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Abstract 

Machine learning methods have gained increasing attention in the field of education due to advancing technological tools and rapidly 

growing data. The general focus of this attention is on identifying the best method, but it is also critical to determine the extent to which 

the methods under consideration differ statistically and to correctly identify variable importance metrics. In this study, we benchmarked 

the performance of twenty-three machine learning algorithms on real educational data via cross-validation based on criteria such as 

accuracy, AUC and F1-score. Besides, the methods were statistically compared using DeLong and McNemar tests. The findings 

showed that the LightGBM method appeared to be the best method and presented the most important factors determining student 

achievement according to this method. The systematic process followed in the study is considered to yield valuable insights for data-

driven studies as well as the field of education. 
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1. Introduction 

Artificial intelligence is increasingly deeply 

integrated into real life and is enhancing human beings' 

ability to predict routines, capacities, and behaviors. 

With the technological facilities that are being 

developed to achieve these goals, the size of the data 

collected is also expanding proportionally to the ability 

to collect and process data. The field of education is 

arguably one of the fields generating the highest amount 

of valuable knowledge from the data gathered. Artificial 

intelligence models can be effectively used for primary 

purposes such as students' performance evaluations (in-

term and end-of-term), dropout status, and identification 

of individuals at risk (Albreiki et al., 2021). The 

beneficial results provided by artificial intelligence 

models have expanded their usages in education and 

enabled them to prepare personalized (Li et al., 2020), 

updated (Guan et al., 2020) course content, developed 

effective course selection tools (Tilahun ve Sekeroglu, 

2020), and prepared exam formats (Wu et al., 2020). 

Educational research is conducted not only to 

improve decisions locally, but also on the results of 

several examinations (such as program for international 

student assessment (PISA), trends in international 

mathematics and science study (TIMSS), etc.) carried 

out globally. The motivation underlying these studies is 

to improve the socio-economic status and quality of life 

of both individuals and the countries in which they live 

through improving the quality of education (Sağlam and 

Aydoğmuş, 2016). Machine learning, as the most 

important sub-field of artificial intelligence, contributes 

significantly to realizing this motivation and providing 

accurate recommendations to decision (policy) makers.  

The usage of machine learning models in the field of 

education is particularly focused on the supervised 

learning. Supervised learning is based on assuming that 

the quantitative (e.g., student grade: 82/100, student 

attendance percentage: 73%) or qualitative (e.g., student 

achievement status: failed or success, student grade: AA 

or FF) variable that is the focus of the study is known 

and accurately predicted by a set of variables that are 

expected to affect it. The most widely used algorithms 

in the literature for this type of learning (Sekeroglu et 

al., 2021) are logistic regression (LR), naive bayes (NB), 

k-nearest neighbor (KNN), classification and regression 

trees (CART), linear regression (LIN), random forests 

(RF), bagging (BG), gradient boosting machine (GBM), 

extreme gradient boosting (Xgboost), artificial neural 

networks (ANN), support vector machines (SVMs), 

extreme learning machine (ELM), long short-term 

memory (LSTM), deep neural networks (DNN). In the 

literature, there are numerous studies involving such 
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models, some of the prominent studies can be given as 

follows: 

Gamuling et al. (2016) studied student performance 

prediction in blended learning environments using 

discrete Fourier transforms (DFT) and various machine 

learning methods (including KNN, SVM, ANN and 

NB). Elbadrawy et al. (2016) proposed to utilize random 

forests, personalized multi-regression, and matrix 

factorization approaches to predict students' grades and 

assessments in future courses. Tran et al. (2017) 

proposed a unified system that connects classical 

machine learning methods (LR, CART and SVM) and 

recommender systems to predict student performance.) 

Like Tran et al. (2017), but not including the outputs of 

recommender systems, Adejo and Connolly (2018) 

presented an ensemble model incorporating cart, ann 

and svm methods to predict student performance. 

Hussain et al. (2019) employed various methods such as 

CART, LR, ANN, SVM and NB to identify the 

difficulties encountered by students during the term and 

to improve their performance. Yousafzai et al. (2020) 

employed genetic algorithm, CART and KNN models 

through both classification and regression models to 

predict student performance. Deo et al. (2020) have 

proposed models such as ELM, RF and Volterra to 

predict student performance in engineering mathematics 

courses and presented the results comparatively. 

Assellman et al. (2021) utilized RF and some boosting-

based algorithms (including Adaboost and Xgboost) to 

accurately predict student performance. Suleiman and 

Anane (2022) have applied LR, CART, SVM and RF 

algorithms to predict the cumulative grade of students 

based on their performance in different years. 

