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Abstract

The aim of the present article is to characterize some properties of the Miao-Tam equation
on three-dimensional generalized Sasakian space-forms with trans-Sasakian structures. It
has been proved that in such space-forms if the Miao-Tam equation admits non-trivial
solution, then the metric of the space form must be a gradient Ricci soliton. We have derived
that there does not exist a non-trivial solution of the Fischer-Marsden equation on the said
space-forms. We have also investigated certain features of Ricci solitons and gradient Ricci
solitons. At the end of the article, we construct an example to verify the obtained results.

1. Introduction

Miao-Tam equation on f -cosymplectic manifolds was investigated by X. Chen [1]. He proved that under certain restrictions such a manifold
is either locally the product of a Kähler manifold and an interval or a unit circle, or, the manifold is of constant scalar curvature. He also
established that if the manifold is connected and satisfies the Miao-Tam equation, then the manifold is Einstein under certain conditions.
Since an Einstein manifold or a manifold of constant curvature is model of some interesting physical systems, geometers are naturally
motivated to find the conditions under which a manifold will be Einstein or, a manifold of constant scalar curvature. To this end we
study Miao-Tam equation on generalized Sasakian space-forms with trans-Sasakian structure and established that if a generalized Sasakian
space-form with trans-Sasakian structure admits a non-trivial solution of the Miao-Tam equation, then the scalar curvature is constant and the
manifold is Einstein or the structure is β -Kenmotsu. Several researchers [2–10] have investigated the Miao-Tam equation for some classes of
contact manifolds.
Let (Mn,g),n>2 be a compact orientable Riemannian manifold with a smooth boundary ∂M and λ : Mn→ R be a smooth function on the
manifold. Then the Miao-Tam equation on Mn is given by

Hessλ = (∆λ )g+λS+g, (1.1)

on M and λ = 0 on ∂M, Hess, ∆ being respectively the Hessian operator and Laplacian with respect to the metric g. S indicates the Ricci
curvature and λ indicates the potential function. The metrics satisfying the equation (1.1) are known as Miao-Tam critical metrics [11].
A sub-class of the Miao-Tam equation is the Fischer-Marsden equation which is given by

Hessλ = (∆λ )g+λS.

The Fischer-Marsden equation (FME, in short) was constructed by A.E. Fischer and J. Marsden in [12]. The authors [12] in their paper
conjectured that a compact Riemannian manifold that admits a non-trivial solution of the FME is necessarily Einstein. This statement is
known as Fischer-Marsden conjecture. Later Kobayashi [13] pointed out that the said conjecture is not true in general. They are valid only in
some special cases. After that a huge number of works has been done to analyze Fischer-Marsden conjecture on Riemannian manifolds
admitting several structures.
R. S. Hamilton [14] introduced the notion of the Ricci flow in 1988. On a Riemannian or semi-Riemannian manifold,
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denotes the Ricci flow equation. A self-similar solution of the above equation is called the Ricci soliton and the soliton equation is given by

£V g+2S+2ψg = 0, (1.2)

£ denotes the Lie-derivative operator. Here V is called the potential vector field and ψ is the soliton constant. If the sign of ψ is positive
then the soliton is known as expanding and for the cases where ψ is zero or negative, the soliton is steady or shrinking, respectively. For
details about Ricci solitons see the articles [15–18]. If the potential vector field V is the gradient of a smooth function ζ , then it is called the
gradient Ricci soliton. Thus the gradient Ricci soliton is given by

Hess(ζ )+S+ψg = 0, (1.3)

here Hess is the Hessian operator.
The theory of generalized Sasakian space-forms came into existence after the work of Alegre et al. [19]. A generalized Sasakian spce-form
(GSSF, in short) is such a manifold whose Riemann curvature R is given by

R(V1,V2)V3 = f1R1(V1,V2)V3 + f2R2(V1,V2)V3 + f3R3(V1,V2)V3, (1.4)

f1, f2 and f3 are smooth functions on M and

R1(V1,V2)V3 = g(V2,V3)V1−g(V1,V3)V2,

R2(V1,V2)V3 = g(V1,φV3)φV2−g(V2,φV3)φV1 +2g(V1,φV2)φV3,

R3(V1,V2)V3 = η(V1)η(V3)V2−η(V2)η(V3)V1 +g(V1,V3)η(V2)ξ −g(V2,V3)η(V1)ξ .

Such a manifold admitting different almost contact structures like Sasakian, K-contact, trans-Sasakian, etc. was analyzed by Alegre and
Carriazo. GSSF is now drawing attention of several geometers. In [20], it is proved that any GSSF with dimension greater than or equal to
five must be Sasakian-space-form. It is also proved in the same article that a K-contact GSSF is a Sasakian manifold. For more details we
cite the papers [21–25].
The present paper is organized as follows: After the introduction, we give some preliminaries in the Section 2. In Section 3, we have studied
Miao-Tam equation on three dimensional GSSFs with trans-Sasakian structure. In the same section we have proved that if a non-trivial
solution of the Miao-Tam equation exists then the metric must be a gradient Ricci soliton and non-existences of the non-trivial solution of the
Fischer-Marsden equation is also deduced. In the next section, we have derived some new results of Ricci solitons and gradient Ricci solitons
on the same space-forms. In the last section, we give an example to verify the deduced results.

