2)QFp q,0(x) (1 — an (2)?)
(a1($)—a2( N1 = ar(@)t)(1 — az(x)t)
{ (1= az(@)t)(Q pql(x) aa(7)Q quO( ) }
1*041 J(QFp g1 (x )*041( z)QF)pq0(2))

( — (7)) 1—a1( )t )(1—a2( )t)
[Qqu 1(z) — as(x QquO(x) _ QFpq(z) — al(x)Qprq,O(x)} .

1—aq(x)t 1— as(x)t

_a2

The other cases can be proved similarly. O

Lemma 2.2. Let the (p,q)—Fibonacci and Lucas polynomials are F, 4 n(x) and
Ly, qn(x). We have

(1)
Fp o kt1(®) — a2(2)Fp g n(T) = alf (z)
Fp o kt1(x) — a1(@) Fp g nu(r) = 0/26(1‘)
(2)
LP7q7k+1('r) - ag(x)Lp,q,k(l') — Oék(l‘)
a1(x) — as(x) !
a1 (z) Lp g k() — Lp g rt1(7) _ k

a1 (z) — as(x)

Proof. We prove it by induction. Let k = 1, then

Fpg2(x) — ao(x)Fpq1(x) = p(x) — a2(z) = oy ().
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Let us assume that the equation is Fj,,(z) — ag(2)Fpgn_1(z) = of *(z) for
k=mn —1. For Kk =n it becomes
af(z) = of Hz)a(z)

(Fpgn(®) — a2(2) Fp g n—1(x)) o1 (2)

= a(2)Fpqn(@) — ar(z)az(z).Fpgn-1(z)

= (p(z) — a2(2))Fpgn(@) = (—a(@)) Fpgn-1(z)

= p(@)Fpqn(@) + q(@)Fpgn-1(2) — a2(z)Fp,qn(z)

= Fpgn+1(7) — a2(2) Fp q.n(2).
So we get the desired result. (2) can be proved similarly. O

Now we want to derive the Binet formulas for QF), 4 »(x) and QL, 4. (x). To get
this we can give the following theorems.

Theorem 2.2. Forn > 0, the (p,q)— Fibonacci and Lucas quaternion polynomials
QFp qn(x) and QLy 4., (x) are

_ oi(@)al(e) - a3(@)a3(e)
Wran®) = T @)~ sl
QLyana) = oj(x)a}(x) + a3la)os(x)

3 3
where af(z) = Y. of(x)er  and ai(x) = Y ob(v)ex.
k=0

Proof. Using the Lemma 2.2, we easily get

0or(t) = e [(QFpga(x) — 0s(2)QFp g0(x)) 3 af(a)t”
oy (z) — az(x) o
—(QF, P,q,1 1(7) — ai(z) Fpq.0 Z ]
=0
{ Zk 0( pq,1+k( ) — az(x) qu( ))ekZ -0 af (z)t" }
_ Zk o(Fp,q1+k(2) — a1 (z) Fyp g k() )€, Zn:O af (z)t"
o1 (2) — as(z)
1 3 0o 3 00
= — Z af (z)ekz af (x)t" fz ag(x)ekz al(x)t"
ay(z) — as(x) = —= = o
s d(@)at(x) - az(z)ab(z) ,
- nz:;) a1(x) — as(x) t
and by the identity (1.6). This completes the proof. O

Now we can also formulate the Catalan identity and Cassini identity by using
Binet formulas.

Theorem 2.3. (Catalan identity) Let the generating function for the (p, q)— Fibonacci
and Lucas quaternion polynomials are QF, ¢ n(z) and QLy 4 (). For n and «a,
nonnegative integer numbers, such that o < n , we have
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()g" " (x)(an(z) — as(x))"”

*
2

Q p,q,n+r< )Q P,q,n— r( )

QLp g n+r (z) QLypgn—r(x (z) —

QFy (@)
QLy (%)

(a

r+na*

(=1

Proof. Using the Binet formula of Theorem 2.3 and Lemma 2.2
of (1.4) involving the roots a;(z) and as(z), we have
2

Q p,q,n+r( JQF, P,q,n— r(z) — p,q,n(‘r)

af (@)t (@) — aj(z)ay T (z)  of(z)ey "

Q;

(z)

1(w)as(z

1(2) — ax(x))*
)" " () (a

"(x

1(2) = ()"

also some identity

(z) — az(x)a
(z) — as(z)
(@) — ai(z)

()a ”*T( )

n
2

alal(x) — () )
B (ai(x)jall ($)>
—ao?f(éz):

Qo
*( 2

)

n—r

(@) + o (w)ag

(r) — 207 (x)a

n
2

()

(1 (@) — az(@))”

) (-

i (z)

a(z)

) -

ai(z)as(z))"

qr ()

(@)’
(2)"

(o1 ()
(=D aj(z)as ()" " (2)(

(0n(z) — as(x))?

