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ABSTRACT 

This study aims to investigate how the algebraic thinking skills of seventh-grade students develop with the 
task-assisted teaching approach. The study was conducted in a seventh-grade class at a public school in 
Istanbul. The tasks were designed to support the basic components of students’ algebraic thinking processes 
- pattern recognition, writing algebraic expressions, constructing and solving equations. During the 
implementation, the students in the class were divided into groups of three and four, and a teacher candidate 
in each group was responsible for implementing the tasks. This paper focused on the pattern recognition 
component of algebraic thinking. Video analysis and students' responses showed that their algebraic 
thinking processes improved in the pattern recognition component, and furthermore, the pattern recognition 
component evaluation through qualitative analysis showed that there was an improvement in the students' 
algebraic thinking skills compared to their previous performance.  

Keywords: Algebraic thinking, pattern tasks, task-assisted instruction, task design.  

 
ÖZ  

Bu çalışmanın amacı, yedinci sınıf öğrencilerinin cebirsel düşünme becerilerinin görev destekli öğretim 
yaklaşım ile nasıl geliştiğini araştırmaktır. Çalışma İstanbul'daki bir devlet okulunun yedinci sınıfındaki 
öğrenciler ile gerçekleştirilmiştir. Görevler, öğrencilerin cebirsel düşünme süreçlerinin temel bileşenlerini 
-örüntü tanıma, cebirsel ifadeleri yazma, denklem kurma ve çözme- desteklemek amacıyla tasarlanmıştır. 
Uygulama sırasında sınıftaki öğrenciler üçerli ve dörderli gruplara ayrılmış ve her grupta bir öğretmen 
adayı görevlerin uygulanmasından sorumlu olmuştur. Bu makalede cebirsel düşünmenin örüntü tanıma 
bileşenine odaklanılmıştır. Video analizi ve öğrencilerin yanıtları, onların cebirsel düşünme süreçlerinin 
örüntü tanıma bileşeninde gelişme gösterdiğini ve ayrıca, nitel analiz yoluyla yapılan örüntü tanıma bileşeni 
değerlendirmesi de, öğrencilerin cebirsel düşünme becerilerinde önceki performanslarına göre bir gelişim 
olduğunu göstermiştir. 

Anahtar Kelimeler: Cebirsel düşünme, örüntü görevleri, görev destekli öğretim, görev tasarımı. 
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INTRODUCTION 

Algebra plays a critical role in the academic achievement and future career opportunities 
of students (Adelman, 2006; Knuth et al., 2006). However, numerous studies have highlighted 
that students often face challenges and develop misunderstandings when it comes to learning 
algebraic concepts (e.g., Akkaya & Durmuş, 2006; Dede & Peker, 2007; Jupri et al., 2014; 
Lucariello et al., 2014; Welder, 2012). Consequently, researchers have worked to identify 
effective strategies for addressing these misconceptions and improving students' proficiency in 
algebraic thinking (e.g., Palabıyık & İspir, 2011; Lucariello et al., 2014). 

The literature presents diverse perspectives on the investigation of algebraic thinking. 
Some researchers emphasize the importance of understanding relationships, while others 
highlight the ability to make generalizations. For instance, Smith (2003) and Kaput (1999) argue 
that algebraic thinking involves recognizing patterns and deriving general principles from them. 
Similarly, Driscoll (1999) asserts that it entails identifying and establishing rules for patterns. On 
a separate note, Steele (2005) underscores the connections between variables, stating that 
algebraic thinking revolves around comprehending variables and expressions and articulating 
relationships between these quantities. Additionally, Kreigler (2008) suggests that equations serve 
as a valuable tool for representing mathematical concepts in everyday situations. Fundamental 
elements of algebraic thinking encompass investigating patterns, formulating algebraic 
expressions, and understanding equivalence (Stephens & Ribeiro, 2012). Moreover, the 
organization of topics in the curriculum is a factor to consider, with patterns, algebraic 
expressions, and equations addressed in the 6th and 7th grades, respectively (Ministry of National 
Education (MoNE), 2018). Building upon the aforementioned literature, this study defines 
algebraic thinking through the following components: a) discerning the rule and pattern of the 
relationship between two variables, b) converting verbal expressions into algebraic expressions, 
and c) formulating and solving equations. 