2. Preliminaries

A smooth manifold M2n+1 is known as an almost contact manifold (ACM) if there exists a structure (φ ,θ ,η), where φ , θ and η are,
respectively, a (1,1)-tensor field, a (1,0) type vector field and a 1-form, such that

φ
2V1 =−V1 +η(V1)θ , η(θ) = 1, φθ = 0, η .φ = 0 rank(φ) = 2n,

for every vector field V1 on M2n+1 [26, 27].
An ACM M2n+1 is called an almost contact metric manifold (ACMM) if it admits a Riemannian metric g such that

g(φV1,φV2) = g(V1,V2)−η(V1)η(V2), (2.1)

for every vector fields V1, V2 on M2n+1. Equation (2.1) gives

g(φV1,V2) =−g(V1,φV2).

An ACMM is called a contact metric manifold if there exists a 2-form Φ such that dη =Φ, where Φ(V1,V2)= g(V1,φV2). An ACMM is called
normal if Nijenhuis torsion tensor [φ ,φ ](V1,V2)+ 2dη(V1,V2)θ vanishes, where [φ ,φ ](V1,V2) = φ 2[V1,V2] + [φV1,φV2]− φ [φV1,V2]−
φ [V1,φV2]. A normal contact metric manifold is called a Sasakian manifold. An ACMM is called a trans-Sasakian manifold [28] if there
exist two smooth functions α and β such that

(∇V1 φ)V2 = α(g(V1,V2)θ −η(V2)V1)+β (g(φV1,V2)θ −η(V2)φV1), (2.2)

for every vector fields V1, V2 on M2n+1. Actually, trans-Sasakian manifolds are the generalizations of Sasakian manifolds and Kenmotsu
manifolds, that means, if β = 0 (res. α = 0) then the manifold reduces to α-Sasakian (res. β -Kenmotsu) manifold. For more details please
follow the articles [29–33]. From equation (2.2), one can obtain

∇V1 θ =−αφV1 +β (V1−η(V1)θ). (2.3)

In view of (1.4), we have

S(V2,V3) = (2 f1 +3 f2− f3)g(V2,V3)− (3 f2 + f3)η(V2)η(V3), (2.4)

which gives

QV2 = (2 f1 +3 f2− f3)V2− (3 f2 + f3)η(V2)θ , (2.5)

Q is the Ricci operator. Again, contracting V2 in the foregoing equation, we get the scalar curvature as

r = 2(3 f1 +3 f2−2 f3). (2.6)
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Lemma 2.1. For a trans-Sasakian GSSF M, the following relation holds:

f1− f3 +θ(α)+θ(β )−α
2 +β

2 = 0. (2.7)

Proof. According to the equations (2.2) and (2.3), we obtain

R(V1,θ)θ = (θ(α)+αβ )φV1 +(−θ(β )−β
2 +α

2 +αβ )(V1−η(V1)θ). (2.8)

On the other hand, from equation (1.4), it can be easily seen that

R(V1,θ)θ = ( f1− f3)(V1−η(V1)θ). (2.9)

Comparing (2.8) and (2.9), we have

θ(α)+αβ = 0

and

−θ(β )−β
2 +α

2 +αβ = f1− f3.

Combining the last two equations, we obtain the equation (2.7).

Definition 2.2 ( [34, 35]). A vector field V on a Riemannian manifold is called an infinitesimal contact transformation if

£V η = κη , (2.10)

for some smooth function κ on the manifold. If κ = 0, then the vector field is called a strict infinitesimal contact transformation.

3. Miao-Tam Equation (MTE) on Trans-Sasakian Generalized Sasakian Space-forms

The prime aim of the present section is to study the Miao-Tam equation (MTE, in short) on three-dimensional trans-Sasakian GSSFs and
make a bridge between MTE and Ricci solitons. Before going to main topic, we proof the following lemma.

Lemma 3.1. Let M3 be a trans-Sasakian GSSF of dimension three, then

(∇V1 Q)V2 =V1(2 f1 +3 f2− f3)V2−V1(3 f2 + f3)η(V2)θ − (3 f2 + f3)(−αg(φV1,V2)θ +β (g(V1,V2)θ −η(V1)η(V2)θ))

− (3 f2 + f3)(−αφV1 +β (V1−η(V1)θ))η(V2),
(3.1)

1
2

V2(r) =V2(2 f1 +3 f2− f3)−θ(3 f2 + f3)η(V2)−2β (3 f2 + f3)η(V2), (3.2)

and

θ(r) = 4(θ( f1− f3)−β (3 f2 + f3)), (3.3)

for every vector fields V1, V2 on M3.

Proof. Differentiating the equation (2.5) covariantly and using (2.3), one can obtain the equation (3.1). Contracting the equation (3.1) with
respect to V1, we obtain (3.2). Putting V2 = ξ in (3.2), we get the equation (3.3).

Theorem 3.2. If a three-dimensional trans-Sasakian GSSF admits non-trivial solution of the Miao-Tam equation then the scalar curvature
is a constant.

