Miao-Tam Equation and Ricci Solitons on Three-Dimensional Trans-Sasakian Generalized Sasakian Space-Forms

Uday Chand De ${ }^{1}$, Tarak Mandal ${ }^{2}$ and Avijit Sarkar ${ }^{2 *}$
${ }^{1}$ Department of Pure Mathematics, University of Calcutta, 35 Ballygunje Circular Road, Kolkata 700019, India
${ }^{2}$ Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India

Article Info
Keywords: Generalized Sasakian space-forms, Gradient Ricci solitons, Miao-Tam equation, Sasakian spaceforms, Trans-Sasakian manifolds
2010 AMS: 53C15, 53D25
Received: 26 October 2023
Accepted: 24 December 2023
Available online: 9 January 2024

Abstract

The aim of the present article is to characterize some properties of the Miao-Tam equation on three-dimensional generalized Sasakian space-forms with trans-Sasakian structures. It has been proved that in such space-forms if the Miao-Tam equation admits non-trivial solution, then the metric of the space form must be a gradient Ricci soliton. We have derived that there does not exist a non-trivial solution of the Fischer-Marsden equation on the said space-forms. We have also investigated certain features of Ricci solitons and gradient Ricci solitons. At the end of the article, we construct an example to verify the obtained results.

1. Introduction

Miao-Tam equation on f-cosymplectic manifolds was investigated by X. Chen [1]. He proved that under certain restrictions such a manifold is either locally the product of a Kähler manifold and an interval or a unit circle, or, the manifold is of constant scalar curvature. He also established that if the manifold is connected and satisfies the Miao-Tam equation, then the manifold is Einstein under certain conditions. Since an Einstein manifold or a manifold of constant curvature is model of some interesting physical systems, geometers are naturally motivated to find the conditions under which a manifold will be Einstein or, a manifold of constant scalar curvature. To this end we study Miao-Tam equation on generalized Sasakian space-forms with trans-Sasakian structure and established that if a generalized Sasakian space-form with trans-Sasakian structure admits a non-trivial solution of the Miao-Tam equation, then the scalar curvature is constant and the manifold is Einstein or the structure is β-Kenmotsu. Several researchers [2-10] have investigated the Miao-Tam equation for some classes of contact manifolds.
Let $\left(M^{n}, g\right), n>2$ be a compact orientable Riemannian manifold with a smooth boundary ∂M and $\lambda: M^{n} \rightarrow \mathbb{R}$ be a smooth function on the manifold. Then the Miao-Tam equation on M^{n} is given by

$$
\begin{equation*}
H e s s \lambda=(\Delta \lambda) g+\lambda S+g \tag{1.1}
\end{equation*}
$$

on M and $\lambda=0$ on ∂M, Hess, Δ being respectively the Hessian operator and Laplacian with respect to the metric $g . S$ indicates the Ricci curvature and λ indicates the potential function. The metrics satisfying the equation (1.1) are known as Miao-Tam critical metrics [11]. A sub-class of the Miao-Tam equation is the Fischer-Marsden equation which is given by

$$
H e s s \lambda=(\Delta \lambda) g+\lambda S
$$

The Fischer-Marsden equation (FME, in short) was constructed by A.E. Fischer and J. Marsden in [12]. The authors [12] in their paper conjectured that a compact Riemannian manifold that admits a non-trivial solution of the FME is necessarily Einstein. This statement is known as Fischer-Marsden conjecture. Later Kobayashi [13] pointed out that the said conjecture is not true in general. They are valid only in some special cases. After that a huge number of works has been done to analyze Fischer-Marsden conjecture on Riemannian manifolds admitting several structures.
R. S. Hamilton [14] introduced the notion of the Ricci flow in 1988. On a Riemannian or semi-Riemannian manifold,

$$
\frac{\partial g}{\partial t}+2 S=0
$$

denotes the Ricci flow equation. A self-similar solution of the above equation is called the Ricci soliton and the soliton equation is given by

$$
\begin{equation*}
£_{V} g+2 S+2 \psi g=0 \tag{1.2}
\end{equation*}
$$

$£$ denotes the Lie-derivative operator. Here V is called the potential vector field and ψ is the soliton constant. If the sign of ψ is positive then the soliton is known as expanding and for the cases where ψ is zero or negative, the soliton is steady or shrinking, respectively. For details about Ricci solitons see the articles [15-18]. If the potential vector field V is the gradient of a smooth function ζ, then it is called the gradient Ricci soliton. Thus the gradient Ricci soliton is given by

$$
\begin{equation*}
\operatorname{Hess}(\zeta)+S+\psi g=0 \tag{1.3}
\end{equation*}
$$

here Hess is the Hessian operator.
The theory of generalized Sasakian space-forms came into existence after the work of Alegre et al. [19]. A generalized Sasakian spce-form (GSSF, in short) is such a manifold whose Riemann curvature R is given by

$$
\begin{equation*}
R\left(V_{1}, V_{2}\right) V_{3}=f_{1} R_{1}\left(V_{1}, V_{2}\right) V_{3}+f_{2} R_{2}\left(V_{1}, V_{2}\right) V_{3}+f_{3} R_{3}\left(V_{1}, V_{2}\right) V_{3} \tag{1.4}
\end{equation*}
$$

f_{1}, f_{2} and f_{3} are smooth functions on M and

$$
\begin{aligned}
& R_{1}\left(V_{1}, V_{2}\right) V_{3}=g\left(V_{2}, V_{3}\right) V_{1}-g\left(V_{1}, V_{3}\right) V_{2} \\
& R_{2}\left(V_{1}, V_{2}\right) V_{3}=g\left(V_{1}, \phi V_{3}\right) \phi V_{2}-g\left(V_{2}, \phi V_{3}\right) \phi V_{1}+2 g\left(V_{1}, \phi V_{2}\right) \phi V_{3} \\
& R_{3}\left(V_{1}, V_{2}\right) V_{3}=\eta\left(V_{1}\right) \eta\left(V_{3}\right) V_{2}-\eta\left(V_{2}\right) \eta\left(V_{3}\right) V_{1}+g\left(V_{1}, V_{3}\right) \eta\left(V_{2}\right) \xi-g\left(V_{2}, V_{3}\right) \eta\left(V_{1}\right) \xi
\end{aligned}
$$

Such a manifold admitting different almost contact structures like Sasakian, K-contact, trans-Sasakian, etc. was analyzed by Alegre and Carriazo. GSSF is now drawing attention of several geometers. In [20], it is proved that any GSSF with dimension greater than or equal to five must be Sasakian-space-form. It is also proved in the same article that a K-contact GSSF is a Sasakian manifold. For more details we cite the papers [21-25].
The present paper is organized as follows: After the introduction, we give some preliminaries in the Section 2. In Section 3, we have studied Miao-Tam equation on three dimensional GSSFs with trans-Sasakian structure. In the same section we have proved that if a non-trivial solution of the Miao-Tam equation exists then the metric must be a gradient Ricci soliton and non-existences of the non-trivial solution of the Fischer-Marsden equation is also deduced. In the next section, we have derived some new results of Ricci solitons and gradient Ricci solitons on the same space-forms. In the last section, we give an example to verify the deduced results.

