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1. INTRODUCTION 
 

Accurate forecasting of the active power from a wind turbine 

is critical for analyzing the energy demand [1], efficiency [2], 

and economic sustainability [3] of wind power plants. These 

forecasts are used to meet energy demand and reduce energy 

costs by influencing the structure of the energy grid [4]. 

Furthermore, the design and maintenance of wind turbines also 

rely on the predictions. If the power predictions are 

miscalculated, the energy production of the turbines may be 

lower or higher than expected. This can complicate the efficient 

use of resources and affect the stability of the energy grid [5]. 

Therefore, accurate active power forecasts are one of the key 

factors in the success of the wind energy industry [6]. 

Traditional statistical and machine learning-based prediction 

are the most widely used methods for turbine active power 

prediction [7]. Some common statistical techniques are time 

series analysis [8], Kalman filtering [9], and linear regression 

[10]. The fact that these methods are simple models is a great 

advantage. However, it is difficult to obtain satisfactory 

performance from statistical methods using big data from 

today's real-time applications [11]. When traditional machine 

learning-based methods are considered, there are some widely 

used algorithms such as support vector machines (SVM) [12], 

bagged trees (BT) [13], and extreme learning machines (ELM) 

[14]. In traditional machine-learning based methods, feature 

selection from the dataset is a difficult task [15, 16]. 

Machine learning technologies such as light gradient 

boosting machines (LightGBM), extreme gradient boosting 

(XGBoost), and recurrent neural networks (RNN) have been 

used for time series data analysis and prediction [17, 18]. 

XGBoost is a method that works well on datasets with large 

sizes. However, overfitting problems are encountered due to 

incorrect hyperparameters for this technique. Also, the method 

needs feature engineering, which requires technical skills and 

experience [17]. Another method, LightGBM is a method that 

stands out with its speed. However, it may require more 

memory compared to other traditional methods [18]. While 

RNN networks can be successful in short-time series, they face 

the problem of losing the information obtained in long-time 

interval dependencies. Due to this problem, called the 

vanishing gradient, the networks may experience various 

problems when analyzing time series consisting of large data 

[19]. For these reasons, LSTM networks are distinguished from 

other methods as an alternative machine learning method. They 

are especially used for long term time series analysis and have 

emerged as a solution method for these problems [20]. 

Recently, DL-based machine learning algorithms have 

achieved high accuracy in time series predictions [21]. Among 

these algorithms, the LSTM is frequently used in the literature 

as one of the most successful methods [22]. LSTM(s) can 
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analyze complex connections between time-series data 

features. Nevertheless, it is crucial for the data to be continuous 

in order to accurately discern the relationship between features 

and attain a high level of prediction accuracy [23]. 

Time series analysis has been successfully applied in many 

fields, such as construction [24], transportation systems [25], 

and energy forecasting [26]. Output power forecasting is 

valuable information for the continuous support of power grids 

[27]. A highly accurate forecasting model with a suitable 

performance curve provided by the manufacturer can help 

renewable-based power grids operate efficiently and safely 

[28]. In this paper, an LSTM-based DL architecture is proposed 

to predict wind turbine active power using wind turbine data as 

input. R2, MAE, MSE, and RMSE metrics are used to measure 

the prediction performance and accuracy of the proposed 

method. There are limited studies in the literature on energy 

forecasting using LSTM-based architecture, which is a 

relatively new technique. Therefore, encouraged by the above 

findings, we aim to design an LSTM-based architecture to 

estimate the active output power with high accuracy. Here is a 

synopsis outlining the main contributions of this study. 

 In the proposed architecture, high-accuracy power 

estimation is achieved by performing time series 

analysis. 

 The effectiveness of the LSTM-based method in 

power estimation is demonstrated with statistical 

performance indicators. 

 The actual power of a wind turbine data set obtained 

from real-world applications is estimated by time 

series analysis. 

As for the rest of the paper, Section II summarizes the study 

in the literature for turbine energy prediction. Section III 

presents the data acquisition process; the preprocessing steps 

used for the study and the method used in this study are 

described in detail. Section IV presents the results and 

discussion. This section provides information about the 

experimental settings. Then the results of the proposed method 

are described. Section V, the concluding section, discusses the 

results of the study and concludes the paper with future work. 
 