Pallathadka et al. (2023) have comparatively presented 

the results of Naive Bayes, ID3, C4.5, and SVM models 

for predicting student performance. Chen and Zhai 

(2023) have compared the results of KNN, CART, RF, 

LR, SVM, NB, and ANN models in different application 

scenarios using several different datasets. Extensive 

studies on this topic are currently ongoing and 

comprehensive listings of these studies categorized 

according to aims, methods and outcomes can be 

obtained from the reviews by Albreiki et al. (2021), 

Sekeroglu et al. (2021) and Alalawi et al. (2023). 

1.1. Study Aims and Motivation 

The use of machine learning models in the literature is 

beneficial to a certain extent, however, some aspects 

have been relatively often disregarded: 

i. It is critical in data-driven education studies to realize 

this motivation by not only estimating the value of the 

target variable that is the focus of the study, but also 

identifying the important factors that affect it. The 

variable importance measures can lead to more 

compact and scalable models. 

ii. The statistical significance in performance 

comparisons of machine learning models can provide 

additional insights in model selection. The principle 

that the best model is the simplest model can be 

followed unless there is a significant difference. 

This study focuses on these two mentioned perspectives 

and presents a comprehensive comparison of best 

machine learning algorithms. The content of the study is 

summarized as follows: The methods evaluated in the 

study are given in Section 2. Section 3 provides details 

about the experimental process. Model training results 

are presented in Section 4. Finally, the discussion and 

summary comments on the results of the study are 

reported in Section 5. 

 

Table 1. List of models (algorithms) evaluated in the study 

Type Abbrevation Model (Authors) Brief Explanation 

Instance-based KNN 

K-nearest 

neigbors (Cover 

and Hart, 1967) 

The versatile algorithm employed in machine learning for both 

classification and regression tasks, and operates on the principle 

that similar data points are generally close in feature space. Its 

applications range from recommender systems to pattern 

recognition and anomaly detection, making it invaluable in 

academic and industrial contexts. 

Statistical 

NB 

Naive bayes 

(Domingos and 

Pazzani, 1997) 

The probabilistic machine learning algorithm based on Bayes' 

Theorem, which assumes strong (naive) independence between 

features. It is particularly effective for classification tasks 

including spam detection and sentiment analysis due to its 

simplicity, efficiency and ability to handle large datasets. 

LR 

Logistic 

regression (Cox, 

1958) 

The statistical model widely utilized for binary classification tasks, 

such as predicting whether an event will occur or not. It estimates 

probabilities using a logistic function, making it ideal for scenarios 

where outcomes are categorical and decisions are probabilistic. 

PLS Partial least 

squares (Wold, 

An extension of the partial least squares algorithm that particularly 

addresses the prediction of continuous dependent variables is 

partial least squares regression. By finding the directions of 
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1982; Wold et al., 

1984) 

greatest variance that closely relate independent variables to the 

dependent variable, it constructs predictive models. It is 

particularly effective when there are multicollinearity problem in 

data set or high dimensional settings. Therefore, it is highly 

applicable in both research and practical problem solving. 

Tree and rule-based 

CART 

Classification and 

Regression Trees 

(Breiman et al., 

1984) 

A nonparametric decision tree learning technique that is suitable 

for both classification and regression tasks. It forms binary trees 

by partitioning the dataset into subsets based on feature values 

maximizing the separation of data in terms of the purity of the 

target variable. The CART is notorious for its interpretability and 

flexibility, which makes it a practical solution and a popular choice 

in areas where clear decision rules are required. 

C5.0 

C5.0 (Quinlan, 

1992; Quinlan, 

1993) 

An advanced decision tree algorithm that builds on predecessors 

like ID3 and C4.5, enhancing accuracy through boosting, 

winnowing, and pruning. It is widely used for classification and 

adapted for regression, excelling in handling large datasets and is 

popular for its robust performance and interpretability. 

C5.0-Rules 

C5.0-rules 

(Quinlan, 1992; 

Quinlan, 1993) 

C5.0-rules is a variation of the C5.0 algorithm that generates a set 

of decision rules rather than a tree structure, tailored for 

classification and adaptable for regression tasks. This approach 

simplifies the decision-making process by extracting the most 

significant rules from data, enhancing interpretability and 

accuracy. 