2. Preliminaries

A smooth manifold $M^{2 n+1}$ is known as an almost contact manifold (ACM) if there exists a structure (ϕ, θ, η), where ϕ, θ and η are, respectively, a $(1,1)$-tensor field, a $(1,0)$ type vector field and a 1 -form, such that

$$
\phi^{2} V_{1}=-V_{1}+\eta\left(V_{1}\right) \theta, \quad \eta(\theta)=1, \quad \phi \theta=0, \quad \eta \cdot \phi=0 \quad \operatorname{rank}(\phi)=2 n
$$

for every vector field V_{1} on $M^{2 n+1}[26,27]$.
An ACM $M^{2 n+1}$ is called an almost contact metric manifold (ACMM) if it admits a Riemannian metric g such that

$$
\begin{equation*}
g\left(\phi V_{1}, \phi V_{2}\right)=g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right) \tag{2.1}
\end{equation*}
$$

for every vector fields V_{1}, V_{2} on $M^{2 n+1}$. Equation (2.1) gives

$$
g\left(\phi V_{1}, V_{2}\right)=-g\left(V_{1}, \phi V_{2}\right)
$$

An ACMM is called a contact metric manifold if there exists a 2-form Φ such that $d \eta=\Phi$, where $\Phi\left(V_{1}, V_{2}\right)=g\left(V_{1}, \phi V_{2}\right)$. An ACMM is called normal if Nijenhuis torsion tensor $[\phi, \phi]\left(V_{1}, V_{2}\right)+2 d \eta\left(V_{1}, V_{2}\right) \theta$ vanishes, where $[\phi, \phi]\left(V_{1}, V_{2}\right)=\phi^{2}\left[V_{1}, V_{2}\right]+\left[\phi V_{1}, \phi V_{2}\right]-\phi\left[\phi V_{1}, V_{2}\right]-$ $\phi\left[V_{1}, \phi V_{2}\right]$. A normal contact metric manifold is called a Sasakian manifold. An ACMM is called a trans-Sasakian manifold [28] if there exist two smooth functions α and β such that

$$
\begin{equation*}
\left(\nabla_{V_{1}} \phi\right) V_{2}=\alpha\left(g\left(V_{1}, V_{2}\right) \theta-\eta\left(V_{2}\right) V_{1}\right)+\beta\left(g\left(\phi V_{1}, V_{2}\right) \theta-\eta\left(V_{2}\right) \phi V_{1}\right) \tag{2.2}
\end{equation*}
$$

for every vector fields V_{1}, V_{2} on $M^{2 n+1}$. Actually, trans-Sasakian manifolds are the generalizations of Sasakian manifolds and Kenmotsu manifolds, that means, if $\beta=0$ (res. $\alpha=0$) then the manifold reduces to α-Sasakian (res. β-Kenmotsu) manifold. For more details please follow the articles [29-33]. From equation (2.2), one can obtain

$$
\begin{equation*}
\nabla_{V_{1}} \theta=-\alpha \phi V_{1}+\beta\left(V_{1}-\eta\left(V_{1}\right) \theta\right) \tag{2.3}
\end{equation*}
$$

In view of (1.4), we have

$$
\begin{equation*}
S\left(V_{2}, V_{3}\right)=\left(2 f_{1}+3 f_{2}-f_{3}\right) g\left(V_{2}, V_{3}\right)-\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right) \eta\left(V_{3}\right) \tag{2.4}
\end{equation*}
$$

which gives

$$
\begin{equation*}
Q V_{2}=\left(2 f_{1}+3 f_{2}-f_{3}\right) V_{2}-\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right) \theta \tag{2.5}
\end{equation*}
$$

Q is the Ricci operator. Again, contracting V_{2} in the foregoing equation, we get the scalar curvature as

$$
\begin{equation*}
r=2\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \tag{2.6}
\end{equation*}
$$

Lemma 2.1. For a trans-Sasakian GSSF M, the following relation holds:

$$
\begin{equation*}
f_{1}-f_{3}+\theta(\alpha)+\theta(\beta)-\alpha^{2}+\beta^{2}=0 \tag{2.7}
\end{equation*}
$$

Proof. According to the equations (2.2) and (2.3), we obtain

$$
\begin{equation*}
R\left(V_{1}, \theta\right) \theta=(\theta(\alpha)+\alpha \beta) \phi V_{1}+\left(-\theta(\beta)-\beta^{2}+\alpha^{2}+\alpha \beta\right)\left(V_{1}-\eta\left(V_{1}\right) \theta\right) \tag{2.8}
\end{equation*}
$$

On the other hand, from equation (1.4), it can be easily seen that

$$
\begin{equation*}
R\left(V_{1}, \theta\right) \theta=\left(f_{1}-f_{3}\right)\left(V_{1}-\eta\left(V_{1}\right) \theta\right) \tag{2.9}
\end{equation*}
$$

Comparing (2.8) and (2.9), we have

$$
\theta(\alpha)+\alpha \beta=0
$$

and

$$
-\theta(\beta)-\beta^{2}+\alpha^{2}+\alpha \beta=f_{1}-f_{3}
$$

Combining the last two equations, we obtain the equation (2.7).
Definition 2.2 ($[34,35])$. A vector field V on a Riemannian manifold is called an infinitesimal contact transformation if

$$
\begin{equation*}
£_{V} \eta=\kappa \eta \tag{2.10}
\end{equation*}
$$

for some smooth function κ on the manifold. If $\kappa=0$, then the vector field is called a strict infinitesimal contact transformation.

3. Miao-Tam Equation (MTE) on Trans-Sasakian Generalized Sasakian Space-forms

The prime aim of the present section is to study the Miao-Tam equation (MTE, in short) on three-dimensional trans-Sasakian GSSFs and make a bridge between MTE and Ricci solitons. Before going to main topic, we proof the following lemma.
Lemma 3.1. Let M^{3} be a trans-Sasakian GSSF of dimension three, then

$$
\begin{align*}
\left(\nabla_{V_{1}} Q\right) V_{2}= & V_{1}\left(2 f_{1}+3 f_{2}-f_{3}\right) V_{2}-V_{1}\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right) \theta-\left(3 f_{2}+f_{3}\right)\left(-\alpha g\left(\phi V_{1}, V_{2}\right) \theta+\beta\left(g\left(V_{1}, V_{2}\right) \theta-\eta\left(V_{1}\right) \eta\left(V_{2}\right) \theta\right)\right) \tag{3.1}\\
& -\left(3 f_{2}+f_{3}\right)\left(-\alpha \phi V_{1}+\beta\left(V_{1}-\eta\left(V_{1}\right) \theta\right)\right) \eta\left(V_{2}\right)
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{2} V_{2}(r)=V_{2}\left(2 f_{1}+3 f_{2}-f_{3}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right)-2 \beta\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta(r)=4\left(\theta\left(f_{1}-f_{3}\right)-\beta\left(3 f_{2}+f_{3}\right)\right) \tag{3.3}
\end{equation*}
$$

for every vector fields V_{1}, V_{2} on M^{3}.
Proof. Differentiating the equation (2.5) covariantly and using (2.3), one can obtain the equation (3.1). Contracting the equation (3.1) with respect to V_{1}, we obtain (3.2). Putting $V_{2}=\xi$ in (3.2), we get the equation (3.3).

Theorem 3.2. If a three-dimensional trans-Sasakian GSSF admits non-trivial solution of the Miao-Tam equation then the scalar curvature is a constant.

Proof. Let us suppose that the said space form admits non-trivial solution of the Miao-Tam equation. Then, from (1.1), we obtain

$$
\begin{equation*}
(\Delta \lambda) g\left(V_{1}, V_{2}\right)=(H e s s \lambda)\left(V_{1}, V_{2}\right)-\lambda S\left(V_{1}, V_{2}\right)-g\left(V_{1}, V_{2}\right) \tag{3.4}
\end{equation*}
$$

Let $\left\{u_{1}, u_{2}, \xi\right\}$ be an orthonormal set of tangent vector fields on M^{3}. Substituting $V_{1}=V_{2}=u_{i}$ in the previous equation and summing over i, we have

$$
\begin{equation*}
(\Delta \lambda)=-\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \lambda-\frac{3}{2} \tag{3.5}
\end{equation*}
$$

Using (3.5) in (3.4), we obtain

$$
\begin{equation*}
\nabla_{V_{1}} D \lambda=\lambda Q V_{1}-\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \lambda V_{1}-\frac{1}{2} V_{1} \tag{3.6}
\end{equation*}
$$

The covariant derivative of the equation (3.6) in the direction of V_{2} gives

$$
\begin{equation*}
\nabla_{V_{2}} \nabla_{V_{1}} D \lambda=V_{2}(\lambda) Q V_{1}+\lambda \nabla_{V_{2}} Q V_{1}-V_{2}\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \lambda V_{1}-\left(3 f_{1}+3 f_{2}-2 f_{3}\right)\left(V_{2}(\lambda) V_{1}+\lambda \nabla_{V_{2}} V_{1}\right)-\frac{1}{2} \nabla_{V_{2}} V_{1} \tag{3.7}
\end{equation*}
$$

Interchanging V_{1} and V_{2} in (3.7), one can obtain

$$
\begin{equation*}
\nabla_{V_{1}} \nabla_{V_{2}} D \lambda=V_{1}(\lambda) Q V_{2}+\lambda \nabla_{V_{1}} Q V_{2}-V_{1}\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \lambda V_{2}-\left(3 f_{1}+3 f_{2}-2 f_{3}\right)\left(V_{1}(\lambda) V_{2}+\lambda \nabla_{V_{1}} V_{2}\right)-\frac{1}{2} \nabla_{V_{1}} V_{2} \tag{3.8}
\end{equation*}
$$