2. RELATED WORKS 
 

Forecasting methods using machine learning-based models 

can be broadly divided into two categories: shallow learning 

and DL-based models [29]. In some shallow studies, wind 

energy prediction has been performed with fuzzy logic [30], 

wavelet analysis [31], and least squares support vector machine 

(LSSVM) [32]. Another shallow learning model, artificial 

neural networks (ANN), has the ability to capture the high 

correlation between data [33–35]. Sun et al. developed an 

ANN-based model to predict wind turbine active power. They 

considered environmental factors in network training. In their 

study, they concluded that differently positioned wind turbines 

should use different yaw angle strategies [36]. DL is a machine 

learning approach using ANNs [37]. 

DL, a subset of machine learning, is a relatively new 

technique developed to overcome the shortcomings of shallow 

learning models [38, 39] DL-based methods have been 

successfully applied to classification [40] and prediction 

problems [41]. LSTM, a variant of RNN, can learn time-series 

information more accurately. It is capable of efficiently 

utilizing temporal information to predict new data points [42]. 

It has been successfully used in stock market forecasting [43], 

natural language processing [44], and medicine [45]. 

Studies using LSTM-based methods for energy estimation 

are available in the literature [46]. An LSTM method with 

physical constraints was proposed by Luo et al. When 

compared to conventional statistical and machine learning 

techniques, the physically constrained LSTM model greatly 

increased prediction accuracy [47]. Chen et al. selected 

strongly associated features using the Pearson correlation 

coefficient. Features related to temperature, humidity, and solar 

radiation intensity were chosen for the LSTM model's input. 

They contrasted the time series method, radial basis function 

(RBF) neural networks, and back-propagation (BP) neural 

networks with the one-layer LSTM model. When compared to 

previous methods, their suggested model made predictions 

with a higher accuracy [48]. Zherui et al. used the LSTM model 

as a deep network model to predict wind power output with 

appropriate reliability. To enhance the prediction outcomes, 

they suggested a double decomposition-based remedial method 

[49]. In addition, related works based on chaotic time series, 

hybrid back-propagation, decomposition, and wavelet 

transforms have been investigated in the literature [50]. 

Most of the methods proposed in the literature for predicting 

turbine output power are traditional machine learning-based 

techniques. These methods have problems, such as requiring 

feature selection engineering and overcoming the problems of 

dealing with big data. In addition, the studies lack visualization 

of time series that can help in understanding and analyzing the 

problems while evaluating the data set. Our research focuses 

on the visualization and forecasting of wind power generation. 

The proposed architecture helps to make sense of the problems 

that can be encountered in the energy forecasting process with 

the help of data preprocessing and visualization methods. 

 

3. MATERIALS AND METHOD 
 

3.1. Data Pre-processing 
To forecast wind power, the features that machine learning 

algorithms will use must be properly chosen. The 

environmental factors surrounding the wind turbine should be 

taken into account in this situation. Additionally, a thorough 

assessment of its effect on the wind turbine's active power 

generation is necessary. In this study, the dataset is provided by 

Kaggle [51]. Environmental factors such as wind speed and 

wind direction are used as inputs in the model. The dateset is 

obtained from a N117/3600 model wind turbine manufactured 

by Nordex. The SCADA system contains time series data of 

the wind turbine for one year (01.01.2018–31.12.2018) 

recorded in 10-minute periods. The dataset consists of 50530 

units and five attributes: Wind speed (m/s), wind direction (°), 

theoretical power (kW), active power (kW), and Date/Time 

(Table 1). 

 
TABLE I   

DATASET DESCRIPTION 

Feature Description 

Date/Time 10 minutes period. 
LV Active Power 

(kW) 

Power produced at that precise instant by the 

turbine. 

Wind Speed (m/s) Wind speed used by the turbine to generate 
electricity. 

Theoretical Power 

Curve (kW) 

The power expected to be generated by the 

turbine manufacturer at this wind speed. 

Wind Direction (°) Wind direction measured from the turbine hub. 
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3.2. Impact Factors Analysis 
It is of great importance to assess and quantify the effects of the 

characteristics in the dataset on active wind energy production. 

Considering the impact of several variables on energy 

production, understanding the relationships between these 

factors is a critical requirement. A correlation matrix could be 

used to investigate the correlations between different variables 

for this purpose. Pearson correlation coefficient analysis can 

select the appropriate influence factors of the input data for the 

model. Thus, it can investigate the degree to which different 

impacts are correlated factors of the data and active power. The 

Pearson correlation coefficient can be calculated using 

Equation 1 [52]. 