RuleFit 

RuleFit (Friedman 

and Popescu, 

2008) 

A machine learning algorithm that combines decision tree-like 

rules with linear regression models to predict outcomes. It 

generates rules from an ensemble of trees and uses them as 

features in a linear model, effectively capturing both linear and 

interaction effects among variables. It is particularly valued for its 

interpretability and precision, making it suitable for applications 

in fields like healthcare and finance where understanding the 

model's decision process is crucial. 

BAT 

Bayesian additive 

trees (Chipman et 

al., 2010) 

A statistical model that uses Bayesian methods to combine 

multiple decision tree models for more reliable predictions. It 

estimates complex functions by averaging over many trees, 

improving accuracy and robustness while providing credible 

intervals for predictions. It is particularly effective in scenarios 

requiring careful uncertainty estimation, such as in medical 

prognosis and economic forecasting. 

Neural network-based MLP 

Multilayer 

perceptron 

(Hornik et al., 

1989) 

A form of deep learning where an MLP, a type of artificial neural 

network, is used to classify data into distinct categories. It features 

multiple layers of neurons with non-linear activation functions, 

enabling it to capture complex patterns and relationships in data.  

Spline-based MARS 

Multivariate 

adaptive 

regression spline 

(Friedman, 1991) 

A non-parametric technique that models relationships within data 

by fitting piecewise linear splines, which are flexible enough to 

capture complex patterns. It's particularly useful in scenarios 

where the relationship between variables is non-linear and 

intricate, adjusting automatically to changes in data trends. 

Kernel-based SVM 

Support Vector 

Machines (Vapnik 

et al., 1996; 

Schölkopf and 

Smola, 2002) 

A powerful class of supervised learning models used for 

classification and regression tasks. They work by finding the 

hyperplane that best separates different classes in the feature 

space, maximizing the margin between data points of different 

categories. This capability to handle both linear and non-linear 

boundaries makes SVMs highly effective in diverse applications 

such as image recognition, bioinformatics, and text categorization. 

Ensembles Bag 
Bagging 

(Breiman, 1996) 

An ensemble machine learning technique used to improve the 

stability and accuracy of classification algorithms. It involves 

creating multiple versions of a predictor model by training them 

on different subsets of the original dataset, then aggregating their 

predictions to form a final verdict. It is particularly effective in 

reducing variance and avoiding overfitting, making it widely used 
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in decision tree algorithms and complex classification tasks across 

various domains. 

RF 
Random forests 

(Breiman, 2001) 

An ensemble learning method that builds upon the concept of 

bagging by creating a multitude of decision trees at training time 

and outputting the class that is the mode of the classes or mean 

prediction of the individual trees. It enhances prediction accuracy 

and controls over-fitting by introducing randomness in the tree 

generation process through feature and data sampling. 

Boosting 

Boosting 

(Schapire, 1990; 

Freund and 

Schapire; 1996) 

An ensemble technique that aims to create a strong classifier from 

a number of weak classifiers. It works by sequentially applying 

weak models to progressively modified versions of the data, 

increasing the weight of misclassified instances so that subsequent 

models focus more on difficult cases. It has widely used variants 

include AdaBoost and Gradient Boosting, which are effective in 

reducing bias and variance in complex datasets. 

Base reference Null Null 

A simple model that provides a baseline by using no predictive 

information to make forecasts in statistics and machine learning. 

It typically predicts the most frequent category in classification 

tasks or the mean/median in regression tasks. This model is 

important for performance benchmarking, as it sets the minimal 

threshold that any other more complex model should exceed to be 

considered effective. 

2. Methods 

The study includes twenty-three algorithms, 

covering the most widely employed algorithms in the 

literature. The algorithms can be categorized as 

instance-based (KNN), statistical (Naive Bayes, 

Logistic Regression, Partial Least Squares), tree and 

rule-based (CART, C5.0, C5.0-rules, RuleFit, Bayesian 

Additive Trees), neural network-based (multilayer 

perceptron), spline-based (MARS), kernel-based (SVM) 

and ensemble approaches (Bagging, Boosting, Random 

Forests). Besides, the Null model is included in the study 

serving as a benchmark (base) reference as a simple and 

non-informative model that can be obtained without 

building any model. It should be noted that different 

base learner models are utilized in the training process 

of ensemble models. The C5.0 algorithm, for instance, 

was not only included in the study on standalone basis 

but was also considered as a base learner for the bagging 

algorithm. A similar approach has been carried out for 

CART, Mars, Mlp algorithms. These algorithms were 

used as base learner in both bagging and boosting 

ensemble models. The list of these algorithms and 

comprehensive explanations are presented in Table  1. 