Again, equation (3.6) gives

$$
\begin{equation*}
\nabla_{\left[V_{1}, V_{2}\right]} D \lambda=\lambda Q\left[V_{1}, V_{2}\right]-\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \lambda\left[V_{1}, V_{2}\right]-\frac{1}{2}\left[V_{1}, V_{2}\right] . \tag{3.9}
\end{equation*}
$$

Using (3.7)-(3.9), we get the curvature tensor as

$$
\begin{align*}
R\left(V_{1}, V_{2}\right) D \lambda= & V_{1}(\lambda) Q V_{2}-V_{2}(\lambda) Q V_{1}+\lambda\left(\left(\nabla_{V_{1}} Q\right) V_{2}-\left(\nabla_{V_{2}} Q\right) V_{1}\right)-V_{1}\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \lambda V_{2}+V_{2}\left(3 f_{1}+3 f_{2}-2 f_{3}\right) \lambda V_{1} \tag{3.10}\\
& -\left(3 f_{1}+3 f_{2}-2 f_{3}\right)\left(V_{1}(\lambda) V_{2}-V_{2}(\lambda) V_{1}\right) .
\end{align*}
$$

Contracting (3.10) along the vector field V_{1}, we obtain

$$
\begin{align*}
S\left(V_{2}, D \lambda\right)= & \left(2 f_{1}+3 f_{2}-f_{3}\right) V_{2}(\lambda)-\left(3 f_{2}+f_{3}\right) \theta(\lambda) \eta\left(V_{2}\right)+\lambda\left\{V_{2}\left(2 f_{1}+3 f_{2}-f_{3}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right)\right. \tag{3.11}\\
& \left.-2 \beta\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right)\right\} .
\end{align*}
$$

According to (2.4), we find

$$
\begin{equation*}
S\left(V_{2}, D \lambda\right)=\left(2 f_{1}+3 f_{2}-f_{3}\right) V_{2}(\lambda)-\left(3 f_{2}+f_{3}\right) \theta(\lambda) \eta\left(V_{2}\right) . \tag{3.12}
\end{equation*}
$$

Comparing (3.11) and (3.12), we get

$$
\begin{equation*}
V_{2}\left(2 f_{1}+3 f_{2}-f_{3}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right)-2 \beta\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right)=0 \tag{3.13}
\end{equation*}
$$

where we have used $\lambda \neq 0$. Substituting (3.13) in (3.2), we see that $V_{2}(r)=0$, that is, r is a constant.
This completes the proof.
Theorem 3.3. If a three-dimensional trans-Sasakian GSSF admits non-trivial solution of the Miao-Tam equation then either the structure is β-Kenmotsu or, the manifold is Einstein.

Proof. Replacing V_{1} by ξ and taking inner product with V_{1} of the equation (3.10), we have

$$
\begin{align*}
g\left(R\left(\theta, V_{2}\right) D \lambda, V_{1}\right)= & \theta(\lambda)\left\{-\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)\right\}+\left(f_{1}+3 f_{3}\right) V_{2}(\lambda) \eta\left(V_{1}\right) \\
& +\lambda\left\{-\theta\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)+V_{2}\left(f_{1}+3 f_{2}\right) \eta\left(V_{1}\right)\right. \tag{3.14}\\
& \left.+\left(3 f_{2}+f_{3}\right)\left(-\alpha g\left(V_{1}, \phi V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right)\right\} .
\end{align*}
$$

Putting $V_{1}=\xi$ in (1.4) and then taking inner product with $D \lambda$, one can obtain

$$
\begin{equation*}
g\left(R\left(\theta, V_{2}\right) V_{1}, D \lambda\right)=\left(f_{1}-f_{3}\right)\left(\theta(\lambda) g\left(V_{1}, V_{2}\right)-V_{2}(\lambda) \eta\left(V_{1}\right)\right) . \tag{3.15}
\end{equation*}
$$

Comparing (3.14) and (3.15), we find

$$
\begin{align*}
& \theta(\lambda)\left\{-\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)\right\}+\left(f_{1}+3 f_{2}\right) V_{2}(\lambda) \eta\left(V_{1}\right) \\
& +\lambda\left\{\begin{array}{l}
-\theta\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)+V_{2}\left(f_{1}+3 f_{2}\right) \eta\left(V_{1}\right) \\
+\left(3 f_{2}+f_{3}\right)\left(-\alpha g\left(V_{1}, \phi V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right)
\end{array}\right\}=\left(f_{3}-f_{1}\right)\left(\theta(\lambda) g\left(V_{1}, V_{2}\right)-V_{2}(\lambda) \eta\left(V_{1}\right)\right) \tag{3.16}
\end{align*}
$$

Interchanging V_{1} and V_{2} in the foregoing equation, we find

$$
\begin{align*}
& \theta(\lambda)\left\{-\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)\right\}+\left(f_{1}+3 f_{3}\right) V_{1}(\lambda) \eta\left(V_{2}\right) \\
& +\lambda\left\{\begin{array}{l}
-\theta\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)+V_{1}\left(f_{1}+3 f_{2}\right) \eta\left(V_{2}\right) \\
+\left(3 f_{2}+f_{3}\right)\left(\alpha g\left(V_{1}, \phi V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right)
\end{array}\right\}=\left(f_{3}-f_{1}\right)\left(\theta(\lambda) g\left(V_{1}, V_{2}\right)-V_{1}(\lambda) \eta\left(V_{2}\right)\right) . \tag{3.17}
\end{align*}
$$

Subtracting (3.17) from (3.16), one can obtain

$$
\left(3 f_{2}+f_{3}\right)\left(V_{2}(\lambda) \eta\left(V_{1}\right)-V_{1}(\lambda) \eta\left(V_{2}\right)\right)+\lambda\left\{V_{2}\left(f_{1}+3 f_{2}\right) \eta\left(V_{1}\right)-V_{1}\left(f_{1}+3 f_{2}\right) \eta\left(V_{2}\right)-2\left(3 f_{2}+f_{3}\right) \alpha g\left(V_{1}, \phi V_{2}\right)\right\}=0 .
$$

Replacing V_{1} and V_{2} by ϕV_{1} and ϕV_{2}, respectively, in the last equation, we obtain

$$
\left(3 f_{2}+f_{3}\right) \alpha g\left(V_{1}, \phi V_{2}\right)=0
$$

which implies that either $3 f_{2}+f_{3}=0$ or, $\alpha=0$, i.e., the structure is β-Kenmotsu.
Let us now discuss the case when $3 f_{2}+f_{3}=0$. Then from(2.6), we get $r=6\left(f_{1}-f_{3}\right)$. With the help of (2.4), (3.1), equation (3.16) can be written as

$$
\theta(\lambda)\left(S\left(V_{1}, V_{2}\right)-\left(f_{3}-f_{1}\right) g\left(V_{1}, V_{2}\right)\right)-3\left(f_{1}-f_{3}\right) V_{2}(\lambda) \eta\left(V_{1}\right)+\theta(f) g\left(V_{1}, V_{2}\right)-V_{2}(f) \eta\left(V_{1}\right)=0
$$

where $f=-\frac{r \lambda+1}{2}$ and

$$
\begin{equation*}
\nabla_{V_{1}} D \lambda=\lambda Q V_{1}+f V_{1} . \tag{3.18}
\end{equation*}
$$

As r is a constant, $2 V_{2}(f)=-r V_{2}(\lambda)$ and so, $2 \theta(f)=-r \theta(\lambda)$. Applying these relations in the above equation, we obtain

$$
\theta(\lambda)\left\{S\left(V_{1}, V_{2}\right)-2\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)\right\}=0,
$$

where we have used $r=6\left(f_{1}-f_{3}\right)$. From the foregoing equation we obtain either $\theta(\lambda)=0$ or, $S\left(V_{1}, V_{2}\right)=2\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)$. If we consider $\theta(\lambda)=0$, i.e., $g(\theta, D \lambda)=0$, then by covariant derivative

$$
g\left(\nabla_{V_{1}} \theta, D \lambda\right)+g\left(\theta, \nabla_{V_{1}} D \lambda\right)=0
$$

