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Abstract – In this study, three different convolutional neural network (CNN) architectures have been used for SARS-COV-2 

infection (COVID-19) detection from lung Computerized Tomography (CT) scan images. The dataset comprises 2481 lung CT-

scan images, of which 1252 are positive for COVID-19 infection. First, a simple CNN, LeNet-5, was trained from scratch, which 

resulted in poor classification performance with an accuracy value of 0.78. Then, to overcome the drawback of the limited 
availability of data, the convolutional bases of two pre-trained networks, VGG-16 and MobileNet, were leveraged to extract 

features from the dataset. On top of the feature extraction outputs, new classifiers were trained. When the VGG16 and the 

MobileNet CNN’s convolutional bases were used for feature extraction, accuracy values of 0.974 and 0.984 were obtained, 

respectively. The findings indicate that using pre-trained CNN models for feature extraction and then training a simpler, fully 

connected network structure for classification successfully differentiates CT-scan images of patients with COVID-19 infection 

from the ones without COVID-19 infection.  
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I. INTRODUCTION 

COVID-19 is a contagious and infectious disease caused by 

the severe acute respiratory syndrome coronavirus 2 (SARS-

COV-2). Computed tomography (CT) is a widely used 

modality for disease or lesion detection, including COVID-19 

infection. The diagnosis based on CT-scan images usually 

depends on a specialist’s (e.g., radiologist, physician, 

clinician) visual evaluation of the images. Computer-aided 

diagnosis (CADx) can be used as an alternative method for 
medical diagnosis to reduce the burden on human interpreters 

by enabling automated analysis of huge amounts of medical 

images and to support and improve the decision-making 

process. In CADx, machine learning methods, including deep 

learning, are utilized to analyze past samples of patient data 

and develop a model that can be used to predict the disease 

outcome of a new patient [1]. 

While CADx systems are already being used as an aid for 

the detection and interpretation of diseases [2] and are 

commercially available for lung nodule detection on chest 

radiography or thoracic CT [3], in numerous studies, 
convolutional neural network (CNN) based deep learning 

algorithms were employed to interpret CT-scan or X-ray 

images automatically and to predict various lung diseases. 

CNN architectures have also been utilized for the diagnosis of 

COVID-19. [4] and [5] provided lists of previous studies 

where different CNNs models were applied to detect COVID-

19 infection. They compared the studies in terms of the dataset 

used, the CNN models or other techniques adopted, and the 

performance metrics achieved.  

In this study, it was aimed to develop a framework to 

perform the automatic detection of COVID-19 infection in 

lung CT-scan images using CNN-based deep learning 
algorithms. For this purpose, given the availability of only a 

small dataset, a simple LeNet-5 CNN model was first trained, 

which resulted in poor classification performance but provided 

a baseline for what can be achieved when a model is trained 

from scratch. To overcome the drawback of a limited amount 

of data, pre-trained models, VGG-16 and MobileNet, were 

used for feature extraction, which were then integrated with a 

new classifier composed of a small number of layers. Each 

model’s performance was evaluated separately. The 

classification performances of the proposed methods were 

assessed and compared with respect to evaluation metrics of 

accuracy, loss, precision, recall, and the AUC (Area under the 
curve) of the ROC (Receiver operating characteristic). 

The rest of this study is organized as follows: First, an 

overview of the dataset is provided. Next, the theoretical 

framework and methodology concerning the research question 

are presented. Then, the experimental results are presented and 

interpreted. Finally, the study findings are evaluated, and some 

directions for future work are proposed. 

II. MATERIALS AND METHOD 

A. An Overview of the Dataset 

The dataset was retrieved from the Kaggle datasets 

repository. It is titled by Kaggle dataset owners as “SARS-

COV-2 CT-Scan Dataset” and released under the CC BY-NC-

SA 4.0 license. The dataset contains 1252 positive CT scans 

for SARS-COV-2 infection (COVID-19) and 1229 CT scans 
for patients non-infected by SARS-COV-2. The data have 

been collected from real patients in a hospital in Sao Paolo, 
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Brazil [6]. A sample of CT-Scan images is provided in Figure 

1. 

