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Abstract
In this study, we clarify mgs® —modules that are the generalization of @
—cofinitely radical supplemented modules and look at some of their basic
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Introduction and Preliminaries

All rings would be with identity and associative in this article. Every module is considered a unitary left
module. Let W and S be a module and a ring meeting these requirements, respectively. The notation
T < W will imply that T is a submodule of W and the impression T <g W means that T is a direct
summand of W. A submodule T of W is referred to as the small module in W, if W +# T + T; for any
proper submodule T; of W and indicated by T <« W. The sum of its small submodules will be shown

by Rad(W). A submodule T of W is called as supplement of P in W, if it is @ minimal element of the
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set{Y < W|W = P + Y} which is equivalentto W = P + T and P N T « T. If each submodule of W

has a supplementin W, then W is named supplemented, [1]. Let W beamoduleand T < W.T iscalled
a cofinite submodule of W, if W/T is finitely generated. Cofinite submodules are one of the interesting

concept of module theory, and they have various properties and applications in the study of algebraic
structures. There are many different studies related with these modules in the literature [2, 3]. If each
submodule of W has a supplement that is a direct summand of W, then W is named @ —supplemented
[4]. Otherwise, if each cofinite submodule of W has a supplement which is a direct summand of W,
then W is called cofinitely @ —supplemented [5]. According to [6], a module W is called radical
supplemented (Rad-supplemented) when each submodule of W has a Rad-supplement in W. In other
words, for any submodule T of W, a submodule P of Wis named a Rad-supplemented of the submodule
Tin W if W=P+Tand PNT S Rad(P). In reference [7]; radical supplement and radical
supplemented modules are called as generalized supplement and generalized supplemented modules,
respectively. By generalizing this definition, cofinite radical supplemented modules are defined. In [8],
a module Wis called cofinitely radical supplemented (cofinitely Rad-supplemented), if each cofinite
submodule of W has a Rad-supplement in . Besides these, @ —radical supplemented modules (6
—Rad-supplemented) are studied and defined in [9, 10]. Meanwhile, @ —cofinitely radical
supplemented modules introduced and examined in [11]. According to this, if each (cofinite) submodule
of a module has a Rad-supplement which is a direct summand of itself, then it is called @ —(cofinitely)
radical supplemented. This definition is given as generalized @ —cofinitely supplemented in [12]. In
[11], cgs® —module notation is used briefly instead of @ —cofinitely radical supplemented modules
and basic fundamental aspects of these modules are examined in there. In this article, we studied another
version of cgs® —module by using the concept of “maximal submodule” instead of “cofinite
submodule”. A maximal submodule of W is a submodule T where there are no other submodules of
W that properly contains T, except for W itself. In other words, if T is maximal, there are no larger
submodules contained in W that properly extend T. Equivalently, for T, being a maximal submodule of
W implies that for any submodule K of W either K is equal to T or K is equal to W. Also, it is well
known that each maximal submodule is cofinite. A module is called a mgs® —module, if each maximal
submodule of it contains a Rad-supplement that is a direct summand of itself. Since each maximal
submodule is a cofinite submodule, this study will be the most general study about this subject in the
literature. It will be shown that mgs® —modules and @ —cofinite supplemented modules coincide in
coatomic modules. It will be later proved that direct sum of mgs® —modules brings out a
mgs® —module. Nevertheless, we will prove that the factor module created by the fully invariant
submodule of mgs® —module is also the mgs® —module. We will show for a ring that each free

S —module is a mgs® —module if and only if S is semiperfect.
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Mgs® —Modules

Definition 1. If each maximal submodule of a module has a Rad-supplement which is a direct summand

of it, then it is called a mgs® — module.
Lemma 2. Every cgs® —module is a mgs® —module.

Proof. Let W be a cgs® —module and the submodule X be maximal in W. Since every maximal
submodule is cofinite submodule, the rest is easy.

Recall from [8] that, w —local module is a module which has a unique maximal submodule.
Proposition 3. If a mgs® —module W satisfies the condition Rad (W) « W, then it is @ —cofinitely
supplemented.

Proof. Consider the submodule X as a maximal of /. Based on the assumption, there are submodules
Tand T; of WwhereW =X+T,XNT S Rad(T)andW =T @ T;. Hence, we have XNT C
Rad(T) € Rad(W) « W and T <g W. If we consider [1, 19.3(5)], then we can write XNT < T.
Therefore W is @ —cofinitely supplemented.

Recall from [1] that, if each proper submodule of W is included in a maximal submodule of W and
every coatomic module has a small radical, then Wis said to be coatomic. Thus, the following can be
given without its proof.

Corollary 4. Let W be a coatomic module. W is @ —cofinitely supplemented if and only if it is a
mgs® — module.

Proposition 5. Any w —local module is a mgs® — module.

Proof. It is easily obtained by combining Proposition 2.3 in [11] and Lemma 2.