Using (2.3) and (3.18) in the foregoing equation, we have

$$
\begin{equation*}
-\alpha \phi V_{1}(\lambda)+\beta V_{1}(\lambda)+\lambda S\left(V_{1}, \theta\right)+f \eta\left(V_{1}\right)=0 \tag{3.19}
\end{equation*}
$$

where we have used $\theta(\lambda)=0$. Applying (1.5), $r=6\left(f_{1}-f_{3}\right)$ and $f=-\frac{r \lambda+1}{2}$ in (3.19), we obtain

$$
\begin{equation*}
-\alpha \phi V_{1}(\lambda)+\beta V_{1}(\lambda)-\left\{\lambda\left(f_{1}-f_{3}\right)+\frac{1}{2}\right\} \eta\left(V_{1}\right)=0 \tag{3.20}
\end{equation*}
$$

Replacing V_{1} by θ, equation (3.20) gives $\lambda\left(f_{1}-f_{3}\right)+\frac{1}{2}=0$, as $\theta(\lambda)=0$. Thus we find that $f=1$, a constant and hence λ is also a non-zero constant. Applying these data in (3.4), we see that $S\left(V_{1}, V_{2}\right)=-\frac{1}{\lambda} g\left(V_{1}, V_{2}\right)$, i.e, $S\left(V_{1}, V_{2}\right)=2\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)$, as $\lambda\left(f_{1}-f_{3}\right)+\frac{1}{2}=0$. Thus for every cases, the space-form obeys $S\left(V_{1}, V_{2}\right)=2\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)$. Hence the manifold is Einstein.
Thus the proof is completed.
A consequence of the above theorem is
Corollary 3.4. There does not exist a non-cosymplectic three-dimensional GSSF with β-Kenmotsu structure obeying non-trivial solution of the MTE, where β is a constant.

Proof. Putting $V_{1}=V_{2}=u_{i}$ in (3.16), where $\left\{u_{i}\right\},(i=1,2,3)$ being an orthonormal frame of the tangent space, and summing over i, we find

$$
\begin{equation*}
\theta\left(f_{1}-f_{3}\right)-\beta\left(3 f_{2}+f_{3}\right)=0 \tag{3.21}
\end{equation*}
$$

Comparing (3.3) and (3.21), we obtain $\theta(r)=0$. Using (2.7) in (3.21) and considering β as a constant, we find

$$
\beta\left(3 f_{2}+f_{3}\right)=0
$$

which gives $\beta=0$, as $3 f_{2}+f_{3} \neq 0$. Hence the structure is cosymplectic.
Corollary 3.5. Let a trans-Sasakian GSSF be an Einstein manifold and the space form admit non-trivial solution of MTE. Then the metric is a gradient Ricci soliton.

Proof. Using $S\left(V_{1}, V_{2}\right)=2\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)$ in (3.18), we see that

$$
\nabla_{V_{1}} D \lambda=\left\{2\left(f_{1}-f_{3}\right)+1\right\} V_{1} .
$$

The foregoing equation can be written as

$$
\operatorname{Hess}(\lambda)\left(V_{1}, V_{2}\right)+S\left(V_{1}, V_{2}\right)-\left\{2\left(f_{1}-f_{3}\right)(\lambda+1)+1\right\} g\left(V_{1}, V_{2}\right)=0
$$

which is the gradient Ricci soliton, where the soliton constant is $2\left(f_{1}-f_{3}\right)(\lambda+1)+1$.
Theorem 3.6 ([36]). If $\tilde{\lambda}$ is a solution of the Fischer-Marsden equation (FME, in short) on a three-dimensional trans-Sasakian GSSF, then the curvature tensor R is given by

$$
\begin{equation*}
R\left(V_{1}, V_{2}\right) D \tilde{\lambda}=V_{1}(\tilde{\lambda}) Q V_{2}-V_{2}(\tilde{\lambda}) Q V_{1}+\tilde{\lambda}\left\{\left(\nabla_{V_{1}} Q\right) V_{2}-\left(\nabla_{V_{2}} Q\right) V_{1}\right\}+V_{1}(\tilde{f}) V_{2}-V_{2}(\tilde{f}) V_{1} \tag{3.22}
\end{equation*}
$$

for every vector fields V_{1}, V_{2} on M and $\tilde{f}=-\frac{r \tilde{\lambda}}{2}$.
Moreover,

$$
\begin{equation*}
\nabla_{V_{1}} D \tilde{\lambda}=\tilde{\lambda} Q V_{1}+\tilde{f} V_{1} \tag{3.23}
\end{equation*}
$$

Theorem 3.7. In a three-dimensional trans-Sasakian GSSF, if the FME admits a solution then either the solution is trivial or, the scalar curvature is a constant.

Proof. Using (2.4) in (3.22), one can obtain

$$
\begin{align*}
R\left(V_{1}, V_{2}\right) D \tilde{\lambda}= & \left(2 f_{1}+3 f_{2}-f_{3}\right) V_{1}(\tilde{\lambda}) V_{2}-\left(3 f_{2}+f_{3}\right) V_{1}(\tilde{\lambda}) \eta\left(V_{2}\right) \theta-\left(2 f_{1}+3 f_{2}-f_{3}\right) V_{2}(\tilde{\lambda}) V_{1}+\left(3 f_{2}+f_{3}\right) V_{2}(\tilde{\lambda}) \eta\left(V_{1}\right) \theta \\
& +\tilde{\lambda}\left\{\left(\nabla_{V_{1}} Q\right) V_{2}-\left(\nabla_{V_{2}} Q\right) V_{1}\right\}+V_{1}(\tilde{f}) V_{2}-V_{2}(\tilde{f}) V_{1} . \tag{3.24}
\end{align*}
$$

Contracting (3.24) along V_{1}, we infer

$$
\begin{equation*}
S\left(V_{2}, D \tilde{\lambda}\right)=\left(2 f_{1}+3 f_{2}-f_{3}\right) V_{2}(\tilde{\lambda})-\left(3 f_{2}+f_{3}\right) \theta(\tilde{\lambda}) \eta\left(V_{2}\right)+\frac{\tilde{\lambda}}{2} V_{2}(r) \tag{3.25}
\end{equation*}
$$

where we have used $\tilde{f}=-\frac{r \tilde{\lambda}}{2}$. Comparing (3.25) with (3.12), we find that $\tilde{\lambda} V_{2}(r)=0$, which gives either $\tilde{\lambda}=0$, i.e., the solution is trivial or, $V_{2}(r)=0$, i.e., the scalar curvature is a constant.
This establishes the theorem.

Theorem 3.8. In a three-dimensional trans-Sasakian GSSF, if the FME admits a solution then either the structure is β-Kenmotsu or, the manifold is Einstein or, the solution is trivial.
Proof. Taking inner product of (3.22) with θ, we find that

$$
\begin{align*}
g\left(R\left(V_{1}, V_{2}\right) D \tilde{\lambda}, \theta\right)= & 2\left(f_{1}-f_{3}\right)\left\{V_{1}(\tilde{\lambda}) \eta\left(V_{2}\right)-V_{2}(\tilde{\lambda}) \eta\left(V_{1}\right)\right\} \\
& +\tilde{\lambda}\left\{2 V_{1}\left(f_{1}-f_{3}\right) \eta\left(V_{2}\right)-2 V_{2}\left(f_{1}-f_{3}\right) \eta\left(V_{1}\right)+2\left(3 f_{2}+f_{3}\right) \alpha g\left(\phi V_{1}, V_{2}\right)\right\} \tag{3.26}\\
& +V_{1}(\tilde{f}) \eta\left(V_{2}\right)-V_{2}(\tilde{f}) \eta\left(V_{1}\right) .
\end{align*}
$$

Replacing V_{1} by ϕV_{1} and V_{2} by ϕV_{2} in (3.26), one can obtain

$$
\begin{equation*}
g\left(R\left(\phi V_{1}, \phi V_{2}\right) D \tilde{\lambda}, \theta\right)=-2 \tilde{\lambda}\left(3 f_{2}+f_{3}\right) \alpha g\left(V_{1}, \phi V_{2}\right) \tag{3.27}
\end{equation*}
$$

Also, from(1.4), we have

$$
\begin{equation*}
g\left(R\left(\phi V_{1}, \phi V_{2}\right) D \tilde{\lambda}, \theta\right)=0 \tag{3.28}
\end{equation*}
$$