Researchers have put forth a range of strategies to enhance students' proficiency in 
algebraic thinking. These approaches encompass commencing algebra instruction at earlier grade 
levels (e.g., Carpenter et al., 2003), incorporating mathematical tasks (e.g., Lannin, 2005; 
Palabıyık & Ispir, 2011), utilizing concrete manipulatives (e.g., Saraswati & Putri, 2016), and 
establishing contexts that resonate with students (Walkington et al., 2013). Each of these 
strategies has demonstrated effectiveness in the instruction of algebra. In alignment with the 
literature, in this study, the tasks were thoughtfully designed to prompt students to utilize tangible 
materials like pattern blocks and to connect with real-world scenarios, such as building renovation 
projects. 

Numerous scholars (e.g., Kaput, 1999; Lannin, 2005) have stressed the significance of 
comprehending the relationship between quantities and patterns in the realm of algebraic thinking. 
As outlined in the relevant literature, having an understanding of the connection between two 
quantities within patterns, and the ability to articulate and generalize the rules governing these 
relationships are crucial aspects of algebraic thinking. Given the importance of these elements, 
this paper specifically focuses on the initial facet of algebraic thinking: identifying the rule and 
pattern of a relationship between two variables. To enhance this aspect of algebraic thinking, tasks 
centered around patterns can be employed. For instance, Warren and Cooper (2005) underscored 
that pattern tasks can aid students in developing their reasoning skills in algebraic equivalence 
and equations. Amit and Neria (2007) conducted a study with children aged 11-13, using tasks 
involving growing patterns to instill algebraic concepts. Similarly, Store et al. (2010) carried out 
a teaching experiment with fifth-grade students, where students utilized pattern blocks to 
represent and discuss growing patterns. In both studies, the researchers found that pattern tasks 
were effective in introducing fundamental algebraic concepts, such as understanding relationships 
and using variables to express pattern rules. Therefore, in the present study, pattern tasks were 
employed to strengthen students’ proficiency in algebraic thinking. 
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The concept of a "task" is defined in various ways in the literature. In the current study, it 
is understood as a set of interconnected problems grounded in real-life contexts, to facilitate 
student learning. Watson and Mason (2007) underlined the difference between activity and task. 
They noted activity as all interaction between the students. On the contrary, the task includes the 
student activities, the extent to which students engage with and learn from these activities, and 
the teacher’s guidance. Therefore, the task is related to student learning, implementation process, 
and interaction in the classroom which corresponds to a broader term than activity. For his study, 
the task is considered from the same perspective and covers all interactions among students and 
teachers and the implementation process of the task. Therefore, the term task is used rather than 
activity. Stein and Smith (1998) argued that how tasks are carried out directly impacts student 
learning, highlighting the substantial influence of the implementation phase on students’ 
educational outcomes. Expanding on Stein and Smith's viewpoint, Liljedahl et al. (2007) 
emphasized the importance of scrutinizing the implementation process to assess the effectiveness 
of tasks in supporting student learning. Teachers may find it necessary to make adjustments and 
engage in reflective practices after task implementation. Essentially, task design can be seen as a 
cyclical process. 

Furthermore, the tasks in this study were structured to create learning opportunities for 
students, aligning with the Mathematically Significant Pedagogical Opportunities to Build on 
Student Thinking (MOST) framework as defined by Leatham and colleagues (Leatham et al., 
2015). Leatham et al. (2015) pointed out that certain scenarios may lead to instances of MOST 
during instruction, including: "(a) a correct answer with novel reasoning, (b) an incorrect answer 
that involves a common or mathematically rich misconception, (c) a mathematical contradiction, 
(d) incomplete or incorrect reasoning, and (e) why or generalizing questions" (p. 100). 

Different than to previous research, this study employs the Mathematically Significant 
Pedagogical Opportunities to Build on Student Thinking (MOST) theoretical framework 
proposed by Leatham et al. (2015) to identify the cases to be analyzed arising from task-assisted 
instruction. Additionally, Sibgatullin et al. (2022) carried out a systematic review of earlier studies 
and concluded that achievement tests were generally used as assessment instruments. However, 
both as educators and scholars, it is crucial to delve into the process of students’ algebraic thinking 
during problem-solving (Sibgatullin et al., 2022). Hence, this study focuses on students’ algebraic 
thinking by analyzing their verbal expressions alongside their written work. 

1.1. Theoretical framework  

For task development, two theoretical frameworks were used. One of them was 
Mathematically Significant Pedagogical Opportunities to Build on Student Thinking (MOST) 
defined by Leatham et al. (2015) The MOST framework was used in task design, task 
implementation, and data analysis. To be a MOST instance, a case needs to depend on students’ 
mathematical knowledge, be mathematically significant, and be a pedagogical opportunity. The 
MOST framework has the potential to provide learning opportunities for the students. Tasks also 
include items that enable assessing students’ misconceptions and difficulties in algebra.  The 
researchers informed the pre-service teachers about the potential MOST cases during the 
discussions before the implementation of each task. In the next section, how the MOST 
framework was used in data analysis will be explained in detail.  

