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Abstract 
Purpose: This study aims to determine the item parameters and estimations of student attribute profiles related to the 2012 
8th Grade HSEE Mathematics subtest item responses using the G-DINA model and examine whether the items show DIF 
according to the gender variable. 

Design/Methodology/Approach: The study was conducted on the data of 1.063.570 students who took the 2012 HSEE 
Mathematics subtest. The analysis was carried out on the target population data to avoid sampling error. This study is a 
descriptive, survey type study. 

Findings: When the model fit indices and comparison results were examined, it was concluded that the model that best 
explained the behavior of students responding to the items in the 20-item form of the 2012 HSEE Mathematics subtest was G-
DINA. When the G-DINA model parameters were examined, it was found that the !! = [0000]  attribute profile (with 61%) in 
which none of the four defined attributes were found in the student, and the !!" = [1111]  attribute profile (with 17%) in 
which all four attributes were present in the student (17%) were the most common attribute profiles. As a result of DIF analysis 
within the scope of CDM, and it was identified that item 4 showed a significant uniform DIF in favor of female students while 
item 19 showed a uniform DIF in favor of male students at moderate level. 

Highlights: It is thought that DIF analyses within the framework of cognitive diagnostic models can provide a statistical basis 
for item bias decisions. 

Öz 
Çalışmanın amacı: G-DINA model kullanarak 2012 SBS 8. Sınıf Matematik alt testi madde cevaplarına ilişkin madde 
parametreleri ve öğrenci nitelik profili kestirimlerinin belirlenmesini ve maddelerin cinsiyet değişkenine göre DMF gösterip 
göstermediğinin incelenmesidir. 

Materyal ve Yöntem: Çalışma, 2012 yılı SBS Matematik alt testini alan 1.063.570 öğrenci verisi üzerinde yürütülmüştür. 
Analizler, örnekleme hatasının önüne geçmek amacıyla evren verisi üzerinde gerçekleştirilmiştir. Betimsel düzeyde, tarama 
türünde bir araştırmadır. 

Bulgular: Model uyumu indeksleri ve karşılaştırma sonuçları incelendiğinde, öğrencilerin 2012 SBS Matematik alt testinin 20 
maddelik formunda yer alan maddelere cevap verme davranışlarını en iyi açıklayan modelin GDINA olduğu sonucuna 
ulaşılmıştır. GDINA model parametreleri incelendiğinde, tanımlanan dört nitelikten hiçbirinin öğrencide bulunmadığı !! =
[0000] nitelik profili (%61) ile dört niteliğin de öğrencide bulunduğu !!" = [1111] nitelik profilinin (%17) en çok rastlanan 
nitelik profili olduğu belirlenmiştir. BTM kapsamında DMF analizleri sonucunda, 4. maddenin önemli düzeyde kız öğrenciler 
lehine tek biçimli DMF gösterdiği; 19. maddenin ise orta düzeyde erkek öğrenciler lehine tek biçimli DMF gösterdiği 
bulunmuştur. 

Önemli Vurgular: Bilişsel tanı modelleri çerçevesinde DMF analizleri ile madde yanlılığı kararlarına istatistiksel bir zemin 
oluşturulabileceği düşünülmektedir. 

Anahtar Kelimeler 
1. SBS 
2. Matematik 
3. Bilişsel tanı modelleri 
4. G-DINA 
5. Değişen madde 
fonksiyonu 

 

Received/Başvuru Tarihi 
06.08.2023 

Accepted / Kabul Tarihi 
25.10.2023 

 

 
1 Kastamonu University, Education Faculty, Educational Sciences, Kastamonu, TÜRKİYE; https://orcid.org/0000-0001-7932-7644 
2 Corresponded Author, Afyon Kocatepe University, Educational Sciences, Afyonkarahisar, TÜRKİYE; https://orcid.org/0000-0002-6651-4851 



   

|Kastamonu Education Journal, 2023, Vol.31, No. 4| 

 

681 

INTRODUCTION 
Central examinations conducted by the Ministry of National Education (MoNE) are decisive in the secondary education 

placement process in Türkiye. In our country, the secondary education placement exams held at the national level by the MoNE 
have differed in terms of method and content in various periods. Student selection and placement was carried out centrally, 
sometimes by applying a single exam and sometimes more than one exam. Although it was expressed with different names (OKS, 
SBS, TEOG, LGS, and so on.) in different periods, the common purpose of the exams is to select and place students for high schools. 
In our country, the exam conducted by MoNE between 2007-2013 to place students in secondary education is the High School 
Entrance Exam (HSEE). Ensuring the validity of large-scale exams such as HSEE, which had special purposes such as selection and 
placement, and whose results could directly affect the lives of students, accordingly, was of great importance in terms of the 
accuracy of the decisions taken. 

Determining whether the test items in the exams provide an advantage to any of the subgroups due to the characteristics of 
the test taker groups that are not related to the measured attribute by differential item function (DIF) analysis is of great 
significance as evidence of the validity of the test scores and the decisions taken accordingly. DIF analysis, which has become a 
part of item analysis in recent years, is routinely performed to ensure the validity and fairness of test scores. Although many DIF 
methods have been developed within the scope of Classical Test Theory (CTT) and Item Response Theory (IRT), the applications 
of these methods in cognitive diagnosis models (CDM) are quite limited. 

Cognitive diagnosis models are latent classroom models developed to assess whether students have interrelated but 
distinguishable latent attributes (de la Torre, 2011; Hou et al., 2014; Haagenars & McCutcheon, 2002). The fact that cognitive 
diagnosis models are more related to classroom teaching and learning processes and that they provide more diagnostic 
information have caused them to be considered more as a psychometric research topic (Rupp & Templin, 2008; de la Torre, 2011; 
de la Torre & Douglas, 2004; Embretson, 1997; Junker & Sijtsma, 2001; Tatsuoka, 1985). Cognitive diagnostic models have been 
developed as an alternative to one-dimensional item response models to determine whether the respondent has the multi-
component skills required to answer test items correctly (de la Torre, 2009). 