Comparing (3.27) and (3.28), we obtain

$$
\tilde{\lambda}\left(3 f_{2}+f_{3}\right) \alpha g\left(V_{1}, \phi V_{2}\right)=0
$$

Thus three possibility arise: (1) $\tilde{\lambda}=0$, (2) $\left(3 f_{2}+f_{3}\right)=0$ and (3) $\alpha=0$.
Let us discuss the case when $\left(3 f_{2}+f_{3}\right)=0$. Then, from (2.6), we find that $r=6\left(f_{1}-f_{3}\right)$. From (3.22), we get

$$
\begin{equation*}
g\left(R\left(\theta, V_{2}\right) D \tilde{\lambda}, V_{1}\right)=\theta(\tilde{\lambda}) S\left(V_{1}, V_{2}\right)-V_{2}(\tilde{\lambda}) S\left(V_{1}, \theta\right)+\theta(\tilde{f}) g\left(V_{1}, V_{2}\right)-V_{2}(\tilde{f}) \eta\left(V_{1}\right) \tag{3.29}
\end{equation*}
$$

Also, from (1.4), we infer

$$
\begin{equation*}
g\left(R\left(\theta, V_{2}\right) D \tilde{\lambda}, V_{1}\right)=-\left(f_{1}-f_{3}\right)\left\{\theta(\tilde{f}) g\left(V_{1}, V_{2}\right)-V_{2}(\tilde{f}) \eta\left(V_{1}\right)\right\} \tag{3.30}
\end{equation*}
$$

Comparing (3.29) and (3.30) and using $r=6\left(f_{1}-f_{3}\right), f=-\frac{r \tilde{\lambda}}{2}$ and the equation (2.4), one can obtain

$$
\theta(\tilde{\lambda})\left(S\left(V_{1}, V_{2}\right)-2\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)\right)=0
$$

which implies either $\underset{\tilde{\lambda}}{ }\left(V_{1}, V_{2}\right)=2\left(f_{1}-f_{3}\right) g\left(V_{1}, V_{2}\right)$, i.e., the manifold is Einstein or, $\theta(\tilde{\lambda})=0$. Let us discuss the case when $(\theta \tilde{\lambda})=0$. Then we have $g(\theta, D \tilde{\lambda})=0$, which gives

$$
g\left(\nabla_{V_{2}} \theta, D \tilde{\lambda}\right)+g\left(\theta, \nabla_{V_{2}} D \tilde{\lambda}\right)=0
$$

Applying (2.3), (2.4), (3.23) and $\tilde{f}=-\frac{r \tilde{\lambda}}{2}$ in the foregoing equation, we see that

$$
\begin{equation*}
-\alpha \phi V_{2}(\tilde{\lambda})+\beta V_{2}(\tilde{\lambda})-\left(f_{1}-f_{3}\right) \tilde{\lambda} \eta\left(V_{2}\right)=0 \tag{3.31}
\end{equation*}
$$

where we have used $\theta(\tilde{\lambda})=0$. Replacing V_{2} by θ and taking $f_{1} \neq f_{3}$ in (3.31), we find that $\tilde{\lambda}=0$, i.e., the solution is trivial. This ensures the validity of the theorem.

4. Ricci Solitons on Three-Dimensional Generalized Sasakian Space-forms with Trans-Sasakian Structures

In the present section, we study Ricci solitons on three-dimensional generalized Sasakian space-forms with trans-Sasakian structure.
Theorem 4.1. In a three-dimensional trans-Sasakian GSSF obeying Ricci solitons, the potential vector field is an infinitesimal contact transformation.

Proof. From (1.2), we have

$$
\left(£_{V} g\right)\left(V_{1}, V_{2}\right)+2 S\left(V_{1}, V_{2}\right)+2 \psi g\left(V_{1}, V_{2}\right)=0
$$

Applying $V_{2}=\theta$ in the foregoing equation and using (2.4), we have

$$
\begin{equation*}
\left(£_{V} g\right)\left(V_{1}, \theta\right)=-2\left(2\left(f_{1}-f_{3}\right)+\psi\right) \eta\left(V_{1}\right) \tag{4.1}
\end{equation*}
$$

Again, changing V_{1} by θ in (4.1), we get

$$
\begin{equation*}
£_{V} \theta=\left(2\left(f_{1}-f_{3}\right)+\psi\right) \theta \tag{4.2}
\end{equation*}
$$

Applying Lie derivative of $\eta\left(V_{1}\right)=g\left(V_{1}, \theta\right)$ with respect to V and then using (4.1) and (4.2), we find that

$$
\left(£_{V} \eta\right)\left(V_{1}\right)=-\left(2\left(f_{1}-f_{3}\right)+\psi\right) \eta\left(V_{1}\right)
$$

an infinitesimal contact transformation.
From the above theorem, we prove the following:

Theorem 4.2. In a three-dimensional trans-Sasakian GSSF obeying Ricci solitons, the soliton is shrinking, expanding or steady if $f_{1}-f_{3}$ is positive, negative or zero, respectively.

Proof. We have

$$
\left(£_{V} d \eta\right)\left(V_{1}, V_{2}\right)=\left(£_{V} g\right)\left(V_{1}, \phi V_{2}\right)+g\left(V_{1},\left(£_{V} \phi\right) V_{2}\right)
$$

Using (2.4) and (1.2) in the foregoing equation, we infer

$$
\begin{align*}
\left(£_{V} d \eta\right)\left(V_{1}, V_{2}\right)= & -2\left(2 f_{1}+3 f_{2}-f_{3}+\psi\right) g\left(V_{1}, \phi V_{2}\right) \\
& +g\left(V_{1},\left(£_{V} \phi\right) V_{2}\right) \tag{4.3}
\end{align*}
$$

According to Theorem $4.1, V$ is an infinitesimal contact transformation. Also, since $£$ and d commutes, equation (2.10) gives

$$
\begin{align*}
\left(£_{V} d \eta\right)\left(V_{1}, V_{2}\right) & =((d \kappa) \wedge \eta)\left(V_{1}, V_{2}\right)+\kappa g\left(V_{1}, \phi V_{2}\right) \\
& =\frac{1}{2}\left(V_{1}(\kappa) \eta\left(V_{2}\right)-V_{2}(\kappa) \eta\left(V_{1}\right)\right)+\kappa g\left(V_{1}, \phi V_{2}\right) \tag{4.4}
\end{align*}
$$

Comparing (4.3) and (4.4), we have

$$
g\left(V_{1},\left(£_{V} \phi\right) V_{2}\right)=\frac{1}{2}\left(V_{1}(\kappa) \eta\left(V_{2}\right)-V_{2}(\kappa) \eta\left(V_{1}\right)\right)+\left(2\left(2 f_{1}+3 f_{2}-f_{3}+\psi\right)+\kappa\right) g\left(V_{1}, \phi V_{2}\right)
$$

which gives

$$
\left(£_{V} \phi\right) V_{2}=\frac{1}{2}\left(\eta\left(V_{2}\right) D \kappa-V_{2}(\kappa) \theta\right)+\left(2\left(2 f_{1}+3 f_{2}-f_{3}+\psi\right)+\kappa\right) \phi V_{2}
$$

Changing V_{2} by θ in the previous equation, we find

$$
\begin{equation*}
\left(f_{V} \phi\right) \theta=\frac{1}{2}(D \kappa-\theta(\kappa) \theta) \tag{4.5}
\end{equation*}
$$

But

$$
\begin{equation*}
\left(£_{V} \phi\right) \theta=£_{V} \phi \theta-\phi\left(£_{V} \theta\right)=0 \tag{4.6}
\end{equation*}
$$

where we used (4.2) and $\phi \theta=0$. Using (4.6) in (4.5), we obtain

$$
D \kappa=\theta(\kappa) \theta
$$

which gives

$$
\begin{equation*}
d \kappa=\theta(\kappa) \eta \tag{4.7}
\end{equation*}
$$

By exterior derivative we find from (4.7) that

$$
0=d^{2} \kappa=d(\theta(\kappa)) \wedge \eta+\theta(\kappa) d \eta
$$

Taking wedge product with η in the foregoing equation, we get

$$
\theta(\kappa) \eta \wedge d \eta=0
$$

As $\eta \wedge d \eta \neq 0$, the previous equation gives $\theta(\kappa)=0$. Thus, from (4.7), we have $d \kappa=0$, i.e., κ is a constant.
Due to Cartan's formula, for the closed volume form $\Omega(=\eta \wedge d \eta)$, we have

$$
\begin{equation*}
£_{V} \Omega=(\operatorname{div} V) \Omega \tag{4.8}
\end{equation*}
$$

where $d i v$ is the divergence operator. Again, taking Lie derivative of the volume form $\Omega(=\eta \wedge d \eta)$ and using (4.4) and (4.8), we get

$$
(\operatorname{div} V) \Omega=2 \kappa \Omega
$$

which implies

$$
\operatorname{div} V=2 \kappa
$$

Integrating the above equation and using divergence theorem, we see that $\kappa=0$. Thus V is the strict infinitesimal contact transformation and hence, we get $\psi=-2\left(f_{1}-f_{3}\right)$.
This establishes the theorem.
Theorem 4.3. In a three dimensional trans-Sasakian GSSF obeying gradient Ricci solitons, either the structure is β-Kenmotsu or, the potential function is constant, i.e., the soliton is trivial.