Another framework was the Realistic Mathematics Education framework. The premises 
were reflected in the task design and task implementation process. As one of the premises, the 
reality principle was taken into consideration inclusion of daily life contexts such as the 
renovation of buildings and construction of rails. The interactivity and guidance principles were 
used in the task implementation process. The interactivity principle took place in group work of 
the students where students had the opportunity to interact with knowledge construction (Van den 
Heuevel-Panhuizen & Drijvers, 2020). Moreover, the pre-service teachers asked questions during 
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the group discussions to elaborate on students’ algebraic thinking aligned with the guidance 
principle. 

This article presents a section of a larger research endeavor that delved into how students 
apply algebraic thinking within the context of task-assisted instruction. In this study, task-assisted 
instruction is defined as an educational approach wherein pre-service teachers employ 
mathematical tasks to explore students’ algebraic thinking through group discussions. The 
broader research examined students’ algebraic thinking, covering three aspects of algebraic 
thinking discerning the rule and pattern of the relationship between two variables, converting 
verbal expressions into algebraic expressions, and formulating and solving equations using eight 
tasks. The general research problem was to examine students’ algebraic thinking during task-
assisted instruction. In the aforementioned studies, numerous researchers (e.g., Kaput, 1999; 
Lannin, 2005) have emphasized the significance of comprehending the connection between 
quantities and patterns in the context of algebraic thinking. Recognizing the elevated importance 
of this aspect of algebraic thinking, this paper specifically focuses on discussing the qualitative 
findings regarding identifying the rule and pattern of the relationship between two variables, as 
highlighted in the pertinent literature. This study specifically delves into how students’ algebraic 
thinking evolves through task-assisted instruction, employing a qualitative examination of 
algebraic thinking. Consequently, the following research question is explored: 

How do students’ performance in finding the rule and the terms of a pattern develop 
during task-assisted instruction?  

 

METHODOLOGY 

The basic qualitative research methodology is employed in this study to interpret how 
students’ thinking developed through task-assisted instruction. Basic qualitative research is 
useful to analyze how learning in a classroom setting occurs (Merriam, 2009). 

2.1. Participants 

The researchers were involved in a TUBITAK-funded project (Project number: 215K049) 
led by one of the authors (Kılıç et al., 2019; Kılıç & Doğan, 2022). The researchers took the ethics 
committee approval of the university where the TUBITAK project was carried out. The 
researchers had a collaboration with a public middle school for the TUBITAK Project. The 
researchers also applied Istanbul District National Education Directorate for implementation 
allowance. The researchers have access to this school and used a convenient sampling technique 
for the data collection (Creswell et al., 2011). Thus, the tasks were administered in a 7th grade 
comprising 26 students, at the collaboration school in Istanbul. This particular school generally 
exhibits lower academic achievement compared to others in the surrounding area.  

In the context of the TUBITAK project, a course on the application of mathematics tasks 
was opened. Eight senior pre-service mathematics teachers from the university also took part in 
the study by enrolling in the course. They voluntarily participated in the study and they were 
assigned responsibility for a group of 3 or 4 students during the task implementation. To facilitate 
a more comprehensive analysis of the evolution in students’ algebraic thinking, a maximum 
variation sampling method was employed (Creswell et al., 2011), designating one pre-service 
teacher to each group. Consequently, 9 students from the class were selected for further 
examination. The selection of these students was based on several criteria, including 
representation from each group, the students’ levels of achievement, and their communication 
skills. In terms of achievement, 3 students were chosen from each category (lower, middle, and 
higher) to observe how algebraic thinking developed among students at different levels of 
achievement.  
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The students selected for the qualitative analysis of algebraic thinking and learning were 
given the nicknames Alper, Burak, Doruk, Erdem, Harun, Gonca, Mert, Tansu, and Utku. 

