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Abstract
The numerical simulation of free convection flow within a square-shaped enclosure for various
orientations of elliptic blockage (EB) is performed in the present study. The bottom wall of the cavity
remains uniformly heated, where the left and right (side) walls as well as the boundary wall of the
elliptic blockage are insulated and the top wall remains at a cool temperature. As Pr remains constant,
the effects of different values of Ra have a great influence on overall fluid flow and temperature
gradient for three different locations: bottom elliptic blockage (BEB), center elliptic blockage (CEB) and
top elliptic blockage (TEB), as a mass flow circulation has been identified, and a state of equilibrium
has been established within the fluid flow simulations along with the isotherm contours. The outcomes
of the numerical analysis are presented with the streamlines, isotherms, and variations of the average
Nusselt number.
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1 Introduction

Over the last decade, free convection in a square cavity has grown in popularity as a research topic.
The widespread use of such flows in industrial and natural contexts contributes to their popularity.
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The cavity flow with a block inside is considered a benchmark problem in computational fluid
dynamics (CFD) and experimental fluid dynamics research. It helps in understanding complex
flow behaviors, such as vortex shedding, recirculation zones, and boundary layer development.
Also, it helps us understand the flow patterns around obstacles in aerodynamic flow. Aerodynamic
performance can be improved and design optimization can be aided by understanding the flow
behavior around buildings, aircraft wings, and other structures through the cavity flow with a
block inside.

Studies on heat transport can also benefit from this issue. By analyzing the flow and tempera-
ture fields within the cavity, researchers can understand heat transfer mechanisms, which are
useful in the design of cooling systems, electronic devices, and thermal management solutions.
Cavity flows with barriers are useful for research in industries involving fluid mixing, such as
chemical engineering and pharmaceuticals. Product quality is enhanced and mixing procedures
are optimized by having a better understanding of how fluids interact and mix inside the cavity.
Additionally, it can shed light on these kinds of limited flow phenomena. Cavity flow with an
internal block is a useful instrument for studying fluid dynamics that may be applied in many
different industrial and engineering fields. When designing chemical reactors, food processing
machinery, and filtration systems, among other industrial processes, cavity flows with blocks
inside can be analyzed to help maximize efficiency. The study of cavity flow may also be beneficial
for cardiovascular disorders and the improvement of medical devices such as stents and prosthetic
heart valves. It is used in the environmental field to estimate erosion patterns and sediment
transformation, among other things. That´s why, recent attention has been drawn to the phe-
nomenon of natural convection in fluid flow within a square cavity containing elliptical blockages
oriented in various ways. This intriguing phenomenon has also emerged as a pivotal subject in
diverse thermal engineering applications, such as reactor insulation, fire prevention, safeguarding
electronic equipment, controlling the dispersion of chemical pollutants in water-saturated oil, and
optimizing the solidification process in casting. In industrial practice, square cavities, along with
other geometric shapes like triangles and cylinders, are commonly employed.

Saury et al. [1] studied free convection in the cavity, where the suppositions allow for the calcula-
tion of Rayleigh number values leading to 1.2 × 1011 at (T = 200C). Sajjadi et al. [2] examined
turbulent flow in a square cavity, where the streamlines, the isotherm counters, and the local
and the average Nusselt number all show the impact of an increase in the Rayleigh number.
Shati et al. [3] studied radiation and turbulent fluid flow in square & rectangular cavity, which
provides an equation for the mean Nusselt number with no radiation as a function of Prandtl
Grashof and numbers. Estebe et al.[4] provided the validation of turbulent fluid flow in a square
cavity and a 3D simulation’s findings were presented together with an estimation of the cooling
system’s performance. Choi et al. [5] performed the simulation of turbulent free convection in
rectangular cavities and the relative effectiveness of turbulence models is investigated, and both
their advantages and disadvantages are discussed. Jani et al. [6] analyzed the impact of MHD in
a square cavity and found that the strength of the magnetic field and the Rayleigh number play
a great role in the overall simulation. The natural convection of differentially heated enclosures
was studied by Butler et al. [7]. The contact between the cylinder and cavity results in an increase
in cylinder heat transfer. Xin et al. [8] studied turbulent natural convection in partially heated
cavities and showed that the thin stratification is caused by surface radiation. Carvalho et al.
[9] studied turbulent free convection in a porous square cavity and discovered that the Nusselt
number decreases when the material porosity is raised. Kefayati et al. [10] performed Lattice
Boltzmann’s exploration of free convection, where the findings showed that at large Rayleigh
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numbers, the magnetic field enhances the action of nanoparticles.