IRT models only provide a single score that assesses the overall ability level of the respondent. However, the CDM analysis 
provides a profile that shows what attributes, skills, or knowledge each respondent has. These profiles contain important 
information that can have an impact on learning and teaching. Instead of just giving a total score, CDM shows the attributes, 
strengths, and weaknesses of individuals and the reasons for failure in detail. This provides valuable guidance for better guiding 
learning processes and improving instructional design. Traditional IRT methods examine whether the probability of answering the 
item correctly differs between respondents in different subgroups who are at the same ability level or get the same total score 
(Hambleton et al., 1991; Zumbo, 1999). DIF within the scope of CDM, on the other hand, evaluates the differentiation of the 
probability of answering the item correctly among respondents who are in different groups and have the same latent attribute 
profile. DIF assessments under CDM provide evidence of the invariance of the item-attribute interaction between groups (Hou et 
al., 2014). According to Hou et al. (2014), the presence of items with DIF in terms of CDM may lead to item parameters and latent 
trait profile estimations that are not valid for each group. Therefore, DIF analyzes are necessary to determine parameter and 
structure invariance (Zumbo, 2007). Since item parameters represent interactions between attributes and items, DIF analysis 
sheds light on whether the attribute-item interaction is invariant between comparison groups. Group membership, which can 
affect how items are perceived and resolved, may act as a variable leading to DIF. For this reason, controlling the invariance 
between groups with DIF analysis is considered as the necessary first step of CDM applications (Hou et al., 2014). 

In the context of CDM, DIF can be represented by !!"! = #$%! = 1'(#)$ − #$%! = 1'(#)%. Here !!"!  indicates item j. in DIF 
for respondents with latent attribute profile; (#  the probability of success in the item j. for respondents with latent attribute 
profile. A value of !!"! > 0 indicates that the item shows DIF in favor of the focus group, while a value of !!"! < 0 indicates that 
the item shows DIF in favor of the reference group. The fact that !!"! = 0 for all attribute profiles is interpreted as the case where 
the item does not show DIF. 

Similar to DIF under IRT, uniform and non-uniform DIF can be identified in cognitive diagnostic models. Regardless of the latent 
attribute profile, if the probability of answering an item correctly is consistently higher or lower for a group, in other words, if !!"!  
is either positive or negative in all latent attribute profiles, the item shows uniform DIF. While the probability of answering the 
item correctly is lower in some latent trait profiles for a group, and while it is higher in some other latent profiles for the same 
group, non-uniform DIF is the case there. Namely, in non-uniform DIF, the sign of !!"!changes depending on the latent attribute 
profiles (Hou et al., 2014). 
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In the current study, the aim is to determine whether the 2012 HSEE 8th Grade Mathematics subtest items based on the G-

DINA model, which is one of the cognitive diagnosis models, show DIF according to the gender variable, and to identify the model 
parameters and student qualification attributes. It is thought that this study will contribute to the relevant literature due to the 
limited number of studies in which DIF studies are handled within the scope of CDM (Milewski & Baron, 2002; Zhang, 2006; Li, 
2008; Hou et al., 2014; Li & Wang, 2015). When the relevant literature is analyzed, it is seen that studies using cognitive diagnosis 
models are generally carried out on simulation data (de la Torre & Douglas, 2004; Zhang, 2006; Hou et al., 2014; Li & Wang, 2015; 
Ömür Sünbül & Kan, 2015). In the current study, it is thought that large-scale HSEE real data at the national level will make 
important contributions to the field in terms of seeing how the G-DINA model will produce results, providing empirical information 
about learning and teaching processes, and providing evidence for the validity of test scores. 

METHOD/MATERIALS  

Research Design 
This study is a descriptive, survey type study as it aims to determine whether the 2012 HSEE 8th Grade Mathematics subtest 

items show DIF according to the gender variable, and to estimate model parameters and student attribute profiles using the G-
DINA model. The purpose of survey research is generally to make a description by taking a picture of an existing situation related 
to the research topic (Büyüköztürk et al., 2014). Survey studies are studies conducted on larger samples compared to other studies 
in which certain characteristics of a group (e.g., ability, attitude, belief, and knowledge) are described (Fraenkel & Wallen, 2012). 

Population 
The population of the study consists of 1.075.546 students who participated in the 8th Grade High School Entrance Exam in 

2012. The study was carried out on the data of a total of 1.063.570 students, excluding the students whose gender information in 
the 2012 HSEE Mathematics subtest could not be accessed from the analysis. The students that were removed from the data set 
constituted approximately 1% of the data set. The analysis was carried out on the whole target population data to avoid sampling 
error. The distribution of students by gender for the mathematics subtest is provided in Table 1. 

Table 1. The Distribution of the students according to gender 
Gender N % 
Female 523.939 50,7 
Male 539.631 49,3 
Total 1.063.570 100 

When Table 1 is examined, it is seen that 523.939 (50,7%) of them are females and 539.631 (49,3%) of them are males. 

Data Collection 
Depending on the purpose of the study, the data collection process includes obtaining the item response data for the Transition 

to Secondary Education System (which is done via HSEE) 2012 8th Grade Mathematics subtest and creating the Q-matrix that 
defines the relationships between the items and the attributes. The data of the 8th grade mathematics subtest of the HSEE held 
in 2012 were provided by the Ministry of National Education, General Directorate of Assessment and Examination Services. As for 
the Q matrix, it was determined through the focus group discussion with the participation of 7 field experts. 

According to the guide of the Transition to Secondary Education System (TSES) Placement test, 20 multiple choice mathematics 
questions with 4 options were directed to the students in the 8th grade. The descriptive statistics regarding the mathematics 
subtest used in the study were provided in Table 2. 