B. LeNet-5 Architecture 

Given the limited availability of training images, in the 

current study, first, a simple CNN architecture LeNet-5, with 

a small number of parameters, was adopted to train a CNN 

model from scratch. [7] introduced the LeNet-5 model. It is 

among the earliest CNN architectures developed for image 

recognition tasks. [7] trained and tested various versions of 

LeNet-5 on the MNIST database, which is a dataset of images 

of handwritten digits. The original model of LeNet-5 is 

composed of an input layer and seven other subsequent layers. 

It requires 32x32 pixel image input. There are three 

convolutional layers, the first two of which are followed by 
subsampling layers. Convolutional layers have 6, 16, and 120 

feature maps, respectively, where filters with sizes 5x5 and 

stride 1 are used. Subsampling layers perform average pooling 

using filters of size 2x2 with stride 2. The network concludes 

with a fully connected layer with 84 units and the output layer. 

The layers up to the fully connected layer are equipped with 

scaled hyperbolic tangent activation function. The LeNet-5 

architecture adapted for the binary classification problem and 

an image input size of 32x32 is depicted in Figure 2. The figure 

was adapted based on the LeNet figure retrieved from [8]. 

In the current study, for the configuration of the training 

process of the LeNet-5 model, the optimizer (the way in which 
the gradient of the loss will be used to update the parameters) 

was specified as “Adam” (Adaptive moment estimation) with 

a learning rate of 0.0001, the loss function was specified as 

“binary cross-entropy,” and the metrics were specified as a list 

of performance metrics evaluated. The number of times the 

training loop is iterated over the dataset (i.e., number of 

epochs) was set to 50, and the number of training examples to 

be used within each epoch in order to compute the gradients 

for one weight update step (i.e., the batch size used within each 

epoch) was set to 30. 

The LeNet-5 CNN model was previously applied by other 
researchers to detect patients infected with coronavirus 

pneumonia using CT-scan images (e.g., [5], [9], [10], [11]). In 

particular, [10] used the LeNet-5 network to extract features 

from CT-scan images. Then they applied “eXtreme Gradient 

Boosting” (XGBoost, [12]) for the classification of the images. 

C. Leveraging Pretrained Models 

Given the high number of parameters involved in 

convolutional network structures, the availability of a huge 

amount of data is relevant to train a model without overfitting. 
Leveraging a pre-trained model that was previously trained on 

a large dataset is a commonly adopted approach to deep 

learning on small image datasets to overcome the problem of 

overfitting [13]. Moreover, if the model was pre-trained on 

large and general datasets, the feature hierarchies learned by 

this model can effectively be used on new problems, even if 

the classification task of the new problem is entirely different 

from that of the original dataset [13]. 

The amount of SARS-COV-2 CT-Scan data in this study is 

limited to train a CNN model from scratch. To resolve the 

overfitting problem, VGG-16 [14] and MobileNet [15] 

convolutional networks pre-trained on ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) dataset [16] were 

used to extract features from the SARS-COV-2 CT-Scan 

dataset. That is, the dataset was run through the convolutional 

base of a pre-trained network to extract features, and then a 

new classifier was trained on top of the feature extraction 

output. This process was completed separately for these two 

CNN architectures, and then the evaluation metrics were 

compared. 

For feature extraction with a pre-trained model, only the 

convolutional bases of the pre-trained networks are used, 

letting aside the densely connected classifier layers of the 
original structures. In CNNs, the convolutional base has two 

types of hidden layers, namely, convolution layers and pooling 

layers. Convolution layers are used to find instances of small 

patterns in the image, whereas pooling layers are used to 

condense them into a smaller summary image. In the early 

convolution layers of the network, local features, such as 

edges, colors, and textures of the input image, are identified. 

In the layers that come later, these low-level features are 

combined to form higher-level compound features [17]. After 

feature maps are extracted, they are introduced to a fully 

connected network used to implement classification. In the 

densely connected classification part of the network, the 
representations learned by the classifier will be specific to the 

set of classes on which the model was trained and will only 

contain information about the presence probability of a class 

in the image, thus, densely connected features are not relevant 

for the new classification problem [13]. Accordingly, to 

conduct feature extraction, using only the convolutional base 

of the pre-trained model is more appropriate. 