Bahoosh et al. [11] numerically examined the fluid flow in a square cavity, where the rotational di-
rection was either inside or outside, and the tilting angles were either 3 or 5 degrees. Jani et al. [12]
surveyed free convection in the square cavity and demonstrated that for large Rayleigh numbers,
positioning a hot fin in the center of the lower wall has a more notable impact on the flow region
and heat transfer within the cavity. Asad et al. [13] examined the effects of twice stratification and
various fluid characteristics on the chemically acting upper-convected Maxwell fluid. Islam et al.
[14] studied the influence of MHD on the unsteady flow for Fe3O4 − H2O and TiO2 − H2O based
nanofluids within a square cavity. After comparing, they found a notable difference between
their heat transport rates. Asad et al. [15] numerically examined the effect of magneto-combined
convection heat transmission of fin length in the lid-driven curvy enclosure. Sajjadi et al. [16]
performed a simulation of turbulent free convection utilizing the Lattice Boltzmann method,
where heat transfer decreased as the Rayleigh number changed. Miroshnichenko et al. [17] looked
into a comparative study of standard κ − ϵ and κ − ω turbulence models and found that the usual
model performed better. Tabet et al. [18] investigated convection in a partially heated square
cavity, where the outlines of temperature and the evolution of the Nusselt number were provided
for several Rayleigh numbers. Zhao et al. [19] scrutinized the field flow of convection and the
findings demonstrated the ability of the current method to exactly model the convection difficul-
ties associated with unstable natural processes and are all in strong agreement with individuals
found in the literature. Aithal et al. [20] examined turbulent flow in a square cavity and achieved
that the Rayleigh number increased and the average and peak Nusselt numbers almost doubled.
Massinissa et al. [21] studied the characteristics of different Prandtl numbers, where the increase
of Prandtl and Rayleigh numbers had turned the flow field slightly more prominent.

Benchabi et al. [22] analyzed 2D simulation of natural convection in a square cavity and obtained
the influence of Rayleigh number caused by a change in size or a difference in temperature on
the thermal and dynamic behavior as well as the intensity of the flow caused by the buoyant
force. Solomon et al. [23] studied the effect of the aspect ratio of a square cavity on fluid flow and
discovered that the Nusselt number and heat transfer coefficient were notably impacted by the
enclosure’s AR. Yang et al. [24] provided Rans modelling for temperature modification in couple
heat transfer and showed that it can accurately predict the distribution of temperature change
within the fluid and solid regions. Razera et al. [25] examined the conserving of semi-elliptical
blocks constructed into a rectangular enclosure. The results revealed considerable improvements
in the heat transmission and fluid flow performances of roughly 76% and 125%, respectively.
Selimefendigil et al. [26] investigated heat transmission and fluid flow in the presence of an
elliptically-shaped porous item and found that the mean heat transport rate declines with the
optimal value of Nu. Khatamifar et al. [27] studied momentary couple free convection heat
transport. They found the thermal conductivity ratio effect around the range of 0.1 − 10, but as
the partition changes, the effect turns out to be insignificant as the thermal conductivity ratio is
very significant. Devi et al. [28] examined the effects of exterior MHD on non-Newtonian fluid in
a square cavity. Results exposed that the buoyant force rises as the temperature gradient increases.
Wen et al. [29] investigated to better understand how major temperature fluctuations affect the
unstable fluid flow and found that the hot wall region exhibits a boundary layer instability with
high-frequency undulations in addition to the top corner impact instability. Goswami et al. [30]
calculated free convection in a square cavity and found that the mean Nusselt number grows at
Ra = 104. Hattab et al. [31] studied turbulent natural convection in a square cavity and found
that the heat transport was increased with the increase of the volume percentage. Turkyilmazoglu
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[32] studied nonuniform heating in free convection and found the best heat deletion rate close
to the top wall of a cavity. Bilal et al [33] studied the power law fluid in a square cavity and
found that heat conduction rises as the Rayleigh number increases, driven by the generation
of temperature variations within the fluid domain. Sondur et al. [34] performed a benchmark
simulation on fluid flow inside a square cavity and they showed that the most accurate results
were found for the steady flow solver Open FOAM which took a comparatively short time. Asad
et al. [35, 36] explored the natural convection and heat transmit performance on a curvy enclosure.
They detected that the mean Nusselt number expands with expanding undulations number. The
study conducted by Hossain et al. [37] examined the impact of a cylinder arranged the phe-
nomenon of free convection contained by a square enclosure. The rectangular bar source of heat
in a blocked area for free convection flow over a triangular enclosure was examined by Asad et al.
[38]. Furthermore, more information is provided in [39–42] on free convection, the finite element
(FE) method, and the properties of heat transport with different geometries.