Table 2. The descriptive statistics of the mathematics subtest 
Statistics Mathematics Subtest 
Number of Item 20 
Number of Students 1.063.570 
Min. Score 0 
Max. Score 20 
Mean 7.17 
Variance 22.60 
Standard Deviation 4.75 
Skewness 0.94 
Kurtosis 0.07 
KR-20 0.86 
Standard Error of Measurement 1.79 
Mean Difficulty ( ) 0.36 

Mean Discrimination (rpb) 0.51 

p
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When Table 2 is examined, it is seen that the reliability coefficient (KR-20) for the mathematics subtest is 0.86. That the 

reliability coefficient calculated is higher than 0.70 in terms of internal consistency is generally considered sufficient for the 
reliability of the test scores (Büyüköztürk, 2012). In addition, a mean difficulty value of ( ) 0.36 indicates that the students who 
took the test answered 7.17 of 20 items on average in the test, and that skewness and kurtosis coefficients are positive indicates 
that the score distributions of the mathematics subtest are skewed to the right, which means that there is an accumulation in low 
scores. 

The Formation of the Q-matrix 
The quality of diagnostic evaluations is influenced by the correct identification of the attributes underlying test performance. 

It is stated that various sources such as test guides, learning domain theories, item content analysis, analysis of the respondent's 
test process, and related research results in the literature can be utilized to determine the attributes covered in a test (Embretson, 
1991; Leighton & Gierl, 2007). Lee and Sawaki (2009a), on the other hand, stated that when cognitive models of task performance 
are not available and cognitive diagnostic models are used for non-diagnostic tests, it is a good starting point to brainstorm about 
possible attributes by examining the test content in detail. Accordingly, in this study considering that the HSEE, which is used for 
selection and placement purposes, was not developed for diagnostic purposes, the study aimed to determine the possible 
attributes to be measured with the HSEE mathematics subtest through focus group interviews. 

The focus group discussion process, which was carried out to determine the Q-matrix that defines the relationships between 
items and attributes and shows whether a feature is necessary for an item, was completed in 4 stages. In the focus group interview, 
firstly, the possible attributes to be measured with the mathematics subtest and the gains associated with the items were 
examined and the boundaries, main topics and interview questions of the focus group interview were determined. In the second 
stage, the field experts who were going to participate in the research were identified and invited to the interview. In the third 
stage, the place and time for the focus group meeting were arranged, the necessary arrangements were made, and the interview 
was held. As for the last stage, the short notes taken during the interview were analyzed and the results were summarized. 

A principle and 7 field experts participated in the focus group meeting held to determine the attributes required for answering 
the items correctly. Although there are different opinions about how many people the group size should consist of in focus group 
interviews, ideally 6-8 people are considered sufficient (Yıldırım & Şimşek, 2011). Since the identification of the attributes required 
for answering the items correctly and the definition of the relationships between the items and the attributes require expertise 
and experience both in the fields of mathematics education and measurement and evaluation, it was ensured that all experts 
graduated from mathematics education and held at least a master's degree in mathematics education or measurement and 
evaluation fields. Detailed information on the training areas of the experts participating in the focus group interview is given in 
Table 3. 

Table 3. The distribution of the experts that took part in the focus group meeting 

Educational Background Total 
Number In Total (%) 

A teacher at MoNE   
Ø Ph.D. student in Mathematics Education 1 12,5 
A research assistant  7 87,5 
Ø Ph.D. student in Mathematics Education and MA student in Assessment  1 12,5 
Ø MA degree from Primary School Mathematics Education and Ph.D. student in Assessment 2 25 
Ø Ph.D. student in Assessment 3 37,5 
Ph.D. student in assessment (a principle) 1 12,5 
Total 8 100 

In the focus group discussion, the aim was to create an environment where the participants could hear the opinions of others 
and think about their own opinions accordingly. In line with this, the environment was prepared in a round seating arrangement 
so that the experts could see each other. Care was taken to ensure that the environment was noise-free, and that the conversation 
was not interrupted. At the beginning of the focus group discussion, an explanation was made to the experts regarding the purpose 
and scope of the study, and a form containing the mathematics items that were the subject of the research and the pedagogic 
gains thought to be related to these items was distributed. In addition to this form, the classification of learning domain and 
cognitive skills covered within the scope of TIMSS 2015 8th Grade Mathematics Framework (Gronmo et al., 2014) was also utilized 
to examine the item contents, relevant learning areas, and the attributes to be measured with a specific item. 

In the focus group interview, the acquisition related to the mathematics subtest items were evaluated in terms of the learning 
areas included in the Mathematics Lesson (the 6-8th Grades), the Curriculum, and TIMSS 2015 8th Grade Mathematics Framework. 
Additionally, the cognitive skills to be measured with items were investigated under the classifications of "knowing", "practicing" 
and "reasoning" determined within the scope of TIMSS 2015 8th Grade Mathematics Framework. However, that the strategies 
used in item solution could not be identified due to the multiple-choice nature of the test items prevented unearthing the 
relationship between the item and cognitive attributes to be made with full accuracy. Lee and Sawaki (2009a) emphasize that the 

p
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features defined in more detail in the Q matrix will provide richer diagnostic information and thus increase the instructional value 
of the diagnosis, but this will generally produce unreliable and inconsistent results in classifying respondents. Consequently, in the 
current study evaluating the attributes required for the correct answer of the items within the scope of learning areas was decided 
as the goal. Accordingly, in the Q-matrix, the relationship of the items with 4 attributes, namely "Numbers", "Geometry and 
Measurement ", "Algebra", and "Probability and Statistics" were defined. As a result of the focus group discussion, the Q-matrix 
provided in Table 4, which defines the relationships between the items and the attributes, was created. 

Table 4. The Q-matrix 
Item Numbers Geometry and Measurement Algebra Probability and Statistics 
1 1 0 0 0 
2 1 0 0 0 
3 1 0 0 0 
4 0 1 0 0 
5 0 1 1 0 
6 0 1 0 0 
7 0 1 0 0 
8 1 0 1 0 
9 0 1 0 0 
10 1 0 0 0 
11 0 1 0 0 
12 0 1 0 0 
13 0 1 0 0 
14 0 1 0 0 
15 0 0 0 1 
16 1 0 0 1 
17 0 0 0 1 
18 0 1 0 0 
19 1 0 1 0 
20 0 0 1 0 
Total 7 10 4 3 

When Table 4 is analyzed, it is observed that the Q-matrix consists of 1 entries that show that the relevant attribute is necessary 
for the item and 0 entries that show that relevant attribute is unnecessary for the item. Hartz et al. (2002) suggest that at least 3 
items must be present for an attribute to obtain reliable diagnostic information. According to the created Q-matrix, it was 
determined that the attributes in the test were measured with at least 3 (Probability and Statistics) and at most 10 items 
(Geometry and Measurement). 