2.2.Tasks 

A total of eight tasks were implemented to analyze students’ proficiency in algebraic 
thinking and their overall achievement in algebra. Each week, one task was carried out. Out of 
these tasks, three were specifically focused on recognizing patterns: Task 1, Task 2, and Task 8. 
These tasks took place on the first, second, and eighth weeks of the implementation respectively. 
Task 2 was initially developed by Doğan and Dönmez (2016), while Task 1 and Task 8 were 
designed by the researchers based on the task literature and the aim of the study. For the validity 
of the tasks, the researchers consulted two mathematics educators' opinions on the tasks. Task 2 
and Task 8 underwent a preliminary phase during the 2016-2017 academic year to evaluate their 
suitability for the students’ level, taking into account their prior knowledge and the clarity of the 
questions. The preliminary phase was carried out in one of the 7th grade classes at the same school.  
Task 2 and Task 8 were implemented within a similar setting where pre-service teachers were 
responsible for one group of students and the researchers gave instructions for the implementation 
process. The preliminary phase was also video recorded and analyzed in terms of clarity of the 
task questions, and alignment with the research purpose. The analysis was also done through the 
transcripts of the videos and by examining students’ algebraic thinking levels utilizing the same 
coding schema. The preliminary implementation phase also provided task validity since the 
questions were aligned with the aim of the research and beneficial to analyzing students’ 
performance in finding the rule and the terms of the pattern. The tasks helped to elaborate 
students’ algebraic thinking. After each task’s implementation pre-service teachers’ comments 
were also taken into consideration for possible refinements as a result of the preliminary phase. 
Based on the feedback and findings from this preliminary phase, minor adjustments were made 
to both Task 2 and Task 8. After the adjustments were done, the researchers again consulted two 
mathematics educators for the validity of the tasks. It was observed that students encountered 
difficulties in comprehending covariation and discerning the rule of the pattern, leading to the 
inclusion of a simpler task (Task 1) to better prepare students for Task 2. In the development of 
Task 1, input was solicited from mathematics teachers at the collaborating school to ensure that 
the questions were suitable for the student's level of understanding. Therefore, the researchers 
also took both the teacher’s and experts’ opinions on the tasks. The validity of the instruments 
was provided by expert opinion aligned with the premises of qualitative research. 

During the construction of the tasks, various sources were consulted, including literature 
on algebraic thinking, the MOST Framework established by Leatham et al. (2015), and the task 
design cycle outlined by Liljedahl et al. (2007). Consequently, the tasks were designed with the 
following criteria in mind: they should 1) prompt students to contemplate a given situation and 
employ problem-solving techniques, 2) permit the use of manipulatives and hands-on materials, 
3) facilitate communication among students (encourage collaborative work), 4) incorporate real-
life contexts, 5) have the potential to evoke misconceptions in students, and 6) allow teachers to 
discern correct answers with innovative reasoning, as well as answers that may involve 
incomplete or incorrect reasoning. 

The related questions in Task 1, Task 2, and Task 8 (given in Appendix 1), are analyzed 
and summarized in Table 1.  
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Table 1 

Description of Tasks Related to Finding the Rule and the Terms of the Pattern 

Task 
Number Description of tasks 

Task 1 
There were two questions to indicate the relationship between dependent and independent 
variables. One question did not include a constant term. In the other question, two of the 
seats represented constant terms. The rules for these questions were 40n and 3n+2.  

Task 2 

To obtain similar pattern rules with Task 1, the first question represents a pattern rule 
without constant (3y) whereas the other two questions held a pattern with constants flats in 
the roof and initial street respectively. The rules for these questions were 4n+2 and 2m+1. 
The additional question was a growing pattern utilizing a flower and the constant leaves.   

Task 8 The question in this task was an example of a growing pattern where the middle square is 
constant and 4 squares were added each time. Therefore, the pattern rule was 4n+1.  

 

2.3. Implementation and data collection 

The research setting utilized in this investigation had previously been employed in a 
TUBITAK-funded project (Project number: 215K049) led by one of the authors (see Kılıç et al., 
2019; Kılıç & Doğan, 2022). A similar setup was established for the present study. Before 
implementing each task, the researcher carried out sessions with the pre-service teachers to 
explain the task implementation process, aiming to minimize variations among the groups. During 
these meetings, potential Mathematically Significant Pedagogical Opportunities to Build on 
Student Thinking (MOST) instances were presented to the pre-service teachers for each task, 
ensuring they paid attention to crucial cases. For example, in Task 2, students might interpret the 
pattern for the first item as "n+3" instead of "3n" if they focus solely on the relationship between 
the numbers within one variable, rather than the relationship between the independent and 
dependent variables. In such cases, pre-service teachers were encouraged to support students in 
articulating their ideas. Furthermore, sample questions similar to those in the tasks were provided 
to the pre-service teachers to guide them on the types of questions they could pose to students 
during discussions. For instance, for Task 2, the following question was shared with the pre-
service teachers: "How many families will move during the 40th year?" as students needed to 
discern a rule between the number of years and the families that moved in that question. 