3. Experimental Design and Settings 

3.1. Data Description and Source 

The dataset was retrieved from a data science 

platform Kaggle (2023) which is an open source 

machine learning and data sharing platform. The data set 

includes thirty variable measurements of one hundred 

and forty-five students. The sequential grades of the 

students are considered as the target variable in the 

study. Variables and their characteristics can be seen in 

Table 2. 

Due to the data set consisting almost completely of 

categorical data, low-frequency categories were merged 

to make the results more generalizable and not 

negatively affect the model estimation. The categories 

having a frequency of about ten or less were joined with 

the closest category. Since the target variable is multi-

level and the frequency variation between levels is quite 

volatile (e.g., only seven students failed), we have 

treated grades below CC, which are defined as failing 

and conditionally passing, as Fail, and the remaining 

grades as Success. Therefore, the problem is treated as a 

binary classification problem. Details of these merging 

processes are presented in Table 2.

Table 2. Characteristics of the data set 

Type Question Possible Answers 

Personal 

Age  (1: 18-21, 2: 22-25, 3: 26+) 

Sex (1: Female, 2: Male) 

Graduated High School Type (1: Private, 2: State, 3: Other) 

Scholarship Type 
(1: None, 2: 25%, 3: 50%, 4: 75%, 5: Full) 

Preprocess: (None + 25% + 50%) as 50% and lower 
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Additional Work (1: Yes, 2: No) 

Regular Artictic or Sports Activity (1: Yes, 2: No) 

Do you have a partner? (1: Yes, 2: No) 

Total salary if available 
(1: $135-200, 2: $201-270, 3: $271-340, 4: $341-410, 5: Above $410) 

Preprocess: ($341-410 + Above $410) as $341 and above 

Transportation to the university 
(1: Bus, 2: Private Car/Taxi, 3: Bicycle, 4: Other) 

Preprocess: (Bicycle + Other) as Other 

Accommodation type in Cyprus (1: Rental, 2: Dormitory, 3: With Family) 

Family 

Mother’s education (1: Primary School, 2: Secondary School, 3: High School, 4: University, 5: 

Msc., 6: Ph.D.) 

Preprocess: (University + Msc. + Ph.D.) as University Father’s education 

Number of sisters/brothers  

(If available) 
(1: 1, 2: 2, 3: 3, 4: 4, 5: 5 or above) 

Parental status (1: Married, 2: Divorced, 3: Died - One of Them or Both) 

Mother’s occupation (1: Retired, 2: Housewife, 3: Government Officer, 4: Private Sector 

Employee, 5: Self-Employment, 6: Other) 

Preprocess: (Self-Employment + Other) as Other 
Father’s occupation 

Education 

Habits 

Weekly study hours 

(1: None, 2: <5 Hours, 3: 6-10 Hours, 4: 11-20 Hours, 5: More Than 20 

Hours) 

Preprocess: (11-20 hours + More than 20 hours) as More than 11 hours 

Reading frequency  

(non-scientific books/journals) 
(1: None, 2: Sometimes, 3: Often) 

Reading frequency  

(Scientific books/journals) 
(1: None, 2: Sometimes, 3: Often) 

Attendance to the seminars/conferences 

related to the department 
(1: Yes, 2: No) 

Impact of your projects/activities on your 

success 
(1: Positive, 2: Negative, 3: Neutral) 

Attendance to classes (1: Always, 2: Sometimes, 3: Never) 

Preparation to midterm exams 1 (1: Alone, 2: With Friends, 3: Not Applicable) 

Preparation to midterm exams 2 (1: Closest Date to The Exam, 2: Regularly During the Semester, 3: Never) 

Taking notes in classes (1: Never, 2: Sometimes, 3: Always) 

Listening in classes (1: Never, 2: Sometimes, 3: Always) 

Discussion improves my interest and 

success in the course 
(1: Never, 2: Sometimes, 3: Always) 

Flip-classroom (1: Not Useful, 2: Useful, 3: Not Applicable) 

Cumulative grade point average in the last 

semester 
(1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49) 

Expected Cumulative grade point average 

in the graduation 

Output Grade  
(0: Fail, 1: DD, 2: DC, 3: CC, 4: CB, 5: BB, 6: BA, 7: AA) 

Preprocess: (Fail + DD + DC) as Fail; the rest of grades as Success 

 

 