Proof. Let us suppose that the said space form admits non-trivial solution of the Miao-Tam equation. Then, from (1.1), we obtain

(∆λ )g(V1,V2) = (Hessλ )(V1,V2)−λS(V1,V2)−g(V1,V2). (3.4)

Let {u1,u2,ξ} be an orthonormal set of tangent vector fields on M3. Substituting V1 =V2 = ui in the previous equation and summing over i,
we have

(∆λ ) =−(3 f1 +3 f2−2 f3)λ −
3
2
. (3.5)

Using (3.5) in (3.4), we obtain

∇V1 Dλ = λQV1− (3 f1 +3 f2−2 f3)λV1−
1
2

V1. (3.6)

The covariant derivative of the equation (3.6) in the direction of V2 gives

∇V2 ∇V1 Dλ =V2(λ )QV1 +λ∇V2 QV1−V2(3 f1 +3 f2−2 f3)λV1− (3 f1 +3 f2−2 f3)(V2(λ )V1 +λ∇V2V1)−
1
2

∇V2V1. (3.7)

Interchanging V1 and V2 in (3.7), one can obtain

∇V1 ∇V2 Dλ =V1(λ )QV2 +λ∇V1 QV2−V1(3 f1 +3 f2−2 f3)λV2− (3 f1 +3 f2−2 f3)(V1(λ )V2 +λ∇V1V2)−
1
2

∇V1V2. (3.8)
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Again, equation (3.6) gives

∇[V1,V2]Dλ = λQ[V1,V2]− (3 f1 +3 f2−2 f3)λ [V1,V2]−
1
2
[V1,V2]. (3.9)

Using (3.7)-(3.9), we get the curvature tensor as

R(V1,V2)Dλ =V1(λ )QV2−V2(λ )QV1 +λ ((∇V1 Q)V2− (∇V2 Q)V1)−V1(3 f1 +3 f2−2 f3)λV2 +V2(3 f1 +3 f2−2 f3)λV1

− (3 f1 +3 f2−2 f3)(V1(λ )V2−V2(λ )V1).
(3.10)

Contracting (3.10) along the vector field V1, we obtain

S(V2,Dλ ) =(2 f1 +3 f2− f3)V2(λ )− (3 f2 + f3)θ(λ )η(V2)+λ{V2(2 f1 +3 f2− f3)−θ(3 f2 + f3)η(V2)

−2β (3 f2 + f3)η(V2)}.
(3.11)

According to (2.4), we find

S(V2,Dλ ) = (2 f1 +3 f2− f3)V2(λ )− (3 f2 + f3)θ(λ )η(V2). (3.12)

Comparing (3.11) and (3.12), we get

V2(2 f1 +3 f2− f3)−θ(3 f2 + f3)η(V2)−2β (3 f2 + f3)η(V2) = 0, (3.13)

where we have used λ 6= 0. Substituting (3.13) in (3.2), we see that V2(r) = 0, that is, r is a constant.
This completes the proof.

Theorem 3.3. If a three-dimensional trans-Sasakian GSSF admits non-trivial solution of the Miao-Tam equation then either the structure is
β -Kenmotsu or, the manifold is Einstein.

Proof. Replacing V1 by ξ and taking inner product with V1 of the equation (3.10), we have

g(R(θ ,V2)Dλ ,V1) =θ(λ ){−( f1− f3)g(V1,V2)− (3 f2 + f3)η(V1)η(V2)}+( f1 +3 f3)V2(λ )η(V1)

+λ{−θ( f1− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)+V2( f1 +3 f2)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))}.
(3.14)

Putting V1 = ξ in (1.4) and then taking inner product with Dλ , one can obtain

g(R(θ ,V2)V1,Dλ ) = ( f1− f3)(θ(λ )g(V1,V2)−V2(λ )η(V1)). (3.15)

Comparing (3.14) and (3.15), we find

θ(λ ){−( f1− f3)g(V1,V2)− (3 f2 + f3)η(V1)η(V2)}+( f1 +3 f2)V2(λ )η(V1)

+λ

{
−θ( f1− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)+V2( f1 +3 f2)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))

}
= ( f3− f1)(θ(λ )g(V1,V2)−V2(λ )η(V1)).

(3.16)

Interchanging V1 and V2 in the foregoing equation, we find

θ(λ ){−( f1− f3)g(V1,V2)− (3 f2 + f3)η(V1)η(V2)}+( f1 +3 f3)V1(λ )η(V2)

+λ

{
−θ( f1− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)+V1( f1 +3 f2)η(V2)

+(3 f2 + f3)(αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))

}
= ( f3− f1)(θ(λ )g(V1,V2)−V1(λ )η(V2)).

(3.17)

Subtracting (3.17) from (3.16), one can obtain

(3 f2 + f3)(V2(λ )η(V1)−V1(λ )η(V2))+λ{V2( f1 +3 f2)η(V1)−V1( f1 +3 f2)η(V2)−2(3 f2 + f3)αg(V1,φV2)}= 0.