 

𝑟𝑗𝑘 =
∑  𝑛

𝑖=1 (𝑥𝑖𝑗 − �̅�𝑗)(𝑥𝑖𝑘 − �̅�𝑘)

√∑  𝑛
𝑖=1 (𝑥𝑖𝑗 − �̅�𝑗)

2
√∑  𝑛

𝑖=1 (𝑥𝑖𝑘 − �̅�𝑘)2

 
(1) 

 

Where, the variables 𝑥𝑖𝑗  and 𝑥𝑖𝑘 represent the i value of data 

for class j and class k, respectively. Similarly, �̅�𝑗 and �̅�𝑘 denote 

the arithmetic mean of the data for class j and class k, 

respectively. The heat map in Figure 1 illustrates the results of 

Pearson correlation coefficient analysis applied to the dataset. 

The matrix, which numerically expresses the relationship 

between input variables and active power, presents the effect 

of one variable on the other between -1 and +1. Figure 1 shows 

that the correlation between actual power and wind speed is the 

highest, approximately 0.9. It can be seen that power and wind 

direction are negatively correlated. The correlation coefficient 

value of the wind direction is -0.063, which is less than 0.1. 

Therefore, the degree of correlation is weak. 
 

 
Figure 1. Pearson correlation matrix between active power and impact 

factors 
 

3.3. Outlier Data Cleaning 
One of the most important factors that negatively affects the 

performance of a model is outliers. Outliers can occur for 

various reasons. Outliers may occur in unexpected situations, 

such as wind outages and malfunctions. Due to these situations, 

it is difficult to obtain reliable wind power curves from raw 

wind data. For these reasons, it is necessary to extract these data 

[53]. A turbine only begins to produce electricity when the 

wind speed reaches the start-up value. The wind speed at which 

the machine generates its rated power is known as the "rated 

speed". In order to avoid failure and damage, electricity 

generation is halted when wind speeds reach high levels. 

Manufacturers can generate theoretical power curves under the 

assumption of perfect topographical and meteorological 

circumstances [54]. 

The study begins with the cleaning of outlier data. Then, the 

"LV ActivePower (kW)" feature is divided into sub-datasets in 

the range of 50 kW. This process is performed in increments of 

50 between 20 and 3400 using a loop. At the end of this 

process, frames of 50 data points each are obtained. Since 

power generation starts when the wind speed reaches 3 m/s, this 

lower wind speed limit is taken as the starting value of power 

generation. 20 m/s is the upper wind limit of the turbine. After 

this speed, there will be no active power generation as the 

turbine will protect itself. After these filtering operations, 

outliers are removed from each sub-frame obtained. For this 

process, values other than 1.5 times the lower and upper 

quartiles of the data (qlow and qhi) are considered outliers. 

Figure 2 shows the raw data set and wind speed graph. Figure 

3 shows the plot of the cleaned data set obtained after the 

outliers are removed as a result of the data preprocessing 

described above. 

  
Figure 2. Relationship between 

actual power and wind speed in the 

raw data set 

Figure 3. Relationship between 

actual power and wind speed in the 

preprocessed data set 

 

At the end of the process, the sub-frames are merged to 

obtain a new data frame consisting of 37820 extracted data 

samples. Min-max normalization is applied to the input 

features to reduce the computational cost. At the end of 

normalization, the data range is compressed to [0, 1]. The 

normalization process is calculated using Equation 2 [55]. 

 

𝑋scaled =
𝑥𝑜 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (2) 

 

Here, 𝑋scaled  is the normalized number, 𝑥𝑜 is the original 

number, and max(x) and min(x) are the maximum and 

minimum numbers in the series, respectively. 

 

3.4. LSTM Structure 
The LSTM proposed by Hochreiter and Schmidhuber offers 

a solution to the problem of vanishing gradients in RNNs [56]. 

LSTM has a more complex structure than traditional RNNs, 

which includes cells and gates. An LSTM cell has the ability to 

preserve the temporal data from the earlier forecast and 

transmit this information to the network when needed [57]. The 

memory cell helps to preserve the temporal information of the 

previous prediction in the training of the LSTM and propagates 

it to the network when needed. Figure 4 shows the structure of 

a basic LSTM model. 
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Figure 4. Basic structure of the LSTM model [57] 

 

Compared with traditional RNN(s), the hidden layer of 

LSTM has more controllable units for information transfer to 

memory cells [58]. Three gates are added to the basic neural 

unit of the LSTM. These gates are input it, forget ft, and output 

ot.  The gates take values in the interval [0, 1]. The primary role 

of the input gate is to update some attributes and determine the 

new attribute's content. The forget gate is designed to forget 

information that was previously useless. The output gate is 

used to determine what the output will be. All gates are 

connected at any time with the previous unit ht−1 and the current 

input xt. Together, they decide the output. Below are the 

computational formulas for Equation (3) ft, Equation (4) it, 

Equation (5) ot, and the current neuron value, Equation (6) �̃�𝑡 

[59]. 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) (3) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (4) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (5) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝐶𝑥𝑥𝑡 + 𝑊𝐶ℎℎ𝑡−1 + 𝑏𝐶) (6) 