For any prime p, the Z —module Q @ Z, is w —local because Rad(Q @ Z,) = Q is a unique
submodule of Q @ Z,. So, Q D Z, isa mgs69 — module.

Theorem 6. Any arbitrary mgs® —module with a maximal submodule includes a w —local direct
summand.

Proof. Let W be amgs® — module and X be a maximal submodule of it. Then, there are submodules
Y,Y,of Wsuchthat W =X+Y, XnY S Rad(Y)and W =Y @ Y;. Also, it can be said that Yis a
Rad-supplement of X in W. If we consider Lemma 3.3 of [8], then we get Y is w —local. Therefore Yis
a w —local direct summand of /.

We point out the sum of whole w —local direct summands of W by wLoc®W and the sum of whole
mgs® — submodules of W by Mgs®w.

Lemma 7. wLoc®W < Mgs®w, for any module W.

Proof. Let L represent a w —local submodule of W where L <g W. By using Proposition 5, we can say

that L is amgs® —module. Then we get L < Mgs®W and so wLoc®W < Mgs®w.
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Theorem 8. Let any mgs® — submodule of W be a direct summand of WW. In that case,

Wy
Mgs®w
does not include a maximal submodule if and only if Wis amgs® — module.

Proof. (<) Suppose that L/Mgs@W is a maximal submodule of Then L is the maximal

W/Mgs@W'

submodule of W . Based on the hypothesis, there are submodules L, K of W such that
W=L+L;, LnL SRad(L,) and W =L, ®K.

By Lemma 3.3 in [8], L,is aw —local module and L, is a mgs® — module by Proposition 5.

From here, we can say that L; € Mgs®Wand so we can write that

w _(t ) [t + Masow)
/Mgs@W /Mgs@W Mgs®w

- (L/Mgs®W) + (MgS®W/Mgs@W)'

and so W = L which is a contradiction. Hence

Consequently, we obtain W/Mgseaw - L/MgsEBW

w . .
/Mgs@W does not include a maximal submodule.

(=) Let L be a maximal submodule of W. If L includes the mgs® — modules, then Mgs®W < L can
which contradicts the

be obtained. Thus would be maximal submodule of

L/Mgs@W W/Mgs@W’
hypothesis. In that case, L does not contain Mgs®@W and there is a mgs® —submodule X of W where
X & Land W = X + L. Remember that W/L = X/X n - From here X n L is a maximal submodule of
X. As X isamgs® —module, there are submodules Y and Y; of W where X = (X nL)+Y, (XNnL)N
Y € Rad(Y)and X =Y @ Y;. Therefore, we can obtain that
W=X+L=XNL+Y+L=L+Y,LnY=LNnXNY)=(LNX)NY S Rad(Y).

Since X <gq W there is a submodule X, of Wwith W = X @ X;. Therefore
W=X®X,=YOVDX, =YD (Y; ®X,)andso W isamgs® — module.

Theorem 9. Any direct sum of mgs® — modules is a mgs® — module.

Proof. Assume that {W;};¢; is a family of mgs® — modules such that W =i%91 W; and L is maximal

submodule of W. Then we can write W = L + W; forW; c L, i, € 1.
Since W/, = Wi, and W/, is a simple module Wiy is simple and so L N W; is a
L= /Lnw, L P /Law,, 'S SIMP io

maximal submodule of W; .Then, there are submodules X, X;of W; where W; = (LNnW;)+X,
Xn(LnW,;,) S Rad(X) and W;, = X @ X, because W;, is a mgs®-module. From here, we can
obtain that W =L +W;, =L+ (LnW; )+ X =L+Xand L nX S Rad(X). Nevertheless, we get
L <g W since W;, and X are direct summands of Wand W;, respectively. As a result, Wis a mgs® —

module. Recall from [13] that, a module W has the summand sum property (SSP) if the sum of two
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direct summands of W is again a direct summand of W. Also, W has the property (D3), if

XY <g Wwith W =X +Y,then X nY <g W [13].

Theorem 10. Let W be amgs® —module which has the property (D5)and (SSP). Then, every maximal
direct summand of W is a mgs® — module.

Proof. Let K be a maximal direct summand of W. Then, there is a submodule K; of W where W =

K @ K; and K; is finitely generated. Suppose that T is a maximal submodule of K. Since W/T =

(K/T) @ K, is finitely generated, T is a maximal submodule of W. Therefore Wis a cgs® —module by
Theorem 2.2 in [11] and there are submodules K; and K,of W with W =T+ K;, TNK; S
Rad(K;) and W = K; @ K,. Note thatW =T+ K; =K+ K;. Since W =K@ K;,IW =K, ® K,
W =K + K; and W has the property (D), it can be written that K n K; <g W. Therefore, we can
write W = (K n K;) @ X for a submodule X of W. Hence one can easily get the equality K = K n
W=Kn(T+K;)=T+ (KnK,). Besides these, TN (K NK;) =T NK; € Rad(K;) € Rad(W).
If one uses the chapter 19.3 in [1], then T N (K N K;) € Rad(K N K;) can be obtained due to K N
K; <g W. As a result, by taking the intersection of both sides of the equation W = (K N K;) @
X with K, we can obtain that W = (K N K;) @ (K n X) and so K is amgs® — module.