Replacing V1 and V2 by φV1 and φV2, respectively, in the last equation, we obtain

(3 f2 + f3)αg(V1,φV2) = 0,

which implies that either 3 f2 + f3 = 0 or, α = 0, i.e., the structure is β -Kenmotsu.
Let us now discuss the case when 3 f2 + f3 = 0. Then from(2.6), we get r = 6( f1− f3). With the help of (2.4), (3.1), equation (3.16) can be
written as

θ(λ )(S(V1,V2)−( f3− f1)g(V1,V2))−3( f1− f3)V2(λ )η(V1)+θ( f )g(V1,V2)−V2( f )η(V1) = 0,

where f =− rλ+1
2 and

∇V1 Dλ = λQV1 + fV1. (3.18)

As r is a constant, 2V2( f ) =−rV2(λ ) and so, 2θ( f ) =−rθ(λ ). Applying these relations in the above equation, we obtain

θ(λ ){S(V1,V2)−2( f1− f3)g(V1,V2)}= 0,
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where we have used r = 6( f1− f3). From the foregoing equation we obtain either θ(λ ) = 0 or, S(V1,V2) = 2( f1− f3)g(V1,V2). If we
consider θ(λ ) = 0, i.e., g(θ ,Dλ ) = 0, then by covariant derivative

g(∇V1 θ ,Dλ )+g(θ ,∇V1 Dλ ) = 0.

Using (2.3) and (3.18) in the foregoing equation, we have

−αφV1(λ )+βV1(λ )+λS(V1,θ)+ f η(V1) = 0, (3.19)

where we have used θ(λ ) = 0. Applying (1.5), r = 6( f1− f3) and f =− rλ+1
2 in (3.19), we obtain

−αφV1(λ )+βV1(λ )−{λ ( f1− f3)+
1
2
}η(V1) = 0. (3.20)

Replacing V1 by θ , equation (3.20) gives λ ( f1− f3)+ 1
2 = 0, as θ(λ ) = 0. Thus we find that f = 1, a constant and hence λ is also a non-zero

constant. Applying these data in (3.4), we see that S(V1,V2) = − 1
λ

g(V1,V2), i.e, S(V1,V2) = 2( f1− f3)g(V1,V2), as λ ( f1− f3)+ 1
2 = 0.

Thus for every cases, the space-form obeys S(V1,V2) = 2( f1− f3)g(V1,V2). Hence the manifold is Einstein.
Thus the proof is completed.

A consequence of the above theorem is

Corollary 3.4. There does not exist a non-cosymplectic three-dimensional GSSF with β -Kenmotsu structure obeying non-trivial solution of
the MTE, where β is a constant.

Proof. Putting V1 =V2 = ui in (3.16), where {ui}, (i = 1,2,3) being an orthonormal frame of the tangent space, and summing over i, we
find

θ( f1− f3)−β (3 f2 + f3) = 0. (3.21)

Comparing (3.3) and (3.21), we obtain θ(r) = 0. Using (2.7) in (3.21) and considering β as a constant, we find

β (3 f2 + f3) = 0,

which gives β = 0, as 3 f2 + f3 6= 0. Hence the structure is cosymplectic.

Corollary 3.5. Let a trans-Sasakian GSSF be an Einstein manifold and the space form admit non-trivial solution of MTE. Then the metric
is a gradient Ricci soliton.

Proof. Using S(V1,V2) = 2( f1− f3)g(V1,V2) in (3.18), we see that

∇V1 Dλ = {2( f1− f3)+1}V1.

The foregoing equation can be written as

Hess(λ )(V1,V2)+S(V1,V2)−{2( f1− f3)(λ +1)+1}g(V1,V2) = 0,

which is the gradient Ricci soliton, where the soliton constant is 2( f1− f3)(λ +1)+1.

Theorem 3.6 ( [36]). If λ̃ is a solution of the Fischer-Marsden equation (FME, in short) on a three-dimensional trans-Sasakian GSSF, then
the curvature tensor R is given by

R(V1,V2)Dλ̃ =V1(λ̃ )QV2−V2(λ̃ )QV1 + λ̃{(∇V1 Q)V2− (∇V2 Q)V1}+V1( f̃ )V2−V2( f̃ )V1, (3.22)

for every vector fields V1, V2 on M and f̃ =− rλ̃

2 .
Moreover,

∇V1 Dλ̃ = λ̃QV1 + f̃V1. (3.23)

Theorem 3.7. In a three-dimensional trans-Sasakian GSSF, if the FME admits a solution then either the solution is trivial or, the scalar
curvature is a constant.

Proof. Using (2.4) in (3.22), one can obtain

R(V1,V2)Dλ̃ =(2 f1 +3 f2− f3)V1(λ̃ )V2− (3 f2 + f3)V1(λ̃ )η(V2)θ − (2 f1 +3 f2− f3)V2(λ̃ )V1 +(3 f2 + f3)V2(λ̃ )η(V1)θ

+ λ̃{(∇V1 Q)V2− (∇V2 Q)V1}+V1( f̃ )V2−V2( f̃ )V1.
(3.24)

Contracting (3.24) along V1, we infer

S(V2,Dλ̃ ) = (2 f1 +3 f2− f3)V2(λ̃ )− (3 f2 + f3)θ(λ̃ )η(V2)+
λ̃

2
V2(r), (3.25)

where we have used f̃ =− rλ̃

2 . Comparing (3.25) with (3.12), we find that λ̃V2(r) = 0, which gives either λ̃ = 0, i.e., the solution is trivial
or, V2(r) = 0, i.e., the scalar curvature is a constant.
This establishes the theorem.
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Theorem 3.8. In a three-dimensional trans-Sasakian GSSF, if the FME admits a solution then either the structure is β -Kenmotsu or, the
manifold is Einstein or, the solution is trivial.