The other case can be proved similarly.

]

Theorem 2.4. (Cassini identity) For the (p,q)— Fibonacci quaternion polynomials
QF, ¢n(x) and the (p,q)—Lucas quaternion polynomials are QLy, 4 »(x), we have

QFpgn+1(2)QFp g n—1(7) — Q pql( z) =

(=D"ai(@)as(x)g" " (x)

2
p,q;n

14+n %
Qg

QLyp gntr(7)QLyp g n—r(7)— (z) = (-1)

for any natural number n .

a1(x) — as(x)

(z)as ()"~ (@) (a1 (2) —a(x))

Theorem 2.5. The (p, ¢)—Fibonacci and Lucas quaternion polynomials are QF) 4. (x)

and QLyp q.n(x), for n >0, we have
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af)2(2)a? () — (ad)2(z)e2" i (x
1) Q@) + Qg (a))? = ()= (@3 oy (1)
o1 (x) — () (al)?(z) (&
(N QL) + @Lpgn@)? = { (2l T
(2)
QFpg1(z) — ar(2)QFpq0(z) = a3(z)
QFpg1(z) — a2(2)QFpq0(x) = aj(z)
and
QLpga(z) = (2)QLpgo(x) = (a1(z) = az(x))as(z)
QLpg1(2) — a2(2)QLypg0(x) = (ou(z)—az(x))oi(z).

Proof. In order to prove the identity (1), we use the formulas to get
Q(x)(QFp,q,n(x))Q + (QFP7Q,7L+1(x))2
* n * n 2 * n
= q(=) aj(z)ay (z) — a5 (z)ag (x) af(z)ai ™t (@) —
a1(x) — as(x
1(z)ay
x

( (z)
{ q(z)(a})?(z)ai"(z) — 2q(x)aj(x)af (

(af)* ()i (2) — (a3)*(2)03™ " (x)

a1(z) — az(z)

and the result follows.The other cases can be done similarly. Also the proof of the
identity for the (p, ¢)—Lucas quaternion polynomials (2) is similar to (1). O

Then we can give the following theorem relative to binomial sum.

Theorem 2.6. For the (p,q)—Fibonacci and Lucas quaternion polynomials are
QF, g n(z) and QLy 4 (x), n >0 we have following binomial sum formula for odd
and even terms,

(1)

n

QFpq2n(z) = Z

m=

()" " p(x)" QFp g.m ()

(e}

7N
3 3
v

n

QFP7472H+1(:E) = q(x)nimp(m)mQFp,q,erl(x)

i
7N
3 3
N———

m
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(2)
QLpgan(z) = Z (;) q(x)" " p(x)" QLyp,q,m(x)
m=0
Qpyzrne) = 3 (1 )ale " pa) QL 0).
m=0
Proof. For (1) from (1.4) and Binet formulas, we get
»Jal@)" (@) QF g ()
2ok
— - n )M (1 ma}‘(x)a’ln(x) — OZ;(ZL')OAQFL(QJ)
= 3 (et T
e N M LC R CRE)
S (1 )ater et
=0
= oilz x z)aq(z))” — 23(2) z) — p(x)as(x))”
S ) (@) - S (o) i) (o)
_ oi(@)ai"(z) — aj(z)a3" (z)
a1(z) — as(x)
= QFp q, 2n (7).
The other cases (2) can be done similarly.

45

We formulate the sum of the first n terms of these sequences of (p, ¢)—Fibonacci

quaternion polynomials.

Theorem 2.7. The sum of the first n—terms of the sequence QFp qn(x) and

QL gn(x) is given by

+QF, . o(z) — aj (z)as(z)—as(z)ai (=)

ai(z)—az(x)

ZQFp,q,m(ff) (a1(z) — 1)(ag(x) — 1)

m=0
{ —4(@)QLpgn () = QLp,gnt1() + QLpg0(x) }
—[ai(@)az(z) + a5 (z)ou (7))

{ —q(@)QFp gn(T) — QFp g nt1(z) }

2 hpam(@) = (@1(2) — Daa(@) — 1)
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Proof. Note that using Binet formula and some identities related with the roots
a1(x) and as(x), we get

=
B Mg(ai‘(az)ai(w — a3(z)as(z))
_ M(ai‘(x);)a;(m) ~ ai(a) mzi:o o3 (2)
- M(QT(I)W—GZ(x)%)

Th

(1]

2]

(3]

(4]

af (@) (a7 (@) — D(az(z) — 1) — aj(z) (a5 (@) — (a1 (z) — 1)

(a1 (2) = ag(x))(ar(z) = 1)(az(z) - 1)

e other cases can be done similarly. O
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