Data Analysis 
This study basically serves two purposes; The first one is to determine the model parameters and latent attribute profiles for 

the mathematics subtest via the G-DINA model, and the second is to examine whether the mathematics items show DIF by gender 
using the G-DINA model. In line with these purposes, based on the Q-matrix that defines the relationships between the "Numbers", 
"Geometry and Measurement", "Algebra", and "Probability and Statistics" attributes and the items, whether the probability of 
answering the items correctly differs between both the model parameters and the students with the same latent attribute profile 
was analyzed. 

As with other statistical models, the significance and interpretability of the results obtained from cognitive diagnostic models 
depend on the extent to which model data fit is achieved. Model fit can be determined in two ways, in which the fit of the model 
to the data is checked (absolute fit) and the model is compared with other models (relative fit). In this study, both absolute fit 
indices (Mx2, MADcor, MADRESIDCOV, MADQ3, and SMRSR) and also relative fit indices (Loglik, AIC, and BIC) were examined in 
order to test the overall model fit. 

Mx2 (Chen & Thissen, 1997), a global model fit test from absolute fit indices, is the average of χ2 test statistics regarding the 
independence of item response frequencies across all item pairs. Mx2 represents the mean of the difference between the 
observed and predicted response frequencies by the model. Ravand (2016) stated that significant differences can be taken as 
evidence of inter-item dependence and that dependence is expected because respondents use the same cognitive processes to 
answer the items. If the cognitive diagnosis model fits the data well, the χ2 test statistics is expected to be 0. In this case, the 
attribute profiles of the respondents, that is, each latent class, will be perfectly predicted from the observed response pattern 
(Rupp et al., 2010). MADcor (DiBello et al., 2007) is the average of the absolute differences between observed and predicted item 
pair correlations. The “mean residual covariance (MADRESIDCOV)” (McDonald & Mok, 1995) is the mean of the absolute 
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differences between the observed and reproduced item covariance matrices. The MADQ3 (Yen, 1984) is the average of the 
absolute values of the Q3 statistics describing the binary correlations for item residuals. The average of the RMSEA values at the 
item level compares the rates observed and predicted by the model for each response category weighted with the ratio of 
respondents in latent classes (Lei & Li, 2016). Classification consistency (Pc) and classification accuracy (Pa) express reliability and 
validity regarding classifying respondents into implicit classes. While Pc is the indicator of the extent to which respondents will be 
consistently classified into the same latent class when the same test or a parallel form of the test is applied, Pa is an indicator of 
how well the respondent's classification matches the correct latent class (Ravand, 2016). 

In the study, within the scope of the G-DINA model, whether the 2012 HSEE Mathematics subtest items displayed item function 
variation according to gender was investigated via the Wald test (de la Torre, 2011; Hou et al., 2014). On the other hand, it is 
stated that Wald statistics (de la Torre & Lee, 2013) significantly determines even negligible DIF effects in large samples (George 
& Robitzsch, 2014). Hence, the unsigned area measurement based on the unmarked area (UA) originally introduced by Raju (1990) 
is presented as the DIF effect size. In the literature, it is seen that the effect size classification criteria set forth by Jodoin and Gierl 
(2001) are used for UA (George & Robitzsch, 2014; Ravand & Robitzsch, 2015). Jodoin and Gierl suggested a critical value of .059 
for negligible DIF sizes and .088 to determine medium DIF sizes within the scope of three-parameter IRT models. 

Data analysis was performed using the RStudio program “CDM” package version 4.99-11 (Robitzsch et al., 2016). The “CDM” 
package uses the marginal maximum likelihood method based on the EM (Expectation-Maximization) algorithm to obtain 
parameter estimations. 

FINDINGS  

The G-DINA Model Fit of 2012 HSEE Mathematics Test Data 
The statistics of the G-DINA model fit of the 2012 HSEE Mathematics Test were provided in Table 5 and the values of 

classification consistency (Pc) and its accuracy (Pa) are presented in Table 6. 

Table 5. The statistics of the G-DINA model fit of 2012 HSEE mathematics test  

Model fit indices p 

Mx2  22603.7 0 

MADcor  0.045 - 

MADRESIDCOV  0.009 - 

MADQ3  0.032 - 

RMSEA  0.045 - 

SRMSR 0.057 - 

When Table 5 is examined, it is seen that the Mx2 statistic is significant (p < 0). Although the Mx2 statistic as an indicator of fit 
is not expected to be significant, it is sensitive to even minor model data mismatches. For this reason, it often yields results that 
indicate the lack of harmony. Consequently, it was stated that SRMSR (the Standardized Root Mean Squared Residual) values 
should also be reported for the Mx2 statistics. A SRMSR value close to zero indicates better model-data fit (De Ayala, 2009; 
Maydeu-Olivares & Joe, 2005, 2006; Maydeu-Olivares et al., 2011; Maydeu-Olivares & Joe, 2014). Maydeu-Olivares (2013) states 
that the SRMSR value should be less than 0.05 for the model to fit well. The fact that the obtained SRMSR value is very close to 
0.05 indicates that the G-DINA model fits at a good level. MADcor was found to be 0.045 in the study. In their study, DiBello et al. 
(2007) considered the MADcor value of 0.049 as the indication of the fact that the cognitive diagnosis model fits well with the 
data. As seen in Table 5, MADRESIDCOV, MADQ3, and RMSEA values were found to be less than 0.05. Ravand (2016) evaluated 
MADRESIDCOV, MADQ3, and RMSEA values less than 0.05 as a good model fit. In this respect, it may be suggested that the G-
DINA model used in the study fits well with the HSEE 2012 Mathematics subtest data. 