Proof. Taking inner product of (3.22) with θ , we find that

g(R(V1,V2)Dλ̃ ,θ) =2( f1− f3){V1(λ̃ )η(V2)−V2(λ̃ )η(V1)}

+ λ̃{2V1( f1− f3)η(V2)−2V2( f1− f3)η(V1)+2(3 f2 + f3)αg(φV1,V2)}
+V1( f̃ )η(V2)−V2( f̃ )η(V1).

(3.26)

Replacing V1 by φV1 and V2 by φV2 in (3.26), one can obtain

g(R(φV1,φV2)Dλ̃ ,θ) =−2λ̃ (3 f2 + f3)αg(V1,φV2). (3.27)

Also, from(1.4), we have

g(R(φV1,φV2)Dλ̃ ,θ) = 0. (3.28)

Comparing (3.27) and (3.28), we obtain

λ̃ (3 f2 + f3)αg(V1,φV2) = 0.

Thus three possibility arise: (1) λ̃ = 0, (2) (3 f2 + f3) = 0 and (3) α = 0.
Let us discuss the case when (3 f2 + f3) = 0. Then, from (2.6), we find that r = 6( f1− f3). From (3.22), we get

g(R(θ ,V2)Dλ̃ ,V1) =θ(λ̃ )S(V1,V2)−V2(λ̃ )S(V1,θ)+θ( f̃ )g(V1,V2)−V2( f̃ )η(V1). (3.29)

Also, from (1.4), we infer

g(R(θ ,V2)Dλ̃ ,V1) =−( f1− f3){θ( f̃ )g(V1,V2)−V2( f̃ )η(V1)}. (3.30)

Comparing (3.29) and (3.30) and using r = 6( f1− f3), f =− rλ̃

2 and the equation (2.4), one can obtain

θ(λ̃ )(S(V1,V2)−2( f1− f3)g(V1,V2)) = 0,

which implies either S(V1,V2) = 2( f1− f3)g(V1,V2), i.e., the manifold is Einstein or, θ(λ̃ ) = 0. Let us discuss the case when (θλ̃ ) = 0.
Then we have g(θ ,Dλ̃ ) = 0, which gives

g(∇V2 θ ,Dλ̃ )+g(θ ,∇V2 Dλ̃ ) = 0.

Applying (2.3), (2.4), (3.23) and f̃ =− rλ̃

2 in the foregoing equation, we see that

−αφV2(λ̃ )+βV2(λ̃ )− ( f1− f3)λ̃η(V2) = 0, (3.31)

where we have used θ(λ̃ ) = 0. Replacing V2 by θ and taking f1 6= f3 in (3.31), we find that λ̃ = 0, i.e., the solution is trivial.
This ensures the validity of the theorem.

4. Ricci Solitons on Three-Dimensional Generalized Sasakian Space-forms with Trans-Sasakian
Structures

In the present section, we study Ricci solitons on three-dimensional generalized Sasakian space-forms with trans-Sasakian structure.

Theorem 4.1. In a three-dimensional trans-Sasakian GSSF obeying Ricci solitons, the potential vector field is an infinitesimal contact
transformation.

Proof. From (1.2), we have

(£V g)(V1,V2)+2S(V1,V2)+2ψg(V1,V2) = 0.

Applying V2 = θ in the foregoing equation and using (2.4), we have

(£V g)(V1,θ) =−2(2( f1− f3)+ψ)η(V1). (4.1)

Again, changing V1 by θ in (4.1), we get

£V θ = (2( f1− f3)+ψ)θ . (4.2)

Applying Lie derivative of η(V1) = g(V1,θ) with respect to V and then using (4.1) and (4.2), we find that

(£V η)(V1) =−(2( f1− f3)+ψ)η(V1),

an infinitesimal contact transformation.

From the above theorem, we prove the following:
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Theorem 4.2. In a three-dimensional trans-Sasakian GSSF obeying Ricci solitons, the soliton is shrinking, expanding or steady if f1− f3 is
positive, negative or zero, respectively.

Proof. We have

(£V dη)(V1,V2) = (£V g)(V1,φV2)+g(V1,(£V φ)V2).

Using (2.4) and (1.2) in the foregoing equation, we infer

(£V dη)(V1,V2) =−2(2 f1 +3 f2− f3 +ψ)g(V1,φV2)

+g(V1,(£V φ)V2). (4.3)

According to Theorem 4.1, V is an infinitesimal contact transformation. Also, since £ and d commutes, equation (2.10) gives

(£V dη)(V1,V2) =((dκ)∧η)(V1,V2)+κg(V1,φV2)

=
1
2
(V1(κ)η(V2)−V2(κ)η(V1))+κg(V1,φV2). (4.4)

Comparing (4.3) and (4.4), we have

g(V1,(£V φ)V2) =
1
2
(V1(κ)η(V2)−V2(κ)η(V1))+(2(2 f1 +3 f2− f3 +ψ)+κ)g(V1,φV2),

which gives

(£V φ)V2 =
1
2
(η(V2)Dκ−V2(κ)θ)+(2(2 f1 +3 f2− f3 +ψ)+κ)φV2.