Proof. Let us suppose that a three dimensional trans-Sasakian generalized Sasakian space-form admit gradient Ricci solitons. Then, from (1.3), we can write

$$
\begin{equation*}
\nabla_{V_{1}} D \zeta=-Q V_{1}-\psi V_{1} \tag{4.9}
\end{equation*}
$$

Applying covariant derivative on (4.9), we get

$$
\begin{equation*}
\nabla_{V_{2}} \nabla_{V_{1}} D \zeta=-\nabla_{V_{2}} Q V_{1}-\psi \nabla_{V_{2}} V_{1} . \tag{4.10}
\end{equation*}
$$

Interchanging V_{1} and V_{2} in the previous equation, we obtain

$$
\begin{equation*}
\nabla_{V_{1}} \nabla_{V_{2}} D \zeta=-\nabla_{V_{1}} Q V_{2}-\psi \nabla_{V_{1}} V_{2} \tag{4.11}
\end{equation*}
$$

Also, equation (4.9) gives

$$
\begin{equation*}
\nabla_{\left[V_{1}, V_{2}\right]} D \zeta=-Q\left[V_{1}, V_{2}\right]-\psi\left[V_{1}, V_{2}\right] \tag{4.12}
\end{equation*}
$$

Using (4.10)-(4.12), we get the curvature tensor as

$$
\begin{align*}
R\left(V_{1}, V_{2}\right) D \zeta= & -\left\{V_{1}\left(2 f_{1}+3 f_{2}-f_{3}\right) V_{2}-V_{1}\left(3 f_{2}+f_{3}\right) \eta\left(V_{2}\right) \theta-V_{2}\left(2 f_{1}+3 f_{2}-f_{3}\right)+V_{2}\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \theta\right. \\
& +2\left(3 f_{2}+f_{3}\right) g\left(\phi V_{1}, V_{2}\right) \theta-\left(3 f_{2}+f_{3}\right)\left(-\alpha \phi V_{1}+\beta\left(V_{1}-\eta\left(V_{1}\right) \theta\right)\right) \eta\left(V_{2}\right) \tag{4.13}\\
& \left.+\left(3 f_{2}+f_{3}\right)\left(-\alpha \phi V_{2}+\beta\left(V_{2}-\eta\left(V_{2}\right) \theta\right)\right) \eta\left(V_{1}\right)\right\} .
\end{align*}
$$

Replacing V_{1} by θ in (4.13) and then taking inner product with V_{1}, we see that

$$
\begin{align*}
g\left(R\left(\theta, V_{2}\right) D \zeta, V_{1}\right)= & -\left\{\theta\left(2 f_{1}+3 f_{2}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)-2 V_{2}\left(f_{1}-f_{3}\right) \eta\left(V_{1}\right)\right. \tag{4.14}\\
& \left.+\left(3 f_{2}+f_{3}\right)\left(-\alpha g\left(V_{1}, \phi V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right)\right\} .
\end{align*}
$$

Also, the equation (1.4) can be written as

$$
\begin{equation*}
g\left(R\left(\theta, V_{2}\right) D \zeta, V_{1}\right)=\left(f_{1}-f_{3}\right)\left\{V_{2}(\zeta) \eta\left(V_{1}\right)-\theta(\zeta) g\left(V_{1}, V_{2}\right)\right\} \tag{4.15}
\end{equation*}
$$

Comparing (4.14) and (4.15), we obtain

$$
\begin{align*}
& \theta\left(2 f_{1}+3 f_{2}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)-2 V_{2}\left(f_{1}-f_{3}\right) \eta\left(V_{1}\right) \\
& +\left(3 f_{2}+f_{3}\right)\left(-\alpha g\left(V_{1}, \phi V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right)+\left(f_{1}-f_{3}\right)\left\{V_{2}(\zeta) \eta\left(V_{1}\right)-\theta(\zeta) g\left(V_{1}, V_{2}\right)\right\}=0 . \tag{4.16}
\end{align*}
$$

Interchanging V_{1} and V_{2} in (4.16), we have

$$
\begin{align*}
& \theta\left(2 f_{1}+3 f_{2}-f_{3}\right) g\left(V_{1}, V_{2}\right)-\theta\left(3 f_{2}+f_{3}\right) \eta\left(V_{1}\right) \eta\left(V_{2}\right)-2 V_{1}\left(f_{1}-f_{3}\right) \eta\left(V_{2}\right) \\
& +\left(3 f_{2}+f_{3}\right)\left(\alpha g\left(V_{1}, \phi V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right)+\left(f_{1}-f_{3}\right)\left\{V_{1}(\zeta) \eta\left(V_{2}\right)-\theta(\zeta) g\left(V_{1}, V_{2}\right)\right\}=0 . \tag{4.17}
\end{align*}
$$

Subtracting (4.17) from (4.16), we see that

$$
\begin{equation*}
2 V_{1}\left(f_{1}-f_{3}\right) \eta\left(V_{2}\right)-2 V_{2}\left(f_{1}-f_{3}\right) \eta\left(V_{1}\right)-2\left(3 f_{2}+f_{3}\right) \alpha g\left(V_{1}, \phi V_{2}\right)+\left(f_{1}-f_{3}\right)\left\{V_{2}(\zeta) \eta\left(V_{1}\right)-V_{1}(\zeta) \eta\left(V_{2}\right)\right\}=0 . \tag{4.18}
\end{equation*}
$$

Replacing V_{1} by ϕV_{1} and V_{2} by ϕV_{2} in (4.18), we obtain

$$
\left(3 f_{2}+f_{3}\right) \alpha g\left(\phi V_{1}, V_{2}\right)=0,
$$

which indicates that either $\alpha=0$, i.e., the structure is β-Kenmotsu or, $3 f_{2}+f_{3}=0$. For the later case, with the help of (2.6) and (3.2), we get

$$
\begin{equation*}
V_{1}\left(f_{1}-f_{3}\right)=0, \tag{4.19}
\end{equation*}
$$

for every vector field V_{1}, i.e., $f_{1}-f_{3}$ is a constant. Thus, from (4.18), we obtain

$$
\left(f_{1}-f_{3}\right)\left\{V_{2}(\zeta) \eta\left(V_{1}\right)-V_{1}(\zeta) \eta\left(V_{2}\right)\right\}=0
$$

which gives either $f_{1}=f_{3}$ or

$$
\begin{equation*}
V_{2}(\zeta) \eta\left(V_{1}\right)=V_{1}(\zeta) \eta\left(V_{2}\right) \tag{4.20}
\end{equation*}
$$

Let us discuss the second possibility. Putting $V_{2}=\theta$ in (4.20), we obtain

$$
\begin{equation*}
D \zeta=\theta(\zeta) \theta \tag{4.21}
\end{equation*}
$$

Taking covariant derivative of (4.21) with respect to V_{1} and using (2.3), we obtain

$$
\begin{equation*}
\nabla_{V_{1}} D \zeta=V_{1}(\theta(\zeta)) \theta+\theta(\zeta)\left(-\alpha \phi V_{1}+\beta\left(V_{1}-\eta\left(V_{1}\right) \theta\right)\right) \tag{4.22}
\end{equation*}
$$

Comparing (4.22) with (4.9), we find that

$$
V_{1}(\theta(\zeta)) \eta\left(V_{2}\right)=-S\left(V_{1}, V_{2}\right)-\psi g\left(V_{1}, V_{2}\right)-\theta(\zeta)\left(-\alpha g\left(\phi V_{1}, V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right)
$$