Table 6. Classification Consistency (Pc) and Accuracy (Pa) for G-DINA Model 
 Classification Consistency (Pc) Classification Accuracy (Pa) 
Atribute1 .94 .97 
Atribute2 .99 .99 
Atribute3 .57 .69 
Atribute4 .72 .83 
Pattern .92 .89 

When Table 6 is examined, it is seen that the Pa and Pc values for the whole latent class pattern in the study are .89 and .92, 
respectively. Pc and Pa values give the measure of classification consistency and accuracy regarding whether these attributes are 
owned by students for each attribute. Except for the third attribute (i.e., Algebra), these values for the attributes were found to 
be relatively high. Ravand (2016) states that although there is no definitive criterion for Pc and Pa values, C.Ying (2013) 
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recommends the values of .7 and .8 as acceptable classification rates. However, in Cui et al. (2012)’s study on Tatsuoka's (2002) 
subtraction data in fractions, Pa and Pc values were found to be .68 and .52, respectively. In the light of this information, it may be 
stated that the validity and reliability of the classification are at an acceptable level. 

In addition, the DINA model, which is a "conjunctive" model that requires the student to have all the necessary attributes to 
be successful in the relevant item, and the G-DINA model, where each attribute’s contribution to the probability of answering the 
item is different, were compared and which CDM model better fitted the data was also examined. Table 7 presents the relative fit 
statistics and likelihood ratio test results obtained from the 2012 HSEE Mathematics subtest according to the DINA and G-DINA 
models. 

Table 7. The relative fit statistics and likelihood ratio test (LR) according to the DINA and G-DINA models 
Model Nobs AIC BIC Npar logLik χ2 df p 
DINA 1063570 22233810 22234464 55 -11116850 72939,27 4 .0 
G-DINA 1063570 22160879 22161580 59 -11080380    

 When Table 7 is examined, it is seen that there is a decrease in the Loglik, AIC, and BIC values regarding the G-DINA model. 
This can be interpreted as the fact that the G-DINA model fits the data better than the DINA model. The goodness-of-fit test (Bock 
& Lieberman, 1970) using LRT χ2 values for DINA and G-DINA model comparison is seen to be significant (p = .0). Accordingly, the 
G-DINA model fits the data better than the DINA model. When the general model fit indices and comparison results were 
examined, it was concluded that G-DINA was the model that best explained the students' behavior of responding to the items in 
the 20-item form of the 2012 HSEE Mathematics subtest. 

The Findings regarding the Parameters of the G-DINA Model 
The difficulty levels of the attributions were examined within the scope of the study, and the results are given in Table 8. 

Table 8. The probabilities regarding the attributes 
Attributes  Attribute probabilities 
Numbers .28 
Geometry and Measurement .20 
Algebra .26 
Probability and Statistics .33 

 

When Table 8 is examined, it is seen that 33% of the students have attributes related to the learning field of "probability and 
statistics". Accordingly, “probability and statistics” can be expressed as the easiest attribute. This attribute is followed by 
"numbers", "algebra", and "geometry and measurement" respectively. 

In cognitive diagnostic models, respondents are classified into 2K latent classes. In this study, students are divided into 16 latent 
classes, as 4 attribute areas are defined within the scope of the HSEE Mathematics subtest. In Table 9, possible student attribute 
profiles for the first two and the last two latent classes are presented. 

Table 9. The probabilities regarding latent classes 
Latent Classes Attribute Profile (!!) Class Probabilities Expected Class Frequencies 
1 0000 .614 654049.7 
2 1000 .026 27926.2 
.    
.    
.    
15 0111 .00009 105.984 
16 1111 .168 179120.2 

In the current study, it was identified that the highest-class probability belonged to the latent attribute profile (&= [0000]. 
According to this, approximately 61% of the students (nearly 654.050 students) took part in the first latent class where they were 
expected to have none of the four attributes. It was determined that the second highest class probability belonged to the latent 
attribute profile (&'= [1111]. Accordingly, approximately 16.8% of the students (nearly 179.120 students) were expected to have 
all the attributes. G-DINA parameter estimations for all items in the mathematics subtest are given in Table 10. 
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Table 10. G-DINA model parameter estimations 

Items 

Attribute Profile 
0 1               

00 10 01 11             
000 100 010 001 110 101 011 111         

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111 
1 0.19 0.54               
2 0.24 0.95               
3 0.27 0.95               
4 0.58 0.93               
5 0.13 0.00 0.11 0.53             
6 0.16 0.79               
7 0.37 0.73               
8 0.17 0.69 0.63 0.90             
9 0.23 0.87               
10 0.12 0.21               
11 0.15 0.84               
12 0.21 0.88               
13 0.14 0.73               
14 0.11 0.47               
15 0.40 0.92               
16 0.39 0.83 0.92 0.97             
17 0.19 0.79               
18 0.10 0.79               
19 0.27 0.80 0.85 0.96             
20 0.11 0.27               

Table 10 shows the probability of being successful in certain attribute profiles for all items in the mathematics subtest. The 
pattern of reduced attribute profiles to which the parameter estimates correspond is in the top row of the table. In the G-DINA 
model, the number of parameters for each item is a function of the number of attributes required for that item (2("∗). Accordingly, 
four parameters are estimated for items that require two attributes, and two parameters are estimated for items that require 
one. When Table 10 is examined, it is observed that four parameters are obtained for items 5, 8, 16, and 19, which require two 
attributes. The point to be noted here is that the required attributes for these items are not the same, that is, the attributes 
represented in the reduced feature vector are different. Since items other than the items 5, 8, 16, and 19 require a single attribute, 
P(0) and P(1) can be interpreted as g and 1-s parameters respectively in the DINA model (de la Torre, 2011). According to this, it 
may be stated that the students who do not have the attribute of numbers guessed the third item correctly with a probability of 
27%, while the students with the attributes in the field of learning numbers answered the item correctly with a probability of 95%. 
In addition to this, it was determined that none of the items requiring more than one attribute in the mathematics subtest met 
the "conjunctive" assumption of the DINA model, which means that the same probability of success is obtained in the absence of 
one of the required attributes.  