3.2. Preprocessing and Parameter Tuning 

The preprocessing approach and experimental 

settings applied to the dataset before applying machine 

learning models can be summarized as follows: 

i. The dataset was processed with one-hot 

encoding and label encoding for nominal and 

ordinal variables, respectively. 

ii. Numerical variables have been standardized. 

iii. The dataset is split 75% as training data and 

25% as test data. As cross validation approach, 

the 10-fold CV method was utilized. The 

models were trained with the data obtained 

with cross-validation on the training data and 

their generalization performance (i.e., testing) 

was evaluated with the test data. 

iv. The grid space approach was adopted as the 

model tuning parametrization. The optimal 

parameters were derived by using a parameter 

space consisting of thirty different possible 
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values of the unique parameters of each model. 

The ranges and optimum values of the tuning 

parameters for each model are provided in 

detail in Table 4. 

v. The test performance was extracted for each 

model based on the optimal parameters found 

by cross-validation. 

For the best model among all models in the test 

performances, confusion matrix, roc curve and variable 

importance results are presented. 

3.3. Performance Criteria 

In classification models, depending on whether the 

target variable is binary or multilevel, performance 

criteria are primarily defined based on the confusion 

matrix.  A classical confusion matrix can be presented 

as the following structure given in Table 3. 

Table 3. A general representation of a confusion matrix 
 

 Predicted 

  Positive Negative 

Actual 

(Truth) 

Positive 
True Positive 

(TP) 

False Negative 

(FN) 

Negative 
False Positive 

(FP) 

True Negative 

(TN) 

 

In this study, the accuracy, area under the roc curve 

(AUC) and F-score, which are the most widely used 

measures in the literature, can be defined based on 

confusion matrix as follows. 

• Accuracy:  

The percentage of correctly classified cases 

(including true positives and true negatives) relative 

to the total number of cases is defined as accuracy. 

Accuracy =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

The model's predictive skill increases as the 

accuracy value converges to one. 

• Area Under the Curve (AUC):  

In binary classification problems, the Area Under 

the Receiver Operating Characteristic Curve (AUC-

ROC) statistical measure is utilized to assess a 

model's inherent capacity to differentiate between 

the positive and negative classes across a range of 

thresholds for classification. For different threshold 

values, the true positive rate (sensitivity) is 

displayed against the false positive rate (1-

specificity) through the ROC curve. An AUC value 

of 1.0 indicates a perfect classifier, while a value of 

0.5 indicates a model that performs no better than 

random chance at classifying true positives and true 

negatives. The AUC measures the model's overall 

ability in performing effectively. 

• F-score (or F1-score): The F1-score, also known 

as the F-score or F-measure, is a robust metric for 

assessing the accuracy of a binary classification 

model, especially in contexts in which false 

positives and false negatives have different costs or 

when class imbalances are present. It is a harmonic 

mean of precision and recall. The harmonic mean, 

in contrast to the arithmetic mean, tends to be the 

lower of the two values, providing that both 

precision and recall are at an appropriate level. In 

particular, the F1-score approaches its least 

accurate value at 0, while reaching its best value at 

1, corresponding to perfect precision and recall. The 

F1-score is defined by using the confusion matrix 

components as follows: 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 

where 

Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Table 4. The ranges of parameters corresponding to the each model 

Model Range  Best 

Bag (C5.0) min_n: [2, 15] min_n: 6 

Bag (CART) 

tree_depth: [1, 15],  

min_n: [2, 15],  

cost_complexity: [0, 1] 

tree_depth: 13,  

min_n: 6,  

cost_complexity: 3.2x10^-8 

Bag (MARS) 

num_terms [0, min(200, max(20, 2 * #variables)) + 1 ],  

prod_degree: [1, 2],  

prune_method: [backward, none, exhaustive, forward, seqrep, cv] 

num_terms: 4,  

prod_degree: 2,  

prune_method: backward 

Bag (MLP) 
hidden_units: [2, 20] 

penalty: [0, 1] 

hidden_units: 4 

penalty: 0.00000218 

BAT 

trees: [10, 200] 

prior_terminal_node_coef:  [0.01, 1] 

prior_terminal_node_expo: [0.01, 2] 

trees: 106 

prior_terminal_node_coef:  0.0928 

prior_terminal_node_expo: 1.70 
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Boosting (C5.0) 

trees: [1, 100] 

min_n: [2, 15] 

sample_size: [0.1, 1] 

trees: 6 

min_n: 7 

sample_size: 0.969 

Boosting (LightGBM) 

mtry: [1, #variables] 