Changing V2 by θ in the previous equation, we find

(£V φ)θ =
1
2
(Dκ−θ(κ)θ). (4.5)

But

(£V φ)θ = £V φθ −φ(£V θ) = 0, (4.6)

where we used (4.2) and φθ = 0. Using (4.6) in (4.5), we obtain

Dκ = θ(κ)θ ,

which gives

dκ = θ(κ)η . (4.7)

By exterior derivative we find from (4.7) that

0 = d2
κ = d(θ(κ))∧η +θ(κ)dη .

Taking wedge product with η in the foregoing equation, we get

θ(κ)η ∧dη = 0.

As η ∧dη 6= 0, the previous equation gives θ(κ) = 0. Thus, from (4.7), we have dκ = 0, i.e., κ is a constant.
Due to Cartan’s formula, for the closed volume form Ω(= η ∧dη), we have

£V Ω = (divV )Ω, (4.8)

where div is the divergence operator. Again, taking Lie derivative of the volume form Ω(= η ∧dη) and using (4.4) and (4.8), we get

(divV )Ω = 2κΩ,

which implies

divV = 2κ.

Integrating the above equation and using divergence theorem, we see that κ = 0. Thus V is the strict infinitesimal contact transformation and
hence, we get ψ =−2( f1− f3).
This establishes the theorem.

Theorem 4.3. In a three dimensional trans-Sasakian GSSF obeying gradient Ricci solitons, either the structure is β -Kenmotsu or, the
potential function is constant, i.e., the soliton is trivial.
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Proof. Let us suppose that a three dimensional trans-Sasakian generalized Sasakian space-form admit gradient Ricci solitons. Then, from
(1.3), we can write

∇V1 Dζ =−QV1−ψV1. (4.9)

Applying covariant derivative on (4.9), we get

∇V2 ∇V1 Dζ =−∇V2 QV1−ψ∇V2V1. (4.10)

Interchanging V1 and V2 in the previous equation, we obtain

∇V1 ∇V2 Dζ =−∇V1 QV2−ψ∇V1V2. (4.11)

Also, equation (4.9) gives

∇[V1,V2]Dζ =−Q[V1,V2]−ψ[V1,V2]. (4.12)

Using (4.10)-(4.12), we get the curvature tensor as

R(V1,V2)Dζ =−{V1(2 f1 +3 f2− f3)V2−V1(3 f2 + f3)η(V2)θ −V2(2 f1 +3 f2− f3)+V2(3 f2 + f3)η(V1)θ

+2(3 f2 + f3)g(φV1,V2)θ − (3 f2 + f3)(−αφV1 +β (V1−η(V1)θ))η(V2)

+(3 f2 + f3)(−αφV2 +β (V2−η(V2)θ))η(V1)}.
(4.13)

Replacing V1 by θ in (4.13) and then taking inner product with V1, we see that

g(R(θ ,V2)Dζ ,V1) =−{θ(2 f1 +3 f2− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)−2V2( f1− f3)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))}.
(4.14)

Also, the equation (1.4) can be written as

g(R(θ ,V2)Dζ ,V1) = ( f1− f3){V2(ζ )η(V1)−θ(ζ )g(V1,V2)}. (4.15)

Comparing (4.14) and (4.15), we obtain

θ(2 f1 +3 f2− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)−2V2( f1− f3)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))+( f1− f3){V2(ζ )η(V1)−θ(ζ )g(V1,V2)}= 0.
(4.16)

Interchanging V1 and V2 in (4.16), we have

θ(2 f1 +3 f2− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)−2V1( f1− f3)η(V2)

+(3 f2 + f3)(αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))+( f1− f3){V1(ζ )η(V2)−θ(ζ )g(V1,V2)}= 0.
(4.17)

Subtracting (4.17) from (4.16), we see that

2V1( f1− f3)η(V2)−2V2( f1− f3)η(V1)−2(3 f2 + f3)αg(V1,φV2)+( f1− f3){V2(ζ )η(V1)−V1(ζ )η(V2)}= 0. (4.18)

Replacing V1 by φV1 and V2 by φV2 in (4.18), we obtain

(3 f2 + f3)αg(φV1,V2) = 0,

which indicates that either α = 0, i.e., the structure is β -Kenmotsu or, 3 f2 + f3 = 0. For the later case, with the help of (2.6) and (3.2), we
get

V1( f1− f3) = 0, (4.19)

for every vector field V1, i.e., f1− f3 is a constant. Thus, from (4.18), we obtain

( f1− f3){V2(ζ )η(V1)−V1(ζ )η(V2)}= 0,

which gives either f1 = f3 or

V2(ζ )η(V1) =V1(ζ )η(V2). (4.20)

Let us discuss the second possibility. Putting V2 = θ in (4.20), we obtain

Dζ = θ(ζ )θ . (4.21)

Taking covariant derivative of (4.21) with respect to V1 and using (2.3), we obtain

∇V1 Dζ =V1(θ(ζ ))θ +θ(ζ )(−αφV1 +β (V1−η(V1)θ)). (4.22)

Comparing (4.22) with (4.9), we find that

V1(θ(ζ ))η(V2) =−S(V1,V2)−ψg(V1,V2)−θ(ζ )(−αg(φV1,V2)+β (g(V1,V2)−η(V1)η(V2))).
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Since 3 f2 + f3 = 0, using (2.4) in the above equation, we get

V1(θ(ζ ))η(V2) =−{2( f1− f3)+ψ}g(V1,V2)−θ(ζ )(−αg(φV1,V2)+β (g(V1,V2)−η(V1)η(V2))). (4.23)

Replacing V2 by φV2 in (4.23), we see that

{2( f1− f3)+ψ}g(V1,φV2)+θ(ζ )(−α(g(V1,V2)−η(V1)η(V2))+βg(V1,φV2)) = 0.