It is seen that the students who have one of the two required attributes in items 8, 16, and 19 show higher success than the 
students who do not have any of these attributes. This finding indicates that the achievement in the related items changes 
depending on the presence of the attributes in the student, and therefore, correct definitions of the attributes are provided in the 
Q matrix. On the other hand, when the 5th item is taken into consideration, it is seen that the main effects of the "geometry and 
measurement" and "algebra" attributes required for the item are quite low; however, the interaction of these two attributes were 
observed to affect the probability of success in the item at a high level. When the 4th, 10th, and 20th items are examined, it is 
seen that there is not a significant difference between the success probability of the students who have the necessary attributes 
for the item and the success probability of those who do not. This indicates that other qualities may have been used to answer 
the item correctly, or that other characteristics unrelated to the test, apart from the attributes to be measured with the item, may 
have affected the answering process. In Table 11, the attribute pattern and probability of success for items 1 and 8 in the 
mathematics subtest are given, as well as the required attributes for the item. 

Table 11. Attribute pattern and success probabilities for items 1 and 8 

Item Attributes Required for the 
Item  Attribute Pattern Probabilities of Success 

Item1 α1 A0 .19 
Item1 α1 A1 .54 
Item8 α1 ve α3 A00 .17 
Item8 α1 ve α3 A10 .69 
Item8 α1 ve α3 A01 .63 
Item8 α1 ve α3 A11 .90 
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In Table 11, the second column shows the required attributes defined in the Q-matrix for items 1 and 8, the third column 

shows the patterns of whether the student has the necessary attributes for the item, and the last column shows the probability 
of answering the item correctly depending on whether the required attributes are present or not. When Table 11 is analyzed, it is 
seen that the probability of answering the item correctly (estimation probability) of the students who do not have the attributes 
related to the "numbers" learning area required for item 1 is .19. In Table 11, it is seen that the students who have the attributes 
related to the "numbers" learning field are more likely to answer item 1 correctly (54%) than those who do not. In the case that 
the student has the attributes related to the "numbers" learning domain, the probability of being successful in the item (probability 
of not making a shift) becomes .19+.54= .73. When Table 11 is examined, it is seen that 2 attributes are required for item 8, namely 
"numbers" and "algebra". It is seen that students who do not have the 2 attributes required for item 8 answered the item correctly 
with a probability of 16%. Accordingly, the probability of guessing the 8th item in the mathematics subtest is 16%. If the student 
has the attributes related to the "numbers" learning field, the probability of being successful in the item is .16+.69=.85. If the 
student has the attributes related to the "Algebra" learning field, the probability of being successful in the item becomes .16+.63= 
.79. Accordingly, the presence of the "Numbers" attribute for the 8th item affects the success of the item more than the "Algebra" 
attribute. As for the interaction of "Numbers" and "Algebra", it increased the probability of answering the item correctly to 90%. 
However, since it is a conditional probability, it is necessary to pay attention not to add up the probability of answering the item 
correctly, depending on whether the necessary attributes for any items are present or not (Ravand, 2016). 

The Findings regarding DIF Analysis 
The results of the DIF analysis within the scope of the G-DINA model for the mathematics subtest obtained using the Wald test 

are provided in Table 12. 

Table 12. The results of DIF analysis 
Madde χ2 df p UA 

1 495.47 2 .00 0.0269 
2 2033.71 2 .00 0.0307 
3 74.08 2 .00 0.0121 
4 6162.23 2 .00 0.1086 
5 603.98 4 .00 0.0198 
6 399.49 2 .00 0.0113 
7 86.35 2 .00 0.0133 
8 144.71 4 .00 0.0314 
9 20.31 2 .00 0.0061 
10 2211.70 2 .00 0.0218 
11 649.22 2 .00 0.0166 
12 710.93 2 .00 0.0191 
13 3.35 2 .19 0.0032 
14 236.89 2 .00 0.0071 
15 110.76 2 .00 0.0180 
16 182.21 4 .00 0.0380 
17 363.73 2 .00 0.0152 
18 63.39 2 .00 0.0147 
19 1205.55 4 .00 0.0775 
20 488.66 2 .00 0.0151 

 
When Table 12 is examined, it is seen that the item parameters differ significantly between male and female students in all 

the other items in the mathematics subtest, except for the 13th item (p < .05). 
Table 13 presents the DIF status of the 2012 HSEE Mathematics subtest items according to the effect size classification 

determined by Jodoin and Gierl. 
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Table 13. The items showing DIF and their effect size 

The Group The Items not Showing DIF 
The Items Showing DIF 

Negligible 
UA<.059 

Medium Level 
.059 < UA < .088 

Significant level 
UA >.088 

Gender 13 1,2,3,5,6,7,8,9,10,11,12,14,15,16,
17,18,19,20 19 4 

When Table 13 is examined, it is seen that item 19 shows DIF at a moderate level and item 4 shows DIF at a significant level in 
the mathematics subtest. It was determined that the 13th item did not show DIF (p>.05), and except for these three items, the 
other items in the test showed negligible DIF. 

Within cognitive diagnostic models, uniform DIF is the case which poses consistently lower/higher correct answer probabilities 
for a group across all trait profiles. Non-uniform DIF, on the other hand, is that the probability of answering correctly is higher for 
a group in some latent profiles, while it is lower in some other attribute profiles in the same group (Li & Wang, 2015). The attribute 
profiles of male and female students regarding item 19 and their probability of answering correctly are given in Table 14. 

Table 14. Success probabilities according to gender for item 19 

Item 19 

 
 

The 
Group 

Attributes Required 
for the Item 

Attribute 
Pattern 

Probabilities of 
Success 

Female 

α1 ve α3 A00 0.22 
α1 ve α3 A10 0.72 
α1 ve α3 A01 0.74 
α1 ve α3 A11 0.94 

Male 

α1 ve α3 A00 0.31 
α1 ve α3 A10 0.88 
α1 ve α3 A01 0.91 
α1 ve α3 A11 0.97 

When Table 14 is examined, it is seen that the probability of answering the item correctly in item 19, which was determined 
to show moderate DIF, is higher for male students than for female students in all reduced attribute profiles. In this case, it can be 
stated that item 19 shows a uniform DIF in favor of male students. 