D. VGG16 Architecture 

In a study, [14] evaluated very deep convolutional networks 

(16–19 weight layers) for large-scale image classification on 

the ILSVRC dataset. They tested six different convolutional 

network configurations, including VGG16. VGG16 is a CNN 

architecture in which an image is passed through stacks of 

convolutional layers where 3x3 filters with stride 1 are used, 

and the “same” padding is applied. The convolutional layers 

are followed by five max-pooling layers. Max-pooling is 

carried out using 2x2 filters with stride 2. Finally, three fully-

connected layers are followed by a “softmax” output layer. All 

hidden layers are equipped with the ReLU activation function. 

In total, there are 16 weight layers and about 138 million 
parameters. The VGG16 architecture’s convolutional base is 

presented in Figure 3. The figure was adapted from [18]. 

 

 

 

Fig. 1 Samples of CT-scan images 
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Fig. 2 The LeNet-5 CNN architecture 

 

E. MobileNet Architecture 

[15] introduced MobileNets models, replacing the standard 

convolutions with computationally efficient depthwise 

separable convolutions. They reduced the computational cost 

by partitioning the usual one-step operations of filtering and 

combination (convolution) into two steps using factorized 

convolutions called depthwise separable convolutions. These 

convolutions are composed of two layers: depthwise 
convolutions and pointwise convolutions [15]. Depthwise 

convolutions apply a single filter per input channel. Then, the 

pointwise convolution, a simple 1x1 convolution, is used to 

compute a linear combination of the output of the depthwise 

convolution [15]. MobileNet uses 3x3 depthwise separable 

convolutions. Using depthwise separable convolution can 

reduce accuracy but only at a small rate [15]. 

When the depthwise and pointwise convolutions are 

counted separately, the standard MobileNet structure has 28 

layers [15]. The first layer is a full convolution layer. All other 

layers are depthwise separable convolutions followed by batch 

normalization and ReLU nonlinearity, except for the final fully 
connected layer, which has no nonlinearity and feeds into a 

softmax layer for classification [15]. There is a final average 

pooling that reduces the spatial resolution to 1 before the fully 

connected layer [15]. Downsampling is conducted with 

“strided” convolution in the depthwise convolutions and the 

first layer [15]. In the current study, only the convolutional 

basis of the structure, layers up to the average pooling layer, 

were utilized for feature extraction. 

[15] have also investigated smaller and faster MobileNets 

using two model-shrinking hyperparameters; width multiplier 

and resolution multiplier. These multipliers take values 
between 0 and 1. The width multiplier is used to make a 

network thinner uniformly at each layer [15]. The resolution 

multiplier is applied to the input image, and every layer's 

internal representation is subsequently reduced at the same rate 

[15]. They showed that the smaller and less computationally 

expensive MobileNets that adopt these shrinking 

hyperparameters trade off a reasonable amount of accuracy to 

a substantial reduction in computational cost. In the current 

study, the default values for the multipliers were adopted (i.e., 

the width multiplier = 1.0 and the resolution multiplier = 1.0). 

F. Methodology 

Once the feature maps were extracted using the 
convolutional bases of the VGG16 and MobileNet 

architectures, the tensor output from the process was flattened 

and fed into a new classifier, which was trained from scratch. 

It is a regular feedforward neural network used to implement 

the classification. This last simple network is composed of a 

few fully connected layers. The first layer is a dense layer with 

256 neurons and Rectified Linear Unit (ReLU) activation 

function. ReLU is a non-linear activation function with the 

advantage of faster learning and is widely employed as the 

default activation function in the convolutional layers of CNNs 

[19]. This layer is followed by a “dropout” layer with a dropout 

rate of 20%. Adding dropout is a commonly used 
regularization technique developed by [20], which involves 

randomly excluding a portion of the output neurons at every 

training step [19]. This technique has been proven successful 

in addressing the overfitting problem [21]. The last layer is a 

sigmoid output layer that estimates class probabilities for 

binary classification. Finally, the loss function is the binary 

cross-entropy, and the optimizer is the Root Mean Square 

Propagation (RMSprop). RMSprop is a variant of stochastic 

gradient descent (SGD). The default learning rate for 

RMSprop is 0.001. In this study, it was set to 0.00001 for 

MobileNet and to 0.00002 for VGG16. The models were 
trained with a batchsize of 30, and the networks were trained 

for 50 epochs. The configuration of the fully connected layers 

is the same for the two networks. 

 

 

 

Fig. 3 VGG16 convolutional base 
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The dataset composed of 2481 lung CT-scan images was 

split into training (60%), validation (20%), and test (20%) sets. 