Corollary 11. Let W be amgs® — module and Endg(W) has the (SSP). Then, every maximal direct
summand of W is a mgs® — module.

Proof. By Theorem 2.3 in [14], Whas (SIP) and (SSP). It well down that any module having (SIP)
satisfies the (D3) condition. Now the proof follows by Theorem 10.

In [15], a submodule L of Wis called as fully invariant if £(L) is included in L for each endomorphism
f of W. It is known that Rad (W) and t(W) are fully invariant submodules of W.

Theorem 12. Let W be a mgs69 — module and L < W. If L is a fully invariant submodule of W, then

W/, isamgs® — module.
Proof. Assume that T/L is a maximal submodule of W/L' Then, T is a maximal submodule of W and

so we have submodules X,X; of Wwhere W =T+ X, TNX € Rad(X) and W = X @ X; by the
hypothesis. Since L is a fully invariant submodule of W, we can write L = (LN X) @ (L n X;) by

Lemma 2.1 in [15]. Moreover, X+ L)/L is a Rad-supplement of T/L in W/L according to Proposition
2.6in[7]. Then W/, = [(X + L)/L] ® [(Xl + L)/L]. Consequently, X+ L)/L is a Rad-supplement of
T/, such that ((X + L)/L) <g W/ andW/ isa mgs® — module.

Corollary 13. Let W be a mgs® —module. Then W/Rad(W) and W/T(W) are mgs® — modules.

Proposition 14. Let W be a cgs® —module and L be a fully invariant submodule of W. If L is a

maximal direct summand of W, then L is a mgs® —module.
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Proof. Assume that L is a maximal direct summand of W. Then, there is a submodule L, of W satisfying

W =L@ L,.LetT be amaximal submodule of L. As every maximal submodule is cofinite, evidently
L/T is finitely generated. Since W/L = [, is simple and so W/L = L, is finitely generated. Hence T is

a cofinite submodule of W. Because

W/T _ULe® L1)/T _ (L/T) @ (Ly @T)/T ~ (L/T) ®L,

is finitely generated. By using the hypothesis, one can writt W =T + K, TN K S Rad(K) and W =
K @ K; where K, K; < W.Since L is a fully invariant submodule of W,we can write L = (LN K) @
(L N K;) by Lemma 2.1 in [15]. By taking the intersection of both sides of the equation W =T + K
with L, we can obtain the following equality L=LNnW =L N (T +K) =T + (L n K). In addition to
these, it can be written that TN (LN K) =T NK S Rad(K) € Rad(W). Since LN K <g L and
L<gW , we can get LNK <g W. By using chapter 2.2.(6) in [6], TN(LNK)=TNKC
Rad(L n K) can be written. This implies that L is a mgs® — module.

Theorem 15. Let Whe a module and W;,W, <W such that W =W, @ W,. Then W, is a
mgs® —module if and only if there is a submodule T of W, such that T SgW,W=L+TandLn

T C Rad(T) for each maximal submodule L/W1 of W/Wl'

Proof. (=)Assume that L/W1 is a maximal submodule of W/Wl' It is well known that

W/ Wl)/

(“/w,)

Wy = Wy + Wz)/L _ (W +wy+@n Wz))/L _ @+ Wz)/L ~

= W/, is simple. Since the following equality

wW.
2/(L nw,)

can be written, we get that L n W, is a maximal submodule of W,. From the hypothesis, we have
submodules, T; of W, such that W, = (LNW,)+T, (LNW,)NT S Rad(T) and W, =T P T;.
Fromhere, W = L + T and L N T € Rad(T) can be obtained. Hence T <g W because of T <g W,.

(&)Let S be a maximal submodule of W, . If one consider the following equality

(W/W1) :W/ _(W1+W2)/ _(5+W1+W2)/
((S+W1)/W)_ S+w)— S+w)— S+wp)
1
% w. Ww.
= wns+wol= lis+wawl= s

It can be written that S+ Wl)/w1 is a maximal submodule of W/Wl' By the assumption, since there

is a submodule T of W, where T <g W,, W=T+S+W;, (S+W;)NT S Rad(T),itiseasy to
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seethat Wo =T+S, Wo=TH W,NTy) andSNT S (S+W;)NT < Rad(T). Hence, W, is a

mgs® — module.
Theorem 16. An arbitrary ring S is semiperfect if and only if every free S —module is a
mgs® —module.
Proof. Firstly, assume that W is an arbitrary free S —module. By using Theorem 2.4 in [11], ¢S is a
cgs® — module and so ¢S is a mgs® — module. Conversely, let a free § —module be a mgs® —
module. Then S is amgs® —module. S is (cofinitely) @-supplemented, i.e. S is semiperfect, due to

Proposition 3.
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