As per the extensive research works conducted by various scientists, it seems that there is a notable
absence of exploration regarding the analysis of free convection flow within a square enclosure
concerning the various orientations of elliptic blockage. The lack of research in this area concerns
important data related to the characteristics of heat transport, which is crucial for understanding
its significance in various industries. The flow patterns within the field have been illuminated by
the streamlines, while the thermal distribution has been outlined by the isotherms and the average
Nusselt number. For the numerical study, the fluid flow within the cavity is characterized by the
Prandtl number, Pr = 0.71, and Rayleigh number, Ra = 103 − 107.

2 Problem specification

The physical model under consideration along with important geometrical details is displayed in
Figure 1. The bottom part of the system is subjected to the uniformly heated temperature (Th), the
left and the right walls are thermally insulated (Ti) and the top wall remains at cold temperature
(Tc). An elliptic blockage (EB) is placed in different orientations of that cavity whose bottom wall
is kept as thermally insulated (Ti). The fluid’s Prandtl number (Pr = 0.7), Newtonian properties
and laminar fluid movement were all thought to be present. It has been assumed that the fluid’s
properties are constant.

Figure 1. Schematic diagram of physical system
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3 Governing equations

The governing equations for the two-dimensional steady flow following the invocation of the
equations that govern the steady two-dimensional flow, considering the Boussinesq approximation
and neglecting radiation and viscous dissipation, can be formulated in the following manner
[6, 33, 39–42]:
Continuity equation:

∂u
∂x

+
∂v
∂y

= 0. (1)

Momentum equations:

u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ

∂p
∂x

+ ν(
∂2u
∂x2 +

∂2u
∂y2 ), (2)

u
∂v
∂x

+ v
∂v
∂y

= −
1
ρ

∂p
∂y

+ ν(
∂2v
∂x2 +

∂2v
∂y2 ) + ρgβ(T − Tc). (3)

Energy equation:

u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

(
∂2T
∂x2 +

∂2T
∂y2

)
. (4)

Boundary conditions for governing equations

The followings are the boundary conditions for the current problem:

At the left and right vertical wall:

u(0, y) = 0, v(0, y) = 0,
∂T
∂n

= 0.

At the bottom wall:

u(x, 0) = 0, v(x, 0) = 0, T = Th.

At the top wall:

u(x, y) = 0, v(x, y) = 0, T = Tc.

At the insider elliptic blockage:

u(x, y) = 0, v(x, y) = 0,
∂T
∂n

= 0.
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Non-dimensional variables

Non-dimensional variables (5) are used for making the governing Eqs. (1)-(4) into dimensionless
form are stated as follows:

X =
x
H

, Y =
y
H

, U =
uH
α

, P =
pH2

ρα2 , θ =
T − Tc

Th − Tc
, Pr =

ν

α
, Ra =

gβ(Th − Tc)H3

αν
. (5)

Non-dimensional governing equations

By using the aforementioned variables, the dimensionless form of the Eqs. (1)-(4) are as follows:
Continuity equation:

∂U
∂X

+
∂V
∂Y

= 0. (6)

Momentum equations:

U
∂U
∂X

+ V
∂U
∂Y

= −
∂P
∂X

+ Pr
(

∂2U
∂X2 +

∂2U
∂Y2

)
, (7)

U
∂V
∂X

+ V
∂V
∂Y

= −
∂P
∂Y

+ Pr
(

∂2V
∂X2 +

∂2V
∂Y2

)
+ RaPrθ. (8)

Energy equation:

U
∂θ

∂X
+ V

∂θ

∂Y
=

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
. (9)

The heat transfer coefficient which is the local Nusselt number and mean Nusselt number is
defined by

Nulocal = −
∂θ

∂n
and Nuav =

∫ 1

0
Nulocaldx, (10)

respectively, where the normal orientation of a plane is indicated by n.