Contracting the above equation and using trφ = 0, we get

αθ(ζ ) = 0,

which gives θ(ζ ) = 0, as we consider α 6= 0. Thus, from (4.21), we see that Dζ = 0, i.e., ζ is a constant.
Hence the proof is completed.

From the equation(4.19), we can state the following corollary

Corollary 4.4. If a three-dimensional trans-Sasakian GSSF admits gradient Ricci solitons, then either the structure is β -Kenmotsu or,
f1− f3 is a constant.

5. Example

Let M = {(x,y,z) ∈ R3 : z 6= 0} be a three-dimensional manifold, where (x,y,z) are the standard co-ordinates in R3. We choose the basis
vectors on M as

u1 = e−2z ∂

∂x
, u2 = e−2z ∂

∂y
, u3 =

∂

∂ z
.

Then we find by direct computation that

[u1,u2] = 0, [u1,u3] = 2u1, [u2,u3] = 2u2.

Let g be the metric tensor defined by

g(u1,u1) = 1, g(u2,u2) = 1, g(u3,u3) = 1, g(u1,u2) = 0, g(u1,u3) = 0, g(u2,u3) = 0.

The 1-form η is given by η(V1) = g(V1,u3) for all V1 on M. Let us define the (1,1)-tensor field φ as

φu1 =−u2, φu2 = u1, φu3 = 0.

Then we see that

η(u3) = 1, φ
2V1 =−V1 +η(V1)u3, g(φV1,φV2) = g(V1,V2)−η(V1)η(V2), dη(V1,V2) = g(V1,φV2).

Thus the given manifold admits a contact metric structure (φ ,u3,η ,g).Now, using Koszul’s formula, we obtain

∇u1 u1 =−2u3, ∇u1 u2 = 0, ∇u1 u3 = 2u1, ∇u2 u1 = 0, ∇u2 u2 =−2u3, ∇u2 u3 = 2u2, ∇u3 u1 = 0,

∇u3 u2 = 0, ∇u3 u3 = 0.

Thus the given structure is a trans-Sasakian structure with α = 0, β = 2. The components of the curvature tensor are given by

R(u1,u2)u2 =−4u1, R(u2,u1)u1 =−4u2, R(u1,u3)u3 =−4u1, R(u2,u3)u3 =−4u2, R(u3,u1)u1 =−4u3,

R(u3,u2)u2 =−4u3, R(u1,u2)u3 = 0, R(u1,u3)u2 = 0, R(u2,u3)u1 = 0.

From the above expressions, the given manifold is a generalized Sasakian space-form with f1 = ω−1, f2 =−ω+3
3 and f3 = ω +3, where

ω is a smooth function on M.
The non-zero components of the Ricci tensor are given by

S(u1,u1) =−8, S(u2,u2) =−8, S(u3,u3) =−8.

Thus we see that S(V1,V2) =−8g(V1,V2), for every vector fields V1, V2 on M. Hence the space-form is an Einstein manifold. The scalar
curvature of the manifold is −24.
Let λ = e−

az
2 +b, where a and b are scalars, so that, e−

az
2 = λ −b. Now Dλ =− a

2 e−
az
2 u3 =− a

2 (λ −b)u3. Then

∇u1 Dλ =−a(λ −b)u1, ∇u2 Dλ =−a(λ −b)u2, ∇u3 Dλ =
a2

4
(λ −b)u3.

Thus (∆gλ ) = ( a2

4 − 2a)(λ − b). Now −(∆gλ )g(ui,u j)+ g(∇ui Dλ ,u j)−λS(ui,u j) = g(ui,u j), i, j = 1,2,3, gives the following two
equations

(a− a2

4
)(λ −b)+8λ = 1
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and

2a(λ −b)+8λ = 1.

Comparing the above two equations, we see that a = 0, b =− 7
8 and λ = 1

8 or a =−4, b = 1
8 and λ = e2z + 1

8 . Thus the non-trivial solution
of the Miao-Tam equation exists on the given manifold. Since the manifold is Einstein and the structure is β -Kenmotsu (as α = 0), the
Theorem 3.3 holds good.
Again, let λ̃ = e−

az
2 +b, where a and b are scalars, so that, e−

az
2 = λ̃ −b. Now Dλ̃ =− a

2 e−
az
2 u3 =− a

2 (λ̃ −b)u3. Then

∇u1 Dλ̃ =−a(λ̃ −b)u1, ∇u2 Dλ̃ =−a(λ̃ −b)u2, ∇u3 Dλ̃ =
a2

4
(λ̃ −b)u3.