All the images with varied sizes were scaled to a uniform size 

of 224x224 pixels for training the models backboned by the 

pre-trained VGG-16 and MobileNet structures. For training 

the LeNet-5 model, the images were resized to 32x32 since it 
requires that size of image pixel input. Regarding 

preprocessing, images represented by pixel values ranging 

from 0 to 255 were normalized from 0 to 1 by dividing their 

pixel values by 255. 

III. RESULTS 

For each of the proposed deep learning models, the 

validation process was run along with the training process to 

observe the progress of the model performance across the 

number of epochs. Next, the evaluation metrics of accuracy, 

loss, precision, recall, and the AUC of the ROC curve were 

utilized to compare the classification performances of the 
proposed models on the test set. 

Confusion matrices were utilized to investigate the 

prediction performance of the models further. In the confusion 

matrix, the correspondence between the predicted labels and 

the ground truth is presented in terms of true positives (TP), 

false positives (FP), true negatives (TN), and false negatives 

(FN). In the current study, TP is the number of samples that 

are correctly classified by the model as being positive for 

COVID-19 infection that are actually positive, and TN is the 

number of samples that are correctly classified by the model 

as being negative for COVID-19 infection that are actually 

negative. On the other hand, FP is the number of errors in 
which the model incorrectly indicates the presence of COVID-

19 infection when the disease is actually not present, whereas 

FN is the number of the opposite errors in which the model 

incorrectly indicates the absence of COVID-19 infection when 

it is actually present. 

The accuracy is the ratio of correct predictions over all 

predictions. The loss is the binary cross-entropy loss. The ROC 

curve is created by plotting the true positive rate (Recall) (TPR 

= TP/(TP+FN)) against the false positive rate (FPR = FP/(FP 

+ TN)) at various classification threshold values ranging from 

0 to 1. It summarizes all the confusion matrices produced at 
each threshold value. AUC is the area under the curve. 

Precision (TP/(TP+FP)) indicates the probability that a patient 

with a positive prediction truly has COVID-19 infection.  

The accuracy and loss curves for the training and validation 

of the LeNet-5 model are depicted in Figure 4. Their progress 

through the epochs did not indicate overfitting after 50 epochs; 

however, both the training error and the validation error were 

fairly high, and the curves were close to each other, indicating 

underfitting. 

The model achieved an accuracy of 0.78 and a loss of 0.47 

on the training set. Using the validation dataset, it achieved an 
accuracy of 0.77 and a loss of 0.49. On the training set, the 

model reached a precision and a recall of 0.77 and 0.80, 

respectively. On the validation set, the model reached 

precision and recall values of 0.72 and 0.83, respectively. The 

model performed poorly both on the training and validation 

datasets. When the model performance was evaluated on the 

test set, the LeNet-5 model reached an accuracy of 0.78, a loss 

of 0.48, a precision of 0.75, a recall of 0.86, and an AUC value 

of 0.85. The confusion matrix in Figure 5 presents the 

classification performance of the LeNet-5 model on the test 

set. The model demonstrated poor performance in classifying 

images having COVID-19 lesions (i.e., low recall). The model 

made more mistakes in classifying CT-scan images of patients 

not infected by COVID-19 (i.e., high FPR). In the case of 

pandemics, however, the consequences of misclassifying 
COVID-19 patients may be worse; thus, having a high recall 

value may be more prominent. 

 

 

 

Fig. 4 The training and validation accuracy and loss curves for the LeNet-5 

model 

 

Fig. 5 Confusion matrix (LeNet-5 model) 

This unsatisfactory result might have been obtained either 

due to the fact that the LeNet-5 model was too simple to 

distinguish between the images with lesions of COVID-19 

infection from the ones without such lesions or the features did 

not provide enough information to make good predictions. 

Two remedies to overcome this problem might be: (i) selecting 

a more powerful model with more parameters and (ii) feeding 

better features to the learning algorithm [19]. In fact, when the 

features were extracted using the pre-trained models and then 
fed into a new classifier composed of a few fully connected 

layers, significantly better prediction performances were 

obtained. The accuracy and loss curves for the training and 

validation of the model backboned by the VGG-16 model are 

depicted in Figure 6. 
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Fig. 6 Training and validation analysis over 50 epochs using VGG16 for 

feature extraction 

As shown, the training accuracy steadily increases and 

reaches 1 after 30 epochs. The validation accuracy has a 

similar trend and peaks at 0.95 before 10 epochs and reaches 

0.98 after 50 epochs. On the other hand, while the training loss 

continues to decrease until 50 epochs and reaches zero, the 

validation loss stalls after 40 epochs at about 0.05. 