Boundary conditions for non-dimensional governing equations

The dimensionless boundary conditions which are considered can be expressed as:
At the left and right vertical wall:

U = 0, V = 0,
∂θ

∂n
= 0.

At the bottom wall:

U = 0, V = 0, θ = 1 (Uniformly heated).

At the top wall:

U = 0, V = 0, θ = 0.
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At the insider elliptic blockage:

U = 0, V = 0,
∂θ

∂n
= 0.

4 Method of solution

For solving governing Eqs. (7)-(9), the Galerkin finite element method [43, 44] has been utilized.
Eq. (6) is employed as a constraint owing to the conservation of mass. This constraint may be
utilized to earn pressure distribution [43, 44]. Regarding the resolution of Eqs. (7)-(9), Eq. (6) is
being influenced by the introduction of a penalty parameter, denoted as γ, while the pressure P is
being replaced with the subsequent expression [43], which is as follows:

P = −γ

(
∂U
∂X

+
∂V
∂Y

)
. (11)

Value of γ = 107 perfectly fulfills Eq. (7). Eq. (11) is employed to simplify the expressions in Eqs.
(8)-(9), as follows:

U
∂U
∂X

+ V
∂U
∂Y

= γ
∂

∂X

(
∂U
∂X

+
∂V
∂Y

)
+ Pr

(
∂2U
∂X2 +

∂2U
∂Y2

)
, (12)

U
∂V
∂X

+ V
∂V
∂Y

= γ
∂

∂Y

(
∂U
∂X

+
∂V
∂Y

)
+ Pr

(
∂2V
∂X2 +

∂2V
∂Y2

)
+ RaPrθ. (13)

Value of U, V and θ are expanded as:

U ≈
N∑

k=1

UkΦk(X, Y), V ≈
N∑

k=1

VkΦk(X, Y), θ ≈
N∑

k=1

θkΦk(X, Y). (14)

By using the fact that X ≥ 0 and Y ≤ 0, the following equations are formed in the domain Ω,

R(1)
1 =

N∑
k=1

Uk

∫
Ω

[( N∑
k=1

UkΦk

)
∂Φk
∂X

+

( N∑
k=1

UkΦk

)
∂Φk
∂Y

]
ΦidXdY

+γ

[ N∑
k=1

Uk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY +
N∑

k=1

Vk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY

]

+Pr
N∑

k=1

Uk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY,

(15)
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R(2)
1 =

N∑
k=1

Vk

∫
Ω

[( N∑
k=1

UkΦk

)
∂Φk
∂X

+

( N∑
k=1

VkΦk

)
∂Φk
∂Y

]
ΦidXdY

+γ

[ N∑
k=1

Uk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY +
N∑

k=1

Vk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY

]

+Pr
N∑

k=1

Vk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY

+RaPr
∫

ω

( N∑
k=1

θkΦk

)
ΦidXdY,

(16)

and

R(3)
1 =

N∑
k=1

Uk

∫
Ω

[( N∑
k=1

UkΦk

)
∂Φk
∂X

+

( N∑
k=1

VkΦk

)
∂Φk
∂Y

]
ΦidXdY

+
N∑

k=1

θk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY.

(17)

The expressions given by Eqs. (15)-(17) can be depicted using matrix notation as follows:

(K1 + γK2)a = F, (18)

where K1, K2 matrices are derived from the Jacobian of the residuals, ′a ′ signifies the unidentified
vector, as γ ∼ 107, Eq. (6) is better content, which tends to the following:

K1a =
F
γ

. (19)

The Newton-Raphson method has been employed to address the non-linear Eqs. (15)-(17), yielding
the subsequent linear system as follows:

J(an)[an − an+1] = R(an). (20)

At the end of the iterative process,
[∑(

Rj
i

)2
]0.5

≤ 10−6 is utilized. Each of the nine-node

bi-quadratic elements that we applied is approximated from (X −Y) → (ζ − η), which are:

X =
9∑

i=1

XiΦi(ζ − η) and Y =
9∑

i=1

YiΦi(ζ − η), (21)

on the (ζ − η) domain, where Φi(ζ, η) are the local bi-quadratic basis functions. The following
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assumptions can be used to analyze the domain of the integrals in Eqs. (15)-(17):

[
∂Φi
∂X
∂Φi
∂Y

]
=

1
|J|

 ∂Y
∂η

− ∂Y
∂ζ

− ∂X
∂η

∂X
∂ζ

 [ ∂Φi
∂ζ

∂Φi
∂η

]
and dXdY = |J|dζdη, (22)

where J =
∣∣∣ ∂(X,Y)

∂(ζ,η)

∣∣∣ . According to Eq. (10), the local Nusselt number takes a normal derivative that
can be found over a bi-quadratic basis set in the (ζ − η) domain by using Eqs. (21) and (22).