Since $3 f_{2}+f_{3}=0$, using (2.4) in the above equation, we get

$$
\begin{equation*}
V_{1}(\theta(\zeta)) \eta\left(V_{2}\right)=-\left\{2\left(f_{1}-f_{3}\right)+\psi\right\} g\left(V_{1}, V_{2}\right)-\theta(\zeta)\left(-\alpha g\left(\phi V_{1}, V_{2}\right)+\beta\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)\right) \tag{4.23}
\end{equation*}
$$

Replacing V_{2} by ϕV_{2} in (4.23), we see that

$$
\left\{2\left(f_{1}-f_{3}\right)+\psi\right\} g\left(V_{1}, \phi V_{2}\right)+\theta(\zeta)\left(-\alpha\left(g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right)\right)+\beta g\left(V_{1}, \phi V_{2}\right)\right)=0
$$

Contracting the above equation and using $\operatorname{tr} \phi=0$, we get

$$
\alpha \theta(\zeta)=0
$$

which gives $\theta(\zeta)=0$, as we consider $\alpha \neq 0$. Thus, from (4.21), we see that $D \zeta=0$, i.e., ζ is a constant.
Hence the proof is completed.
From the equation(4.19), we can state the following corollary
Corollary 4.4. If a three-dimensional trans-Sasakian GSSF admits gradient Ricci solitons, then either the structure is β-Kenmotsu or, $f_{1}-f_{3}$ is a constant.

5. Example

Let $M=\left\{(x, y, z) \in \mathbb{R}^{3}: z \neq 0\right\}$ be a three-dimensional manifold, where (x, y, z) are the standard co-ordinates in \mathbb{R}^{3}. We choose the basis vectors on M as

$$
u_{1}=e^{-2 z} \frac{\partial}{\partial x}, \quad u_{2}=e^{-2 z} \frac{\partial}{\partial y}, \quad u_{3}=\frac{\partial}{\partial z}
$$

Then we find by direct computation that

$$
\left[u_{1}, u_{2}\right]=0, \quad\left[u_{1}, u_{3}\right]=2 u_{1}, \quad\left[u_{2}, u_{3}\right]=2 u_{2}
$$

Let g be the metric tensor defined by

$$
g\left(u_{1}, u_{1}\right)=1, \quad g\left(u_{2}, u_{2}\right)=1, \quad g\left(u_{3}, u_{3}\right)=1, \quad g\left(u_{1}, u_{2}\right)=0, \quad g\left(u_{1}, u_{3}\right)=0, \quad g\left(u_{2}, u_{3}\right)=0
$$

The 1 -form η is given by $\eta\left(V_{1}\right)=g\left(V_{1}, u_{3}\right)$ for all V_{1} on M. Let us define the (1,1)-tensor field ϕ as

$$
\phi u_{1}=-u_{2}, \quad \phi u_{2}=u_{1}, \quad \phi u_{3}=0
$$

Then we see that

$$
\eta\left(u_{3}\right)=1, \quad \phi^{2} V_{1}=-V_{1}+\eta\left(V_{1}\right) u_{3}, \quad g\left(\phi V_{1}, \phi V_{2}\right)=g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right), \quad d \eta\left(V_{1}, V_{2}\right)=g\left(V_{1}, \phi V_{2}\right)
$$

Thus the given manifold admits a contact metric structure $\left(\phi, u_{3}, \eta, g\right)$.Now, using Koszul's formula, we obtain

$$
\begin{aligned}
& \nabla_{u_{1}} u_{1}=-2 u_{3}, \quad \nabla_{u_{1}} u_{2}=0, \quad \nabla_{u_{1}} u_{3}=2 u_{1}, \quad \nabla_{u_{2}} u_{1}=0, \quad \nabla_{u_{2}} u_{2}=-2 u_{3}, \quad \nabla_{u_{2}} u_{3}=2 u_{2}, \quad \nabla_{u_{3}} u_{1}=0 \\
& \nabla_{u_{3}} u_{2}=0, \quad \nabla_{u_{3}} u_{3}=0
\end{aligned}
$$

Thus the given structure is a trans-Sasakian structure with $\alpha=0, \beta=2$. The components of the curvature tensor are given by

$$
\begin{array}{ll}
R\left(u_{1}, u_{2}\right) u_{2}=-4 u_{1}, & R\left(u_{2}, u_{1}\right) u_{1}=-4 u_{2}, \quad R\left(u_{1}, u_{3}\right) u_{3}=-4 u_{1}, \quad R\left(u_{2}, u_{3}\right) u_{3}=-4 u_{2}, \quad R\left(u_{3}, u_{1}\right) u_{1}=-4 u_{3} \\
R\left(u_{3}, u_{2}\right) u_{2}=-4 u_{3}, \quad R\left(u_{1}, u_{2}\right) u_{3}=0, \quad R\left(u_{1}, u_{3}\right) u_{2}=0, \quad R\left(u_{2}, u_{3}\right) u_{1}=0
\end{array}
$$

From the above expressions, the given manifold is a generalized Sasakian space-form with $f_{1}=\omega-1, f_{2}=-\frac{\omega+3}{3}$ and $f_{3}=\omega+3$, where ω is a smooth function on M.
The non-zero components of the Ricci tensor are given by

$$
S\left(u_{1}, u_{1}\right)=-8, \quad S\left(u_{2}, u_{2}\right)=-8, \quad S\left(u_{3}, u_{3}\right)=-8
$$

Thus we see that $S\left(V_{1}, V_{2}\right)=-8 g\left(V_{1}, V_{2}\right)$, for every vector fields V_{1}, V_{2} on M. Hence the space-form is an Einstein manifold. The scalar curvature of the manifold is -24 .
Let $\lambda=e^{-\frac{a z}{2}}+b$, where a and b are scalars, so that, $e^{-\frac{a z}{2}}=\lambda-b$. Now $D \lambda=-\frac{a}{2} e^{-\frac{a z}{2}} u_{3}=-\frac{a}{2}(\lambda-b) u_{3}$. Then

$$
\nabla_{u_{1}} D \lambda=-a(\lambda-b) u_{1}, \quad \nabla_{u_{2}} D \lambda=-a(\lambda-b) u_{2}, \quad \nabla_{u_{3}} D \lambda=\frac{a^{2}}{4}(\lambda-b) u_{3}
$$

Thus $\left(\Delta_{g} \lambda\right)=\left(\frac{a^{2}}{4}-2 a\right)(\lambda-b)$. Now $-\left(\Delta_{g} \lambda\right) g\left(u_{i}, u_{j}\right)+g\left(\nabla_{u_{i}} D \lambda, u_{j}\right)-\lambda S\left(u_{i}, u_{j}\right)=g\left(u_{i}, u_{j}\right), \quad i, j=1,2,3$, gives the following two equations

$$
\left(a-\frac{a^{2}}{4}\right)(\lambda-b)+8 \lambda=1
$$

and

$$
2 a(\lambda-b)+8 \lambda=1
$$

Comparing the above two equations, we see that $a=0, b=-\frac{7}{8}$ and $\lambda=\frac{1}{8}$ or $a=-4, b=\frac{1}{8}$ and $\lambda=e^{2 z}+\frac{1}{8}$. Thus the non-trivial solution of the Miao-Tam equation exists on the given manifold. Since the manifold is Einstein and the structure is β-Kenmotsu (as $\alpha=0$), the Theorem 3.3 holds good.
Again, let $\tilde{\lambda}=e^{-\frac{a z}{2}}+b$, where a and b are scalars, so that, $e^{-\frac{a z}{2}}=\tilde{\lambda}-b$. Now $D \tilde{\lambda}=-\frac{a}{2} e^{-\frac{a z}{2}} u_{3}=-\frac{a}{2}(\tilde{\lambda}-b) u_{3}$. Then

$$
\nabla_{u_{1}} D \tilde{\lambda}=-a(\tilde{\lambda}-b) u_{1}, \quad \nabla_{u_{2}} D \tilde{\lambda}=-a(\tilde{\lambda}-b) u_{2}, \quad \nabla_{u_{3}} D \tilde{\lambda}=\frac{a^{2}}{4}(\tilde{\lambda}-b) u_{3}
$$