 

Where Wfx, Wfh, Wix, Wih, Wcx, Wch, Wox, and Woh are the 

matrix weights obtained by multiplying the current input value 

xt by the previous unit output ht-1 of the relevant gate, 

respectively. bf, bi, bc, and bo represent the bias value and σ the 

sigmoid function. The input gate it, the forget gate ft, the 

previous state value �̃�𝑡−1, and the current neuron candidate 

value �̃�𝑡  are used to calculate the new state value �̃�𝑡+1. 

Equation (7, 8) can be used to determine the output value ht 

after the new state value has been determined [59]. 

 

𝐶𝑡+1 = 𝑓𝑡 ∗ 𝑥𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (7) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ (𝑆𝑡) (8) 

 

In this study, a multilayer LSTM network is designed to 

estimate active power. Table 2 shows the details of the 

designed architecture. The first layer contains 64 cell units and 

uses the ReLU activation function. The second layer contains 

32 cell units and uses the ReLU activation function. The third 

and fourth layers contain a dense layer and an output dense 

layer, respectively. The dense layers are fully connected and 

contain 16 and 1, neuron. The output of the model produces a 

single numerical value estimate. 
 

TABLE II   
LSTM STRUCTURE PARAMETERS 

Layer Output shape Parameter 

LSTM (0,0,64) 19200 

LSTM (0,0,32) 12416 

Dense (0,16) 528 

Dense (0,1) 17 

Total Parameter  32,161 

 
3.5. Error Metrics 

A range of statistical techniques were employed to assess 

the DL-based architecture's prediction. In this context, 

Equation (9) adjusted R-squared (R2), Equation (10) mean 

squared error (MSE), Equation (11) root mean squared error 

(RMSE), and Equation (12) mean absolute error (MAE) 

metrics were used to evaluate the discrepancy between 

predicted and actual values [60]. 

 

𝑅2 =
(∑ (𝑥𝑖

∗ − 𝑥𝑖
∗̅̅ ̅𝑁

𝑖=1 )(𝑥𝑖 − 𝑥�̅�))2

∑ (𝑥𝑖
∗ − 𝑥𝑖

∗̅̅ ̅𝑁
𝑖=1 )2 ∑ (𝑥𝑖 − 𝑥�̅�)

𝑁
𝑖=1

2 (9) 

 

In Equation 9, the R2 value ranges from 0 to 1, with a higher 

value indicating a better predictive performance of the model. 

N is the number of data points, x is the dependent variable, 𝑥𝑖
∗ 

is the independent variable,  𝑥𝑖
∗̅̅ ̅ is the mean value of the 

independent variable, and 𝑥𝑖
∗ is the mean value of the dependent 

variable. In Equation 10, MSE is a statistical measure of how 

much error a regression model's predictions make relative to 

the actual data. In Equation 11, the standard deviation in 

prediction errors is represented by RMSE, and a lower value 

denotes a better model. In Equation 12, the absolute difference 

between the variables' expected and actual values is measured 

by the MAE [60, 61]. 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑥𝑖 − 𝑥𝑖

∗)2

𝑁

𝑖=1

 (10) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑥𝑖

∗ − 𝑥𝑖)2

𝑁

𝑖=1

 (11) 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑥𝑖 − 𝑥𝑖

∗|

𝑁

𝑖=1

 (12) 

 

Lower MSE, RMSE, and MAE values indicate that the 

model makes better predictions. For all three equations, N 

represents the number of data points, 𝑥𝑖 represents the actual 

values, and 𝑥𝑖
∗ represents the expected output. 

 

4. RESULTS AND DISCUSSION 
 

This section analyzes the performance results obtained 

from the proposed LSTM-based DL model. 
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4.1. Experimental Settings 
In this study, the data was tested using Python 3.10.12, 

TensorFlow 2.12, and a 64-bit system with a 2199 MHz 4-core 

processor and 32 GB of memory. 

 

4.2. Hyperparameter and Optimization Techniques 
The dataset was divided into training (60%), validation 

(20%), and testing (20%) subsets. According to this ratio, 

22692, 7564, and 7564 were divided into three sets and used 

for training, validation, and testing, respectively. 