Evaluation of stream function

The 2D stream function is formed from the velocity elements U and V, as follows:

U =
∂ψ

∂Y
, V = −

∂ψ

∂X
, (23)

which can be utilized in the single equation as,

∂2ψ

∂X2 +
∂2ψ

∂Y2 =
∂U
∂Y

−
∂V
∂X

. (24)

The Galerkin finite element method is utilized to derive the subsequent linear resultant equa-
tions for Eq. (14). This is achieved by replacing the stream function with {Φk}

N
k=1 as ψ =∑N

k=1 ψkΦk(X, Y) from Eq. (24):

R(s)
i =

N∑
k=1

ψk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY

+
N∑

k=1

Uk

∫
Ω

Φi
∂Φk
∂Y

dXdY −

N∑
1

Vk

∫
Ω

Φi
∂Φk
∂X

dXdY. (25)

Through the utilization of ψ = 0, the no-slip boundary condition is imposed due to the absence of
cantankerous flows.

5 Model algorithm

The initial goal of the iterative Newton-Raphson algorithm is to analyze the discrete dimensions
of continuity, momentum, and energy equations in order to assess the significance of speed and
temperature. It is necessary to take into account the initial values of the variables. After that
matrix factorization was found clearly discussed by Rahman et al. [45] before convergence criteria.
When the convergence criteria are satisfied, the numerical solutions for the variables are then
obtained. A straightforward algorithm is depicted in the flow chart (see Figure 2) below.
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Figure 2. Flow algorithm diagram of the computational process
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6 Test for grid sensitivity

Significant progress has been made in the exploration of grid-independent solutions for the field
variables, yielding promising initial outcomes. A comprehensive analysis has been carried out
to assess the precision of grid performance and ascertain the most suitable grid quantity. To
attain grid-independent results for a square cavity with EB, a thorough investigation involving
grid refinement was conducted for Pr = 0.71 and Ra = 105. In Figure 3, the convergence of the
Nusselt number (Nu) at the heated surface is depicted as grid refinement is implemented. Grid
independence has been achieved with the utilization of 31256 nodes. However, as the number of
mesh elements increases beyond this point, the impact on Nu becomes negligible, rendering the
changes insignificant. Therefore, any insignificance observed prior to the 31256 nodes should not
be regarded as an indication of grid independence. For the grid independence tests, six distinct
non-uniform grids were employed, each of them characterized by varying numbers of nodes and
elements. The configurations used are as follows: 16012 nodes, 3698 elements; 18564 nodes, 3785
elements; 21343 nodes, 4134 elements; 23412 nodes, 4421 elements; 31256 nodes, 5893 elements;
and 37895 nodes, 6598 elements. These details are presented in Table 1.

Table 1. Grid independence test at Pr = 0.71 and Ra = 105

Nodes 16012 18564 21343 23412 31256 37895
Elements 3698 3785 4134 4421 5893 6598
Nuav 0.140123 0.140933 0.141894 0.144403 0.145403 0.145403
Time(s) 15.321 19.204 22.532 26.577 36.625 38.442

Based on the provided values, it is recommended to consistently utilize 31256 nodes and 5893
elements throughout the simulation to effectively locate the required accuracy and computing
time. Figure 4-Figure 5 display the mesh design and finite element discretization of a domain
respectively for this research work.

Figure 3. Convergence of Nusselt number with grid refinement for Pr = 0.71, and Ra = 105

7 Numerical validation

For the validation of the accuracy of the numerical technique, the problem that is considered
for the present work was solved with Pr = 0.71, Ha = 50 and Ra = 104 for stream function
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Figure 4. The mesh design Figure 5. Finite elements discretization of a domain

(streamlines) and isotherms within a square cavity. The result was checked by comparing it with
the paper of Jani et al. [6], and found a good agreement which is shown in Figure 6.