Thus $\left(\Delta_{g} \tilde{\lambda}\right)=\left(\frac{a^{2}}{4}-2 a\right)(\tilde{\lambda}-b)$. Now $-\left(\Delta_{g} \tilde{\lambda}\right) g\left(u_{i}, u_{j}\right)+g\left(\nabla_{u_{i}} D \tilde{\lambda}, u_{j}\right)-\tilde{\lambda} S\left(u_{i}, u_{j}\right)=0, \quad i, j=1,2,3$, gives the following two equations

$$
\left(a-\frac{a^{2}}{4}\right)(\lambda-b)+8 \lambda=0
$$

and

$$
2 a(\lambda-b)+8 \lambda=0
$$

Solving the last two equations, we see that $\tilde{\lambda}=0$, i.e., the solution is trivial, which ensures the validity of the Theorem 3.8.
Let us consider the potential vector field $V=x e^{2 z} u_{1}+y e^{2 z} u_{2}+\frac{1}{2}\left(e^{2 z}-1\right) u_{3}$. Then equation (1.2) is satisfied for that V with $\psi=8-e^{2 z}$, i.e., the soliton is steady at $z=\frac{3}{2} \log 2$ and it is expanding or shrinking if z is less than or greater than $\frac{3}{2} \log 2$, respectively. Also $\left(£_{V} \eta\right)\left(V_{1}\right)=e^{2 z} \eta\left(V_{1}\right)$, for any vector field V_{1} on M. Hence V is an infinitesimal contact transformation. In this way Theorem 4.1 is satisfied. Next, we suppose that the potential vector field V is the gradient of a smooth function ζ, i.e., $V=D \zeta$. Then

$$
D \zeta=e^{-2 z} \frac{\partial \zeta}{\partial x} u_{1}+e^{-2 z} \frac{\partial \zeta}{\partial y} u_{2}+\frac{\partial \zeta}{\partial z} u_{3}
$$

Therefore,

$$
\begin{aligned}
\nabla_{u_{1}} D \zeta & =e^{-4 z} \frac{\partial^{2} \zeta}{\partial x^{2}} u_{1}-2 e^{-2 z} \frac{\partial \zeta}{\partial x} u_{3}+e^{-4 z} \frac{\partial^{2} \zeta}{\partial x \partial y} u_{2}+e^{-2 z} \frac{\partial^{2} \zeta}{\partial x \partial z} u_{3}+2 \frac{\partial \zeta}{\partial z} u_{1} \\
\nabla_{u_{2}} D \zeta & =e^{-4 z} \frac{\partial^{2} \zeta}{\partial y^{2}} u_{2}-2 e^{-2 z} \frac{\partial \zeta}{\partial y} u_{3}+e^{-4 z} \frac{\partial^{2} \zeta}{\partial y \partial x} u_{1}+e^{-2 z} \frac{\partial^{2} \zeta}{\partial y \partial z} u_{3}+2 \frac{\partial \zeta}{\partial z} u_{2} \\
\nabla_{u_{3}} D \zeta & =-2 e^{-2 z} \frac{\partial \zeta}{\partial x} u_{1}+e^{-2 z} \frac{\partial^{2} \zeta}{\partial z \partial x} u_{1}-2 e^{-2 z} \frac{\partial \zeta}{\partial y} u_{2}+e^{-2 z} \frac{\partial^{2} \zeta}{\partial z \partial y} u_{2}+\frac{\partial^{2} \zeta}{\partial z^{2}} u_{3}
\end{aligned}
$$

Thus the equation $\nabla_{V_{1}} D \zeta+Q V_{1}+\psi V_{1}=0$ gives

$$
\begin{aligned}
& e^{-4 z} \frac{\partial^{2} \zeta}{\partial x^{2}}+2 \frac{\partial \zeta}{\partial z}-8+\psi=0 \\
& e^{-4 z} \frac{\partial^{2} \zeta}{\partial y^{2}}+2 \frac{\partial \zeta}{\partial z}-8+\psi=0
\end{aligned}
$$

and

$$
\frac{\partial^{2} \zeta}{\partial z^{2}}-8+\psi=0
$$

The last three equations satisfy simultaneously only when ζ is a constant. Thus we see that the soliton is trivial, which verifies the Theorem 4.3.

Article Information

Acknowledgements: The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.
Author's Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.
Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.
Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of Data and Materials: Not applicable.

References

[1] X. Chen, On almost f-cosymplectic manifolds satisfying the Miao-Tam equation, J. Geom., 111 (2020), Article No 28.
[2] A. Barros, E. Ribeiro Jr., Critical point equation on four-dimensional compact manifolds, Math. Nachr., 287 (2014), 1618-1623
[3] A. Besse, Einstein Manifolds, Springer-Verlag, New York, (2008).
[4] A. M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, Bol. Soc. Mat. Mexicana, 26 (2020), 1289-1299.
[5] A. Ghosh, D. S. Patra, Certain almost Kenmotsu metrics satisfying the Miao-Tam equation, arXiv:1701.04996v1[Math.DG], (2017).
[6] A. Ghosh, D. S. Patra, The critical point equation and contact geometry, arXiv:1711.05935v1[Math.DG], (2017).
[7] T. Mandal, Miao-Tam equation on almost coKähler manifolds, Commun. Korean Math. Soc., 37 (2022), 881-891.
[8] T. Mandal, Miao-Tam equation on normal almost contact metric manifolds, Differ. Geom.-Dyn. Syst., 23 (2021), 135-143.
[9] D. S. Patra, A. Ghosh, Certain contact metrics satisfying the Miao-Tam critical condition, Ann. Polon. Math., 116 (2016), 263-271.
[10] A. Sarkar, G. G. Biswas, Critical point equation on K-paracontact manifolds, Balkan J. Geom. Appl., 5 (2020), 117-126.
[11] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. PDE., 36(2009), $141-171$.
[12] A. E. Fischer, J. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Am. Math. Soc., 80 (1974), 479-484.
[13] O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Jpn., 34 (1982), 665-675.
[14] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237-261.
[15] B.-Y. Chen, A survey on Ricci solitons on Riemannian submanifolds, Contemp. Math., 674 (2016), 27-39.
[16] A. Sarkar, G. G. Biswas, Ricci soliton on generalized Sasakian space forms with quasi-Sasakian metric, Afr. Mat., 31 (2020), 455-463.
[17] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca., 67 (2017), 979-984.
[18] Y. Wang, Ricci solitons on almost coKähler manifolds, Cand. Math. Bull., 62 (2019), 912-922.
[19] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 141 (2004), 157-183.
[20] P. Alegre, A. Carriazo, Structures on generalized Sasakian space forms, Differential Geom. Appl., 26(6) (2008), 656-666.
[21] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel J. Math., 141 (2004), 157-183.
[22] P. Alegre, A. Carriazo, C. Özgür, S. Sular, New examples of Generalized Sasakian space-forms, Proc. Est. Acad. Sci., 60 (2011), $251-257$.
[23] U. C. De , A. Sarkar, Some results on generalized Sasakian Space-forms, Thai. J. Math., 8 (2010), 1-10.
[24] U. K. Kim, Conformally flat generalized Sasakian space-forms and locally symmetric generalized Sasakian space-forms, Note Mat., 26 (2006), $55-67$.
[25] A. Sarkar, M. Sen, Locally ϕ-symmetric generalized generalized Sasakian space-forms, Ukr. Math. J., 65 (2014), 1588-1597.
[26] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 19 (1995), 189-214.
[27] D. E. Blair, T. Koufogiorgos, R. Sharma, A classification of 3-dimensional contact metric manifolds with Q $\phi=\phi Q$, Kodai Math. J., 13(1990), $391-401$.
[28] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debreceen, 32 (1985), 187-193.
[29] U. C. De, M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247-255.
[30] S. Deshmukh, M. M. Tripathi, A note on trans-Sasakian manifolds, Math. Slovaca, 63 (2013), 1361-1370.
[31] Y. Wang, W. Wang, A Remark on trans-Sasakian 3-manifolds, Rev. de la Union Mat. Argentina, 60 (2019), 257-264.
[32] S. Deshmukh, F. Al-Solamy, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2099-2104.
[33] S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2951-2958.
[34] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203 (2010), Birkhäuser, New York.
[35] S. Tanno, Some transformations on manifolds with almost contact and contact metric structure II, Tohoku Math. J., 15 (1963), 322-331.
[36] D. S. Patra and A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar., 76(2) (2017), 1-10.