As only one attribute is required for item 4, which was determined to show significant DIF, the success probability of students 
who do not have this attribute P(0) and those who have it P(1), can be thought of as the g and 1-s parameters in the DINA model, 
respectively (de la Torre, 2011). Hou et al. (2014) demonstrate that if the shift parameter (s) is small and the estimation parameter 
(g) is large for the focus group, the item shows uniform DIF, and as a result, they state that the probability of answering the item 
correctly in the focus group compared to the reference group, regardless of its implicit qualities is higher. 

The attribute profiles and correct answer probabilities for item 4, which was determined to show significant DIF according to 
gender, are given in Table 15. 

Table 15. Success probabilities according to gender for item 4 
Item 4 

 

The Group Attributes Required 
for the Item 

Attribute 
Pattern 

Probabilities of 
Success 

Female 
α2 A0 0.64 
α2 A1 0.94 

Male 
α2 A0 0.51 
α2 A1 0.91 
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In Table 15, when the success probabilities P(0) and P(1) are considered as the g and 1-s parameters in the DINA model 

respectively, it is seen that the estimation parameter (g) is higher and the shift parameter (s) is smaller for female students. 
Considering this, the results revealed that the probability of female students to answer the item correctly is higher than male 
students. In this case, it can be stated that item 4 shows a uniform DIF in favor of female students. 

 

CONCLUSION, DISCUSSION AND SUGGESTIONS  
This current study was carried out on the item answers of the 2012 HSEE 8th Grade Mathematics subtest. In the study, 

estimations of item parameters and student attribute profiles were obtained using the G-DINA model, and whether mathematics 
items showed DIF according to the gender variable within the scope of cognitive diagnosis models was examined. 

General cognitive diagnostic models, such as the G-DINA model, control model fit at both test and item levels (Ravand, 2016). 
When the absolute and relative fit indices were examined in the current study, it was determined that the G-DINA model was 
compatible with the data at the test level. This indicates that there are “compensatory” relationships for some items and “non-
compensatory” relationships for some other items among the attributes. General cognitive diagnostic models do not allow 
relationships between test-level attributes to be seen but allow different CDMs for different items within the same test. It is stated 
that the G-DINA model is particularly suitable in situations where the relationships between attributes may change depending on 
cognitive difficulties (Ravand, 2016). In the current study, the model fit was evaluated at the test level since the relationships 
between the "numbers", "geometry and measurement", "algebra", and "probability and statistics" attributes identified related to 
mathematics items were changeable and the cognitive structures of the items could not be understood, and the G-DINA model 
was observed to fit well at a high level. The G-DINA model, which is a saturated model, provides better model-data fit compared 
to other reduced models (de la Torre et al., 2015). However, reduced models are preferred under some conditions due to the 
principle of parsimony, which allows for more clear and understandable interpretations, requires small samples to obtain accurate 
estimations, and if it is not possible to distinguish between them, simpler models are preferred to complex models. Rojas et al., 
(2012) state that, unlike general models at the item level, reduced models such as DINA, DINO, ACDM, and NC-RUM are more 
interpretable in terms of the relationships between attributes. De la Torre (2011) suggests the Wald test as a statistical method 
to determine model fit at the item level, in other words, whether one of the reduced models can be used instead of the G-DINA 
model in the item. Accordingly, item-level model selection for items determined to require more than one attribute may be 
examined using the Wald test. 

When the G-DINA model parameters are examined in the study, it is seen that the (& = [0000] attribute profile (61%) in which 
none of the four qualities defined is found in the student, and the (&' = [1111] attribute profile (17%) in which all the four 
attributes are present in the student (17%) are the most common attribute profiles. This finding is in line with other cognitive 
diagnosis studies (Lee & Sawaki, 2009b; Li, 2011; Ravand, 2016). In the study, it was determined that the tetrachoric correlation 
coefficients between the "Numbers", "Geometry and Measurement", "Algebra", and "Probability and Statistics" attributes varied 
between 0.69 and 0.99. High levels of positive correlations between attributes may be the reason for the backlog in the (& =
[0000] and (&' = [1111] attribute profiles. Rupp et al. (2010) stated that the skewness in these attribute profiles may be due to 
the high positive correlation between attributes or the one-dimensionality of the measurements (Lee & Sawaki, 2009b). Here, 
what is meant by the one-dimensionality of the measurements is that if one of the required attributes is found, another attribute 
tends to be present or on the contrary, if one of the necessary attributes is lacking, the other attribute is also missing. 

In the study, it was seen that 33% of the students have attributes related to the learning field of "probability and statistics". 
Accordingly, “probability and statistics” might be expressed as the easiest attribute. This quality was followed by "numbers" (28%), 
"algebra" (26%), and "geometry and measurement" (20%) relatively. Similarly, in the Turkish sample TIMSS 2011 study, it was 
found that 8th grade students found the questions in the fields of "algebra", "numbers", and "geometry" more difficult than the 
questions in the field of "data and probability" (Büyüköztürk et al., 2014). In his study, Atar (2011) applied descriptive and 
explanatory item response models to TIMSS 2007 Türkiye 8th grade mathematics data and created a linear logistic model with 
cognitive domain and subject domain variables to explain the differences in item difficulties. As a result of the analysis of this 
model, the cognitive domain and the subject area were found to influence item difficulty. When the subject area variable was 
examined, it was found that the items related to geometry were more difficult than the items related to "algebra" and "data and 
probability", and there was no statistically significant difference between the items related to "geometry" and the items related 
to numbers in terms of item difficulty. It may be misleading to consider these findings regarding the ease and difficulty of learning 
areas alone. Because while an item in the field of "geometry and measurement" requires routine algorithmic operations, another 
item in the field of "probability and statistics" may make estimation and comparison skills necessary. Hence, it is thought that the 
item difficulty level should be examined together with the cognitive skills, item structure and type, as well as the learning domain 
skills. In studies on cognitive diagnosis models, it is seen that the Q matrix is formed by combining the learning domain and 
cognitive domain skills (George & Robitzsch, 2014). However, although the alternative Q-matrix based on the combination of 
attributes in the two domains solves the methodological problem of not defining the model, this practice also changes the 
attributes used in the models. It is thought that the alternative Q-matrix creation method based on the combination of the two-
level attributes may be preferred in cases where the cognitive areas and achievements that are desired to be measured with the 
items can be clearly defined. Additionally, instead of Bloom's taxonomy and the classifications that take it into account, the Math 
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taxonomy (Smith et al., 1996) developed specifically for mathematics can be used in the classification of cognitive attributes 
related to mathematics. However, the fact that HSEE mathematics items are complex items to measure multiple acquisitions and 
that cognitive skills vary depending on the possible strategies used in the item make it difficult to consider the cognitive domain 
in cognitive diagnosis studies. 