(a) Isotherms for present research work (b) Isotherms for Jani et al. [6]

(c) Streamlines for present research work (d) Streamlines for Jani et al. [6]

Figure 6. Stream function and isotherms of present work compared with Jani et al. [6] for Pr = 0.71, Ha = 50
and Ra = 104
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8 Results and discussion

A numerical study on free convection flow within a square enclosure for various orientations
of elliptic blockage (EB) has been carried out. The electrically conductive fluid with Pr = .71 is
being examined within a square cavity in the presence of EB, where other parameters are taken as
Ra = 103 − 107. The numerical outcomes have been depicted through visual representations of
streamlines and isotherms within the square cavity along with EB, as well as through data on heat
transfer rates via average Nusselt numbers.

Streamlines and isotherms: effect of Ra for different locations of EB

Streamlines and isotherms for governing parameters Pr and Ra, along with EB have been shown
in Figure 7-Figure 9. The bottom wall of the cavity was uniformly heated and the bottom wall of
the EB was thermally insulated. Several eddy circulation cells were circulated from the heating
bottom wall due to the heated fluid flow, spinning along the insulated side walls for all governing
parameters Pr and Ra. In order to discover the changes in streamlines and isotherms, a numerical
simulation was completed at the bottom wall of the cavity with the elliptic blockage (BEB), at the
center of the cavity with the elliptic blockage (CEB), and at the top wall of the cavity with the
elliptic blockage (TEB) with Pr = 0.71 and Ra = 103 − 107. At the BEB phase, the EB is placed near
the bottom wall of the cavity for Ra = 103 − 107 (see Figure 7a). It is seen from the streamlines
that two large eddy circulation cells have been formed at the top of the EB and two vortices have
been found at the bottom wall where the left one is significantly smaller than the right one and the
right one has a few small vortices inside it. As Ra is considered Ra = 104, any notable changes
have not been found in the streamlines (see Figure 7b). But when Ra = 105 is applied, the top two
cells become much dense than before and the right bottom big vortex decreases in size as well as
the number of embedded vortices decreases to one same vortex (see Figure 7c). At Ra = 106, in
Figure 7d, the top two cells become much thicker than before where the left cell becomes dense
than the right one and also the bottom two vortices are now almost in the same shape and several
small vortices have been formed inside them but the right vortex seems thicker than the left one.
At 107 (Figure 7e), the top two rotating cells seem to decreasing in thickness and the left bottom
vortex is now in small size without any embedded vortices and the right bottom vortex also
decreases in thickness with one small vortex embedded inside it.