The accuracy and loss curves for the training and validation 

of the model backboned by the MobileNet architecture are 
shown in Figure 7. The training accuracy achieves 1 earlier 

than was the case for the model with feature extraction based 

on VGG16. Here, as well, the validation accuracy has a similar 

trend as the training accuracy and reaches an accuracy level of 

0.98 after almost 17 epochs and stays at that level for the 

subsequent epochs. So, 0.98 was the highest accuracy level 

that could be achieved on the validation set. While the training 

loss decreases swiftly to zero after 12 epochs, the validation 

loss continues to decrease to 0.06 until 20 epochs and stays at 

that level for the remaining epochs. 

 

 

Fig. 7 Training and validation analysis over 50 epochs using MobileNet for 

feature extraction 

Figure 8 compares the proposed deep learning models' 

training and validation analysis progresses. As seen, learning 

a simple, fully connected network for classification preceded 

by a more sophisticated pre-trained CNN architecture for 
feature extraction outperforms learning a standard CNN with 

a simple structure with a limited amount of data available. 

Although overall, the classification performances were 

comparable, the model employing the MobileNet CNN’s 

convolutional base for feature extraction demonstrated slightly 

better performance in achieving the highest accuracy and the 

lowest loss levels with less number of epochs. 

Table 1 compares the classification performance of the 

models employing pre-trained CNNs of VGG-16 and 

MobileNet for feature extraction on the test set. When the 

VGG16 CNN’s convolutional base is used for feature 
extraction, an accuracy of 0.974 was obtained. The loss was 

0.087. When the feature extraction process was conducted by 

employing the MobileNet CNN’s convolutional base, a higher 

accuracy of 0.984 was achieved. The loss was 0.072. 
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Fig. 8 Comparison of the training and validation analysis results of the three models 

Table 1. Comparison of the results obtained using pre-trained CNNs for feature extraction 

CNN Accuracy Loss Recall Precision AUC 

VGG16 0.974 0.087 0.971 0.975 0.995 

MobileNet 0.984 0.072 0.988 0.980 0.995 

 
With respect to the proportion of COVID-19 samples that 

were correctly classified, the network structure backboned by 

the MobileNet convolutional base had a slightly better 

performance (RecallMobilNet = 0.988) than the one 

backboned by the VGG16 convolutional base (RecallVGG16 

= 0.971). The precision values indicate that both models were 

successful in correctly classifying positive results. AUC values 

were also high and comparable for both models. Overall, the 

findings indicate that the methodology of using a complex pre-

trained CNN for feature extraction and then a simpler fully 

connected network structure for classification is useful for 

differentiating CT-scan images with COVID-19 from Non-
COVID-19. Both models were more accurate than the simple 

LeNet-5. 

The confusion matrices in Figure 9 and Figure 10 present in 

detail the classification performance of these models on the 

test set. Overall, leveraging pre-trained models for feature 

extraction significantly reduced the number of FPs and FNs 

compared to the case when the LeNet-5 model is trained from 

scratch and used to make binary classification. The model 

backboned by the MobilNet convolutional base had a slightly 

better performance in minimizing the classification errors. In 

COVID-19 detection, it may be essential to correctly classify 
each infected sample to reduce the risk of an outbreak. When 

the MobileNet convolutional base was utilized for feature 

extraction, a slightly higher TPR was achieved. Nevertheless, 

both models’ prediction performance was comparable. 

Figure 11 compares the classification performance results 

on the test set using ROC and AUC for the three methods 

employed. The ROC curve displays concurrently TPR (recall) 

and FPR (the fraction of Non-COVID-19 patients that were 

incorrectly classified as infected by COVID-19) for all 

possible threshold values. It is ideal to have a ROC curve that 

hugs the top left corner, indicating a high TPR and a low FPR 

[17]. The area under the (ROC) curve (AUC) quantifies the 
overall performance of a classifier, summarized over all 

possible thresholds, and the larger the AUC, the better the 

classifier [17]. Figure 11 reveals that the classification 

performance of the models on the test set employing pre-

trained CNNs of VGG-16 and MobileNet architectures for 

feature extraction is significantly better than that of the LeNet-

5 model trained from scratch. 