trees: [1, 2000] 

min_n: [2, 40] 

tree_depth: [1, 15] 

learn_rate: [-3, -0.5] 

loss_reduction: [-10, 1.5] 

mtry: 10 

trees: 1080 

min_n: 2 

tree_depth: 11 

learn_rate: 0.00115 

loss_reduction: 0.0486 

Boosting (XGBoost) 

mtry: [1, #variables] 

trees: [1, 2000] 

min_n: [2, 40] 

tree_depth: [1, 15] 

learn_rate: [-3, -0.5] 

loss_reduction: [-10, 1.5] 

sample_size: [0.1, 1] 

mtry: 2 

trees: 1212 

min_n: 2 

tree_depth: 5 

learn_rate: 0.00990 

loss_reduction: 2.62x10^-8 

sample_size: 0.706 

C5.0 min_n: [2, 15] min_n: 3 

C5.0 Rules 
trees: [1, 100] 

min_n: [2, 15] 

trees: 85 

min_n: 3 

CART 

tree_depth: [1, 15],  

min_n: [2, 15],  

cost_complexity: [0, 1] 

tree_depth: 5, 

min_n: 7,  

cost_complexity: 0.0000307 

KNN 

neighbors: [1, 20] 

weight_function: [cosine] 

dist_power: [0.1, 2] 

neighbors: 14 

weight_function: cosine 

dist_power: 1.37 

Logistic Regression none none 

MARS 

num_terms [0, min(200, max(20, 2 * #variables)) + 1 ],  

prod_degree: [1, 2],  

prune_method: [backward, none, exhaustive, forward, seqrep, cv] 

num_terms: 5,  

prod_degree: 2,  

prune_method: backward 

MLP 

hidden_units: [1, 10] 

penalty: [-10, 0] 

epochs: [10, 1000] 

hidden_units: 2 

penalty: 0.00392 

epochs: 706 

Naive Bayes 
smoothness: [0.01, 2],  

Laplace: [0, 1] 

smoothness: 1.33,  

Laplace: 0.0493 

NULL none none 

PLS 
predictor_prop: [0, 1] 

num_comp: [2, 20] 

predictor_prop: 0.0295 

num_comp: 4 

Random Forests 

mtry: [1, 100] 

trees: [1, 2000] 

min_n: [2, 40] 

mtry: 70 

trees: 1648 

min_n: 36 

RuleFit 

mtry: [0, 1] 

trees: [1, 100] 

min_n: [1, 20] 

tree_depth: [1, 20] 

learn_rate: [0, 1] 

loss_reduction: [0, 20] 

sample_size: [0, 2] 

penalty: [0, 1] 

mtry: 0.453 

trees: 8 

min_n: 6 

tree_depth: 6 

learn_rate: 5.99*10^-8 

loss_reduction: 7.92 

sample_size: 0.799 

penalty: 0.000883 

SVM (Linear) 
cost: [0, 30] 

margin: [0, 1] 

cost: 0.244 

margin: 0.177 

SVM (Polynomial) 

cost: [0, 30] 

degree: [1, 3] 

scale_factor: [0, 1] 

cost: 5.84 

degree: 2 

scale_factor: 0.000605 

SVM (Radial) 

cost: [0, 30] 

rbf_sigma: [0, 1] 

margin: [0, 1] 

cost: 20.4 

rbf_sigma: 0.000467 

margin: 0.178 
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4. Results and Discussion 

This section presents the performance comparisons 

of the twenty-three different machine learning methods 

evaluated in this study. Initially, the performance of 

these methods on the test data according to measures 

such as accuracy, AUC and F-score are given in Table 

5.

Table 5. The comparative test performance results of machine learning methods 

Model Accuracy AUC F-Score 

Bag (C5.0) 0.7027 0.7500 0.7027 

Bag (CART) 0.6757 0.7794 0.7143 

Bag (MARS) 0.6757 0.6824 0.7273 

Bagging (MLP) 0.6486 0.7676 0.6977 

BAT 0.7027 0.7515 0.7442 

Boosting (C5.0) 0.6757 0.7088 0.6842 

Boosting (LightGBM) 0.7568 0.7941 0.7805 

Boosting (XGBoost) 0.7027 0.7676 0.7442 

C5.0 0.6486 0.6956 0.6667 

C5.0 (Rules) 0.7297 0.7676 0.7619 

CART 0.7027 0.7324 0.7556 

KNN 0.6216 0.7441 0.6667 

LR 0.5946 0.5676 0.6512 

MARS 0.6486 0.7250 0.6486 

MLP 0.6486 0.6941 0.6977 

NB 0.5676 0.7500 0.7037 

Null 0.5405 0.5000 0.7018 

PLS 0.6216 0.7279 0.6818 

RF 0.6757 0.7765 0.6842 

RuleFit 0.7568 0.7500 0.7907 

SVM (Linear) 0.5946 0.7176 0.6667 

SVM (Polynomial) 0.7027 0.7412 0.7442 

SVM (Radial) 0.6486 0.7088 0.6977 

 