From the isotherms, for Ra = 103 (Figure 7a), linear lines are found at the top cold wall which
begins to turn into non-linear lines near the EB. Dense temperature lines are found at the left and
right walls near the EB. The lowest temperature of the cavity θ = 0.03 has been found at the top
cold wall and the highest temperature of the cavity θ = 0.98 has been found at the bottom heated
wall. The lowest temperature on EB θ = 0.28 has been found at the top cold wall and the highest
temperature on EB θ = 0.93 has been found at the bottom heated wall. No significant changes
are found for Ra = 104 (Figure 7b) in the isotherms. But at Ra = 105 (Figure 7c), the shape of the
isotherms is notably changed where non-linear lines at the top cold wall grow in numbers and the
curved lines at the insulated sidewalls are seen to be changed than before where the temperature
lines are becoming dense at the sidewalls. The only changes in temperature are seen for the lowest
temperature at the top wall of EB at θ = 0.23. At Ra = 106 (Figure 7d), the isotherms are turned
to a chaotic shape, where many non-linear lines are formed around the EB. The highest and the
lowest temperatures are found to remain unchanged but the lowest temperature at EB changes
to θ = 0.13. When Ra = 107 (Figure 7e), the highest chaotic stage of the isotherms is discovered
where many non-linear curved lines are forming around the EB and the lowest temperature
at the EB changes to θ = 0.18. The temperature lines are at the highest dense position at the
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insulated side walls. The EB is placed at the center of the cavity, at the CEB phase, for Pr = 0.71
and Ra = 103 − 107 (see Figure 8a). It is viewed that four symmetric eddy circulation cells are
formed around the EB in the streamlines, where the top two cells are much more dense than the
bottom two cells. As Ra changes to Ra = 104 − 105 (Figure 8b – Figure 8c), no significant changes
have been found in the fluid flow. Slight changes are found when Ra = 106 (see Figure 8d) is
applied. The top two cells become much more packed than before, where the right cell is thicker
than the left one. At Ra = 107, the highest thickness of the eddy circulation cells has been seen
in the fluid flow, where the top left cell is the thickest of all. Also, the space between the top
cells and the bottom cells grew larger than in the previous simulations. As for the isotherms,
at Ra = 103 (Figure 8a), linear smooth curves are only seen at the top and the bottom wall and
the rest are non-linear lines where most of them are generated from the surface of the EB. The
temperature curves are thickest at the insulted left and right side walls. The lowest temperature of
the cavity is θ = 0.03 and the highest temperature of the cavity is θ = 0.98 which has been found
for convectional fluid flow. In Figure 8b, the lowest temperature of the surface of EB is θ = 0.23
and the highest temperature of the surface of EB is θ = 0.78. At Ra = 104 (Figure 8b), no notable
changes are found at the temperature curve. But at Ra = 105 (Figure 8c), curves are taking chaotic
forms, which seem to be drawing to the surface of EB. The changes in temperature are seen only
on the surface of the EB, the lowest temperature θ = 0.13 and the highest temperature θ = 0.83.
When Ra = 106 (Figure 8d), it is now in a complete chaotic form, where the highest dense curves
are seen at the two side walls, the curves at the top and the bottom wall are also found in dense
position. At the surface of EB, the lowest and the highest temperature are respectively θ = 0.18
and θ = 0.88. At Ra = 107 (Figure 8e), isotherms are taking a complete new shape, where the
curves at the two side walls along with the top and bottom walls are at the peak of density. The
only change is found at the lowest temperature of the surface of the EB, θ = 0.13. At the TEB
phase, where the EB is placed at the top of the cavity, for Pr = 0.71 and Ra = 103 (Figure 9a), two
large rotating eddies are found at the bottom of the EB in the streamlines, where the right one is
much thicker than the left one. Two distinct vortices have also been formed at the EB while the
right one is much bigger than the left one. When Ra increases to Ra = 104 (Figure 9b), the density
of the two large eddies is increased than before and it is continually increasing at Ra = 105 − 106

(Figure 9c – Figure 9d). A thick borderline has formed around the two vortices at the top wall,
the right vortex is now smaller than the left one. At Ra = 107 (Figure 9e), the density of the left
eddy circulation cell is decreased than the left one, and the shape of the two vortices at the top
wall is slightly changed. In the case of the isotherms study, at Ra = 103 (Figure 9a), only a linear
temperature curve is seen at the bottom wall and the rest of them are non-linear curves, attracting
to the surface of the EB. The density of the temperature curves is the highest at the insulated left
and right sidewalls. The lowest temperature of the cavity is found at θ = 0.03 and the highest
temperature of the cavity is found at θ = 0.98. Also, the lowest temperature of the surface of the
EB is recorded at θ = 0.08 and the highest temperature of the surface of the EB is recorded at
0.68. No significant changes are found in the isotherms for Ra = 104 (Figure 9b). But at Ra = 105

(Figure 9c), the temperature curves turn to chaotic shapes, and the highest curvature is found
at the bottom of the EB. Only changes in the temperature value are found on the surface of the
EB where the temperature is highest at θ = 0.78. At Ra = 106 (see Figure 9d), isotherms are
changed completely and the density of the curves at the sidewalls is increased a lot. As before,
only changes of temperature value are found for the surface of the EB, lowest at θ = 0.03 and
highest at θ = 0.88. And when Ra increases to Ra = 107 (Figure 9e), temperature curves are at
the peak of the chaotic stage, where the density of curves at the side walls is higher than before.
Similarly, only changes are found for the surface of the EB for the lowest temperature at θ = 0.08
and the highest temperature at θ = 0.83 due to the effect of convection fluid flow.
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(e) Ra = 107

(d) Ra = 106

(c) Ra = 105

(b) Ra = 104

(a) Ra = 103

Streamlines Isotherms

Figure 7. Streamlines and Isotherms for Pr = 0.71 and Ra = 103 − 107 for BEB
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(e) Ra = 107