Hyperparameters are the settings that affect the performance 

results of the model. In order to determine these settings, the 

model was tested with different parameters, and the best-

performing settings were selected. The learning coefficient of 

our model was initialized at a rate of 1e-3, and the coefficient 

was tried to be improved with the Adam optimizer. The training 

was set to 100 epochs. Table 3 shows the hyperparameters used 

for DL-based time series analysis. 
 

TABLE III 

TRAINING HYPERPARAMETERS 

Hyperparameter Parameter 

Learning rate  1e-3 
Optimizer Adam 

Batch size 32 

Loss function MSE 

Number of epochs 100 

Re-scaling MinMaxScale [0,1] 

 

Test data is used to evaluate the accuracy of the proposed 

prediction model. The regression graph obtained from the test 

data set using the LSTM architecture is shown in Figure 5. It is 

seen that the actual values and the values predicted by the 

architecture are gathered on the regression line. It is clear that 

the proposed architecture has high prediction accuracy. 

 

 
Figure 5. Regression plot of test dataset 

 

The theoretical power curve is the graph of the power 

indicator expected from the turbine under ideal conditions. The 

prediction graph of the proposed model is consistent with the 

theoretical power curve graph. This shows that the model has 

good prediction performance. There is a direct proportionality 

between wind speed and actual power up to the turbine 

decommissioning speed point. Figure 6 shows the turbine's 

active power, the theoretical power, and the predicted power 

values obtained using the proposed method. When the graph is 

analyzed, the estimated power curve, the actual active power 

curve, and the theoretical power curve have a similar 

distribution. 

 

 
Figure 6. Graph of theoretical, active, predicted power and wind speed 

 

Figure 7 shows the actual active power and the predicted 
power values by the proposed architecture for the date range 
01.12.2018–05.12.2018 on the time axis graph. The actual data 
and the predicted data are given in the same figure. The 
proposed model performed well by overlapping with the actual 
value. 

 

 
Figure 7. Time slice of predicted and active power 

 

In this study, the performance of the model was evaluated 

according to the indicators described in Section 3.5. According 

to the results presented in Table 4, the proposed method has 

achieved high performance with an R2 value of 96.10% on the 

training dataset. In addition, MAE, MSE, and RMSE values are 

0.0190, 0.0034, and 0.0584, respectively. In addition, the 

proposed architecture achieved an R2 score of 94.71% on the 

test dataset. This shows that the model is not overfitting and 

can capture the connection between the data in the newly 

encountered test dataset well. The MAE, MSE, and RMSE 

values in the test dataset are 0.0047, 0.0685, and 0.9471, 

respectively, and a good prediction result is obtained with low 

error metrics. 

 
TABLE IV   

PERFORMANCE RESULTS OF THE MODEL FROM THE TRAINING AND TEST 

DATASET 

 Training Dataset Testing Dataset 

MAE 0.0190 0.0226 

MSE 0.0034 0.0047 

RMSE 0.0584 0.0685 

R2 0.9610 0.9471 
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Training time (s) 44.02  

 

When the results are examined, the model is able to analyze 

the data well and shows a successful prediction capability. This 

is due to the ability of the LSTM-based machine learning 

method to capture long-term dependencies. Compared to 

classical machine learning-based methods, LSTM uses a 

special mechanism called memory cells. The cells have the 

ability to store previous knowledge and use it later. This allows 

the model to make predictions based on previous data. 
 

5. CONCLUSION 
 
Wind energy forecasting is an important component of 

energy management systems. In this study, an LSTM-based 

architecture for active power energy forecasting is proposed 

using time series data from a wind turbine. The anomalous data 

in the dataset is extracted by dividing it into frames. Then the 

cleaned data is used to feed the LSTM-based architecture. The 

results and performance metrics show the high success rate of 

the model. LSTM is a method with high prediction 

performance, especially in large datasets, due to its ability to 

capture long-term dependencies. By utilizing this, the proposed 

DL-based LSTM method has achieved high prediction 

accuracy. 

For energy forecasting, LSTM-based methods can be used 

to achieve high accuracy in forecasting. However, the result 

can be improved by using different architectures. In addition, 

the LSTM model is a computationally expensive method due 

to its complexity. In our study, we used a multilayer LSTM 

model. These architectures are capable of successfully 

capturing complex relationships between data. However, 

increasing the number of layers may increase the 

computational cost. In future work, we plan to design fewer-

layer architectures without degrading performance. In this way, 

we aim to reduce the computational cost. 
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