According to the results given in Table 5, LightGBM as 

a boosting algorithm provided the best results in the 

accuracy (0.7568) and AUC (0.7941) criteria, while 

RuleFit algorithm dominated in the F1-score (0.7907). It 

is worth to note that RuleFit algorithm yields slightly 

higher F1-score than LightGBM algorithm and 

LightGBM is the second-best algorithm in terms of this 

criterion. By combining these findings, it can be said 

that the LightGBM algorithm achieves the most 

generalizable and superior performance than any other 

algorithm. A visual interpretation of the AUC values, 

which are often favored in studies, is also given in 

Figure 1.  

The null model is also included in the study to represent 

a reference and to clarify the necessity of complex 

models. In order to assess whether each model is 

statistically significantly different from each other, 

especially the null model, DeLong (Delong et al., 1988) 

and McNemar (McNemar, 1947) tests were performed. 

The DeLong test relies on AUC values to compare 

machine learning models, whereas the McNemar test is 

based on model predictions. The statistical significance 

value for both tests was set at 0.05 and the results are 

reported in Table 6.  

According to the DeLong test results, all models are 

statistically different from the Null model, while two 

bagging models (with CART and MLP learners), 

LightGBM, XgBoost, RuleFit and SVM (Linear kernel) 

models have statistically different AUC values with 

logistic regression. Regarding the McNemar test, 

LightGBM, as the best model, provided statistically 

different predictions from MARS, RF and Bagging 

(C5.0 learner) models, while all model predictions were 

different from Null and NB models.
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Figure 1. Visual comparison of performance results according to the AUC criterion

Table 6. The statistical comparison of each model based on AUC values and predicted categories 

Model DeLong Test McNemar Test 

Bag (C5.0) (Null: 0.0019) 

(Null: <0.001; NB: 0.0001; SVM (Linear): 0.0433; BAT: 

0.0412; Bag (MARS): 0.0233; PLS: 0.0455; Boosting (XGBoost): 

0.0133) 

Bag (CART) (Null: 0.0002; LR: 0.038) (Null: 0.0003; NB: 0.0015) 

Bag (Mars) (Null: 0.0423) 
(Null: 0.0009; NB: 0.0094;  

Bag (C5.0): 0.0233) 

Bag (Mlp) (Null: 0.0012; LR: 0.033) (Null: 0.0005; NB: 0.0026) 

BAT (Null: 0.0019) 
(Null: 0.0005; NB: 0.0026;  

MARS: 0.0412; Bag (C5.0): 0.0412) 

Boosting (C5.0) (Null: 0.0180) (Null: <0.001; NB: 0.0002) 

Boosting (LightGBM) (Null: 0.0006; LR: 0.027) 
(Null: 0.0015; NB: 0.0077; MARS: 0.0133;  

RF: 0.0233; Bag (C5.0): 0.0133) 

Boosting (XGBoost) (Null: 0.0001; LR: 0.038) (Null: 0.0012; NB: 0.0026) 

C5.0 (Null: 0.0295) (Null: 0.0001; NB: 0.0003) 

C5.0 (Rules) (Null: 0.0007) (Null: 0.0003; NB: 0.0015) 

CART (Null: 0.0101) (Null: 0.0002; NB: 0.0009) 

KNN (Null: 0.0026) (Null: 0.0003; NB: 0.0033) 

LR (Null: 0.4552) (Null: 0.0005; NB: 0.0098) 

MARS (Null: 0.0070) BAT: 0.0412, PLS: 0.0455; Boosting (LightGBM): 0.0133) 

MLP (Null: 0.0410) (Null: 0.0005; NB: 0.0026) 

NB (Null: 0.0024) (Null: 0.2482; LR: 0.0098) 

Null None None 

PLS (Null: 0.0076) 
(Null: 0.0009; NB: 0.0044; 

MARS: 0.0455; RF: 0.0412; Bag (C5.0): 0.0455) 
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RF (Null: 0.0004) 
(Null: <0.001; NB: 0.0002; 