(d) Ra = 106

(c) Ra = 105

(b) Ra = 104

(a) Ra = 103

Streamlines Isotherms

Figure 8. Streamlines and Isotherms for Pr = 0.71 and Ra = 103 − 107 for CEB
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(e) Ra = 107

(d) Ra = 106

(c) Ra = 105

(b) Ra = 104

(a) Ra = 103

Streamlines Isotherms

Figure 9. Streamlines and Isotherms for Pr = 0.71 and Ra = 103 − 107 for TEB
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Heat transfer rates: Nuav vs Ra for bottom wall of the cavity and insulated EB

The overall changes of average Nusselt number with increasing Rayleigh number for Pr = 0.71
and Ra = 103 − 107, are displayed in Figure 10-Figure 11 for the heated bottom wall of the cavity
and bottom wall of insulated EB for different orientation BEB, CEB, and TEB.

Figure 10. Average Nusselt number for (a) bottom wall of the cavity

From Figure 10, for (a), the heated bottom of the cavity, there is a logarithmic relationship being
seen between Nuav and Ra. A slow increase of Nuav is found up to Ra = 105 for all three different
orientations and when Ra ≥ 106, the graph begins to rise for BEB, CEB, and TEB. This happens
due to the transition from the conduction phase to the convection phase. The lowest value of Nuav
is recorded for Ra = 103 at CEB and the highest value of Nuav is recorded for Ra = 107 at TEB.
As for (b), the bottom wall of insulated EB, from Figure 11, the gradual increase of Nuav occurs as
Ra increases.

Figure 11. Average Nusselt number for (b) bottom wall of EB

For BEB and CEB orientations, the drastic change in the graph is started from Ra ≥ 105 due to
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convectional flow, whereas for TEB orientation, it is at Ra ≥ 104. After reaching Ra = 106, the
graph turns to a constant curve up to Ra ≥ 107 for all three locations. The lowest heat transfer
rate is found at Ra = 103 for CEB and the highest value at Ra = 107 for CEB.

9 Conclusion

An inclusive research work of free convection flow within a square enclosure for various locations
of elliptic blockage for Pr = 0.71 and Ra = 103 − 107 has been analyzed numerically in the present
study. The Galerkin weighted residual technique has been utilized to address the governing
parameters Pr and Ra within finite element formulations aimed at solving the governing equations.
The results are shown using stream functions, isotherms, heat transfer rates, and average Nusselt
numbers, both for the bottom wall of the cavity and the bottom wall of the insulated EB. The key
assumptions are concisely outlined as follows:

• Heat transfer mechanisms, flow characteristics, and the distribution of isotherms within the
cavity depend exclusively on four key factors: EB, the temperature of the heated bottom wall,
and two dimensionless numbers – the Prandtl number (Pr) and the Rayleigh number (Ra).

• The streamlines show that the area around the EB contains multiple vortex cells and swirling
eddy currents for all three different orientations.

• At the heated bottom wall of the cavity, Nuav is seen to have a logarithmic relation with Ra at
Pr = 0.71 and Ra = 103 − 107, due to the transition from the conduction stage to the convection
stage. The lowest value of Nuav is recorded for Ra = 103 at CEB and the highest value of Nuav
is recorded for Ra = 107 at TEB.

• At the bottom wall of insulated EB, Nuav is seen to be increasing with the value of Ra, and
a quick change of the graph is found for the flow of strong convection at Ra = 105 for BEB
and CEB and at Ra = 104 for TEB. At Ra = 106, a constant increasing graph is found for all
three locations which implies invariant heat transfer. The lowest heat transfer rate is found at
Ra = 103 for CEB and the highest value at Ra = 107 for CEB.

Declarations

List of symbols

Cp Specific heat at constant pressure (J/kg K)
g Gravitational acceleration (m/s2)
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k Thermal conductivity of fluid (W/m K)
K Thermal conductivity ratio fluid
N Non-dimensional distance
Nuav Average Nusselt number
P Non-dimensional pressure
p Pressure
Pr Prandtl number
Ra Rayleigh number
T Non-dimensional temperature
Tc Cold temperature
Th Hot temperature
Ti Thermal insulated Temperature
U Dimensionless horizontal velocity
u Velocity in x-direction (m/s)
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v Velocity in y-direction (m/s)
x, y Cartesiancoordinates
X, Y Dimensionless cartesian coordinates
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