 

Fig. 9 VGG16 - Confusion matrix 

 

Fig. 10 MobileNet - Confusion matrix 



International Journal of Multidisciplinary Studies and Innovative Technologies, 2023, 7(2): 53 – 60 

59 

 

 

Fig. 11 Comparison of ROC curves and AUC of the three methods 

IV. DISCUSSION 

Due to the lack of a sufficient amount of data relevant to 

train a CNN model with numerous parameters successfully 
from scratch, the LeNet-5 CNN model with a relatively simple 

structure was trained first, which, however, showed poor 

classification performance when tested on unseen data. This 

result was in line with the findings of previous studies. For 

instance, [11] employed the LeNet-5 architecture to implement 

a CNN-based model for COVID-19 diagnosis using lung CT-

scan images. Unlike the current study, they applied image 

augmentation to enlarge the dataset. Their findings were not 

promising, as well. They could reach an accuracy level of 

86.06%, a precision of 85%, a recall of 89%, and an AUC of 

0.86 for COVID-19 detection. 

Similarly, [18] findings revealed that the relatively simple 
structure of the LeNet-5, having only five layers, rendered it 

less capable of extracting features, whereas the more complex 

structure of the VGG16 improved the feature extraction ability 

of the model and thus had a good classification detection 

ability. [10] obtained more successful performance results 

when they used the LeNet-5 network to extract features from 

CT-scan images and then applied “eXtreme Gradient 

Boosting” (XGBoost, [12]) for the classification of the images. 

With this methodology, they could achieve a rate of 0.95 for 

all the evaluation metrics of accuracy, recall, precision, and 

AUC. 
This study further indicated that the methodology of using 

pre-trained CNNs to extract features and then training a new 

classifier on top of it demonstrates an effective performance in 

categorizing lung CT-scan images into COVID-19 and Non-

COVID-19. This methodology has been adopted previously in 

other studies, in which the researchers either compared the 

classification performances of various CNN models 

backboned by different pre-trained CNN convolutional bases 

or developed their own framework based on feature extraction 

using pre-trained CNNs. The findings of the current study are 

in line with the previous research results involving a similar 

methodology used to solve the same binary classification 
problem. For instance, [22] employed pre-trained weights 

from several state-of-the-art CNN architectures using the 

ImageNet dataset, including VGG16 and another version of 

MobileNet called MobileNetV2, in the task of COVID-19 

classification based on CT-scan images. [22] obtained more 

promising results using VGG16 with respect to accuracy and 

AUC metrics (0.84 and 0.93, respectively). [23] conducted a 

similar study on the same dataset analyzed in the current study 

(SARS-COV-2 CT-Scan Dataset), where they utilized the pre-

trained models of MobileNet and VGG16 as the backbone of 

their deep learning framework and achieved accuracies of 0.95 

and 0.94, respectively. In a similar vein, [24] analyzed the lung 

CT-scan images of 5191 patients, 3820 of which were 

COVID-19 infected, to develop a deep learning based system 
for the automated diagnosis of COVID-19. In that study, they 

developed their own model called COVIDnet and compared 

its performance against that of the pre-trained CNN models of 

MobileNet and VGG16. With 200 epochs, they could achieve 

an accuracy of 0.94 using MobileNet and 0.97 with VGG16. 

V. CONCLUSION 

This study is a preliminary work involving image 

classification. In a future study, the extracted features of the 

network can be visualized via heat maps using the Gradient-

weighted Class Activation Mapping (Grad-CAM) algorithm 

[25] in order to have a better understanding of which parts of 
the CT scan images were identified as a lesion of an infection, 

which led to a positive COVID-19 classification. Visualizing 

heat maps can also be useful to locate the infection areas in the 

CT scan images and compare the COVID-19 with Non-

COVID-19 images to understand the CNN’s classification 

performance further. Moreover, in another study, on a dataset 

of lung CT scan images with radiology annotated COVID-19 

lesions, region-based convolutional neural networks (R-

CNNs), such as Mask-RCNN [26], can be implemented and 

the detection accuracy of the CNN models can be further 

investigated. 
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