Thus (∆gλ̃ ) = ( a2

4 −2a)(λ̃ −b). Now −(∆gλ̃ )g(ui,u j)+g(∇ui Dλ̃ ,u j)− λ̃S(ui,u j) = 0, i, j = 1,2,3, gives the following two equations

(a− a2

4
)(λ −b)+8λ = 0

and

2a(λ −b)+8λ = 0.

Solving the last two equations, we see that λ̃ = 0, i.e., the solution is trivial, which ensures the validity of the Theorem 3.8.
Let us consider the potential vector field V = xe2zu1 + ye2zu2 +

1
2 (e

2z−1)u3. Then equation (1.2) is satisfied for that V with ψ = 8− e2z,
i.e., the soliton is steady at z = 3

2 log2 and it is expanding or shrinking if z is less than or greater than 3
2 log2, respectively. Also

(£V η)(V1) = e2zη(V1), for any vector field V1 on M. Hence V is an infinitesimal contact transformation. In this way Theorem 4.1 is satisfied.
Next, we suppose that the potential vector field V is the gradient of a smooth function ζ , i.e., V = Dζ . Then

Dζ = e−2z ∂ζ

∂x
u1 + e−2z ∂ζ

∂y
u2 +

∂ζ

∂ z
u3.

Therefore,

∇u1 Dζ = e−4z ∂ 2ζ

∂x2 u1−2e−2z ∂ζ

∂x
u3 + e−4z ∂ 2ζ

∂x∂y
u2 + e−2z ∂ 2ζ

∂x∂ z
u3 +2

∂ζ

∂ z
u1,

∇u2 Dζ = e−4z ∂ 2ζ

∂y2 u2−2e−2z ∂ζ

∂y
u3 + e−4z ∂ 2ζ

∂y∂x
u1 + e−2z ∂ 2ζ

∂y∂ z
u3 +2

∂ζ

∂ z
u2,

∇u3 Dζ =−2e−2z ∂ζ

∂x
u1 + e−2z ∂ 2ζ

∂ z∂x
u1−2e−2z ∂ζ

∂y
u2 + e−2z ∂ 2ζ

∂ z∂y
u2 +

∂ 2ζ

∂ z2 u3.

Thus the equation ∇V1 Dζ +QV1 +ψV1 = 0 gives

e−4z ∂ 2ζ

∂x2 +2
∂ζ

∂ z
−8+ψ = 0,

e−4z ∂ 2ζ

∂y2 +2
∂ζ

∂ z
−8+ψ = 0,

and

∂ 2ζ

∂ z2 −8+ψ = 0.

The last three equations satisfy simultaneously only when ζ is a constant. Thus we see that the soliton is trivial, which verifies the Theorem 4.3.

Article Information

Acknowledgements: The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.

Author’s Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC
4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles
were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of Data and Materials: Not applicable.



Universal Journal of Mathematics and Applications 11

References

[1] X. Chen, On almost f -cosymplectic manifolds satisfying the Miao-Tam equation, J. Geom., 111 (2020), Article No 28.
[2] A. Barros, E. Ribeiro Jr., Critical point equation on four-dimensional compact manifolds, Math. Nachr., 287 (2014), 1618–1623.
[3] A. Besse, Einstein Manifolds, Springer-Verlag, New York, (2008).
[4] A. M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, Bol. Soc. Mat. Mexicana, 26 (2020), 1289–1299.
[5] A. Ghosh, D. S. Patra, Certain almost Kenmotsu metrics satisfying the Miao-Tam equation, arXiv:1701.04996v1[Math.DG], (2017).
[6] A. Ghosh, D. S. Patra, The critical point equation and contact geometry, arXiv:1711.05935v1[Math.DG], (2017).
[7] T. Mandal, Miao-Tam equation on almost coKähler manifolds, Commun. Korean Math. Soc., 37 (2022), 881–891.
[8] T. Mandal, Miao-Tam equation on normal almost contact metric manifolds, Differ. Geom.-Dyn. Syst., 23 (2021), 135–143.
[9] D. S. Patra, A. Ghosh, Certain contact metrics satisfying the Miao-Tam critical condition, Ann. Polon. Math., 116 (2016), 263–271.

[10] A. Sarkar, G. G. Biswas, Critical point equation on K-paracontact manifolds, Balkan J. Geom. Appl., 5 (2020), 117–126.
[11] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. PDE., 36(2009), 141–171.
[12] A. E. Fischer, J. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Am. Math. Soc., 80 (1974), 479–484.
[13] O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Jpn., 34 (1982), 665–675.
[14] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–261.
[15] B.-Y. Chen, A survey on Ricci solitons on Riemannian submanifolds, Contemp. Math., 674 (2016), 27–39.
[16] A. Sarkar, G. G. Biswas, Ricci soliton on generalized Sasakian space forms with quasi-Sasakian metric, Afr. Mat., 31 (2020), 455–463.
[17] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca., 67 (2017), 979–984.
[18] Y. Wang, Ricci solitons on almost coKähler manifolds, Cand. Math. Bull., 62 (2019), 912–922.
[19] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 141 (2004), 157–183.
[20] P. Alegre, A. Carriazo, Structures on generalized Sasakian space forms, Differential Geom. Appl., 26(6) (2008), 656–666.
[21] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel J. Math., 141 (2004), 157–183.
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