In the study, using the Wald test (de la Torre, 2011; Hou et al., 2014) within the scope of the G-DINA model, whether the 2012 
HSEE Mathematics subtest items showed a gender-varying item function was examined. Accordingly, DIF analyses were carried 
out within the scope of CDM, in which latent attribute profiles were taken instead of total scores as matching criteria, and the 4th 
item showed a uniform DIF in favor of female students. On the other hand, it was found that item 19 showed a uniform DIF in 
favor of middle-level male students. In his study where Yıldırım (2015) examined whether the 2012 HSEE Mathematics subtest 
items showed DIF according to gender using MH and logistic regression (LR) methods, he determined that the 4th item showed 
moderate DIF in favor of female students and the 19th item in favor of male students in line with the current study. When the 
findings are compared with Yıldırım's (2015) study, it is seen that they overlap to a large extent, and the only difference is in the 
effect size classification of the 4th item. This difference is thought to be due to the use of different criteria (Zieky, 1993; Zumbo & 
Thomas, 1997; Jodoin & Gierl, 2001) for effect size classification. In addition, it may be suggested that the DIF determination 
approaches, in which the latent attribute profile is used as the matching criterion as a part of CDM, are similar to the traditional 
DIF determination approaches that use the total score as the matching criterion. A review of the literature reveals similar research 
findings (Zhang, 2006; Hou et al., 2014). Hou et al. in their study, in which they compared the DIF detection performance of the 
Wald test and traditional MH and SIBTEST methods, reported that the DIF detection performance of the Wald test was similar or 
superior to the MH and SIBTEST methods. In this study, it was stated that the Wald test is a promising approach in determining 
DIF within the scope of cognitive diagnostic models. Similarly, Zhang investigated the effectiveness of MH and SIBTEST methods 
together with two matching criteria (total score and attribute profile score) to determine DIF within the scope of CDM, and they 
were found to perform at the same level or better than the MH and SIBTEST methods (according to the total score approach) that 
utilize attribute profile score as a matching variable. However, as the use of different criteria for effect size classification (Zieky, 
1993; Zumbo & Thomas, 1997; Jodoin & Gierl, 2001) leads to different DIF levels, it makes it difficult to decide on the compatibility 
between the methods. 

Camilli and Shepard (1994) stated that there are two reasons for the emergence of DIF: item bias and item effect. Item effect 
indicates the actual differences between the groups on the characteristics to be measured with the item, while item bias indicates 
the differences unrelated to the measured construct resulting from the characteristics of the test items or the test conditions that 
are not fit for the purpose of the test (Zumbo, 1999). In his study examining the bias status of the 2012 HSEE Mathematics subtest 
items, Yıldırım (2015) investigated whether the DIF sources of the items 4 and 19 showing DIF that were found to have a strong 
consensus via the Delphi technique were related to the measured construct, and he found that the DIF in the 4th item was 
determined as item effect, and the DIF in item 19 as item bias. However, in the current study, which was carried out within the 
scope of cognitive diagnosis models, it was thought that the difference in the probability of correct answers to the 4th item, which 
was determined to show DIF according to gender as a result of DIF analysis, led to item bias while it was item effect in item 19. 

In the Q-matrix, where the relationships between items and attributes were defined, a single attribute (geometry and 
measurement) was defined for item 4, and two attribute fields (numbers and algebra) were defined for item 19. Experts stated 
that the 4th item was prepared for the acquisition of "determines the basic elements of the cone, constructs it and draws the 
surface angles" in the geometric objects sub-learning area. They stated that item 19 was prepared for the acquisition of "solves 
linear equation systems with algebraic methods" in the field of algebra learning, but that the negative integers included in the 
item content required the attributes in the field of learning numbers. It was determined that the probability of answering the item 
correctly was quite high (58%) for the students who did not have the "geometry and measurement" field attribute, which was 
determined to be necessary for the 4th item in the Q-matrix. This indicates that other qualities or variables other than the 
"geometry and measurement" field attribute may have been effective for the solution of the item. Therefore, it may be assumed 
that DIF in item 4, which was determined to show a significant level of DIF, arises from a situation unrelated to the measured 
structure. In this case, the DIF in item 4 indicates item bias, not item effect resulting from real differences on the item and the 
attribute to be measured. When the success probabilities of item 19 depending on the latent attribute pattern were examined, it 
was determined that the success probability of the students who did not have the necessary attributes was relatively lower, while 
the "numbers" and "algebra" field attributes required for the item provided significant increases in the probability of answering 
correctly. When the success probabilities of male and female students according to the implicit attribute pattern were compared, 
there was a striking difference in the success probabilities. This indicates that the differentiation in item 19, which was determined 
to show a medium level of DIF, is due to the real differences in the attributes that are intended to be measured with the item. 
Therefore, the DIF in item 19 does not show the item bias arising from a situation unrelated to the construct measured by the 
item, but rather the item effect resulting from the actual differences in the item and the attribute to be measured. It is thought 
that with the DIF analyses considered within the scope of cognitive diagnosis models, the relationships between the sources of 
DIF and the attributes to be measured with the item can be defined more clearly, thus forming a statistical basis for item bias 
decisions. Moreover, DIF studies that will be carried out considering item attributes and multi-level data structure will provide 
richer information on DIF resources. Especially since the data in the field of education show multilevel data structure, it is thought 
that it would be interesting to consider multilevel DIF studies as a part of IRT within the scope of cognitive diagnosis models. In 
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addition, it can be mentioned that there is an increasing interest in the use of machine learning methods in identifying potential 
DIF sources.  
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