PLS: 0.0412; Boosting (LightGBM): 0.0233) 

RuleFit (Null: 0.0050; LR: 0.042) (Null: 0.0005; NB: 0.0055) 

SVM (Linear) (Null: 0.0156; LR: 0.048) (Null: 0.0015; NB: 0.0159; Bagging (C5.0): 0.0433) 

SVM (Polynomial) (Null: 0.0047) (Null: 0.0005; NB: 0.0026) 

SVM (Radial) (Null: 0.0228) (Null: 0.0005; NB: 0.0026) 

 

It is important that the models are statistically different 

from each other, especially from the Null model, for the 

generalizability and usability of the results. In this 

context, we focus on the predictions of the LightGBM 

model, which is found to be the best model, and the 

confusion matrix and ROC cuver derived from these 

predictions is given in Figure 2 and 3, respectively.

 

Figure 2. Confusion matrix for the best model (Boosting (LightGBM)) 
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Figure 3. Roc curve for the best model (Boosting (LightGBM)) 

 

The confusion matrix and ROC curve suggest that 

the LightGBM model provides promising results in 

predicting student performance. It is critical to identify 

the most important factors for the performance of the 

model, i.e., for discriminating between success and 

failure. Therefore, the variable importance plot 

computed by using the intrinsic variable importance 

scores of the LightGBM model is displayed in Figure 4.  

In Figure 4, the fifteen most important variables are 

ranked on a scale of 0-100. According to this graph, 

variables such as last semester GPA between 2-2.50, 

average income between $135-200, expected GPA 

between 3-3.50, gender of the student being male, 

number of brothers or sisters appear to be the most 

important variables in affecting success. Likewise, 

variable levels such as attending seminars etc. and not 

having a partner were also found to be important in 

model performance. The results and particularly 

variable importance scores presented in this study may 

provide a more valuable set of sociological and 

academic insights for researchers studying in the field of 

education.  

It can be said that the findings of the study provide 

better performance by using a broader method compared 

to the studies in the literature such as  Yılmaz and 

Sekeroglu (2020), Chen and Zhai (2023). In Asselman 

et al. (2023), the XGBoost algorithm, one of the 

ensemble approaches, stands out as an ensemble method 

and demonstrates similar performance to our study, but 

its shortcomings are notable in terms of variable 

importance and statistical significance tests. In Adejo 

and Connoly's (2018) study, the hybrid machine 

learning model also produced a competitive result and 

concluded that university support had a significant 

impact on success. In this context, it can be said that it 

is compatible with the scholarship status in our study. 

The finding that students' performance in previous 

semesters has a significant effect on their future 

achievement is consistent with the literature 

(Pallathadka et al., 2021). Similarly, the findings that 

income and family education have a significant effect on 

achievement supports the results of Filho et al. (2023). 

The gender variable, which was found to be 

relatively significant in the study, stands out as a 

different finding from the study of Karaboğa and Demir 

(2023). On the other hand, Suleiman and Anane (2022) 

reported that gender was a significant but low 

contributing variable on student achievement. As in our 

study, last semester GPA was considered significant in 

this study as well.
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Figure 4. Variable importance plot based on Boosting (LightGBM) model. 

5. Conclusion 

In this study, a comprehensive comparison of the 

performance of machine learning methods is presented 

both in terms of classical metrics and statistically. 

Machine learning algorithms, which are widely used in 

the field of education as in every field, have been shared 

to determine the extent to which they differ statistically 

and the ways to determine the importance of variables 

rather than their performance alone. The LightGBM 

algorithm was ranked as the best algorithm by cross-

validating twenty-three algorithms using a real dataset 

based on comparison them on accuracy, AUC, and F-

score criteria. The results were statistically compared 

with two different tests to investigate the extent to which 

the best method differs, and it was found that LightGBM 

provided favorable results in this respect as well. In 

addition, the confusion matrix, ROC curve and variable 

importance plots indicated that the LightGBM algorithm 

offers generalizable performancealong with identifying 

the relative importance of the most important factors 

affecting student achievement. 

The study is not free of limitations. First, the 

implementation of deep learning algorithms in such 

studies may provide useful insights. Furthermore, a 

field-based analysis of student achievement 

performances and the factors affecting them may 

provide more effective results in different subgroups. In 

future work, we would like to address these two 

limitations, and we aim to specialize the most advanced 

deep learning models to narrower focused educational 

groups. 
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