During these meetings, potential misconceptions held by students were also shared with 
the pre-service teachers. Throughout the implementation process, the researchers observed the 
interactions between pre-service teachers and students to ensure that the questions aligned with 
the suggested inquiries. After completing each task, the pre-service teachers were asked to 
highlight noteworthy instances to evaluate the effectiveness of the questions in student learning. 
Based on the feedback from pre-service teachers, the researchers adjusted scaffolding questions 
to further enhance their contribution to students’ development of algebraic thinking. 

Over 7 weeks, a total of 8 tasks were implemented. The entire implementation process was 
recorded on video to observe both individual and group work among students. Additionally, 
completed assignments from students were collected for analysis of their written work. Students’ 
written artifacts and video recordings were collected for data triangulation which is essential for 
the validity of qualitative research (Merriam, 2009). The tasks were named based on the week in 
which they were administered. Specifically, three tasks (Task 1, Task 2, and Task 8) were focused 
on finding the rules and terms of the pattern as the first component of algebraic thinking. Task 3 
was related to doing operations on algebraic expressions such as addition, subtraction, and 
division. Task 4 and Task 6 were focused on writing algebraic expressions in different contexts 
such as taking different roads. In these tasks, the students were expected to take some of the 
previous roads as reference points to write correct algebraic expressions. Therefore, Tasks 3, 4, 
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and 6 were related algebraic expressions. Tasks 5 and 7 were about setting up and solving 
equations. In both Task 5 and Task 7, students had to convert verbal expressions to algebraic 
expressions and then write down the equations accordingly. In general, the tasks were ordered 
according to the difficulty level of questions and each group of the tasks included parallel 
questions.  

Each task took place within an elective mathematics course at the school, with each session 
lasting 2 hours. The order of tasks was determined based on the complexity of the problems and 
their contexts. Task 8 presented a more intricate context and posed more challenging questions, 
thus it was implemented last. Throughout the implementation, students were organized into teams 
of 3 or 4, with deliberate efforts made to include students with varying performance records from 
the sixth-grade mathematics course in each group. Each group was supervised by a pre-service 
teacher, and the assignments of pre-service teachers to groups were determined randomly. At the 
beginning of each task, the pre-service teachers introduced the questions to their respective 
groups. After this, students were given 20 minutes to work independently, followed by a group 
discussion where students shared their solutions with each other. Finally, the pre-service teachers 
actively participated in the discussion, posing probing questions such as "How do you know that?" 
and "Why did you do this?" to encourage students to articulate their reasoning. When none of the 
students gave the correct answer, the pre-service teacher sought to elucidate the students' thought 
process by making simplifications on the given situation, making use of manipulative, or re-
evaluating information provided in the problem statement. These questions exemplify scaffolding 
practices aimed at fostering students’ algebraic thinking, as scaffolding might facilitate an 
environment for discourse and deepen students' comprehension (Baxter & Williams, 2010; Kılıç 
& Doğan, 2022). For tasks centered around patterns, pattern blocks were utilized as 
manipulatives. 

In related tasks, the pre-service teachers played a guiding role in helping students grasp the 
rationale behind the constant term and the coefficient term in the pattern's rule. They posed 
questions such as "What remains consistent in different shapes?", "What changes from one shape 
to another?", and "How did you arrive at the pattern's rule?" to gain insight into students’ thought 
processes during the tasks. When a student encountered difficulty in discerning the correct rule 
of the pattern, the pre-service teacher introduced pattern blocks as a visual aid. Students were 
instructed to construct the shapes outlined in the questions using pattern blocks, enabling them to 
analyze what elements remained consistent and what changed within the shapes. 

In some cases, at least one student successfully determined the pattern’s rule. In these 
situations, the pre-service teachers encouraged them to explain their thought processes and offered 
assistance to other students. Through this approach, the pre-service teachers facilitated students’ 
reasoning using both manipulatives and within-group discussions, in line with the established 
criteria for the tasks. 

2.4. Data analysis 

The data sources were video recordings and written artifacts from the implementation 
process. In the data analysis part, transcripts from the implementation videos were meticulously 
analyzed with a keen focus on potential Mathematically Significant Pedagogical Opportunities to 
Build on Student Thinking (MOST) instances. These instances were particularly interesting as 
they provided explicit insights into students’ algebraic thinking, facilitating a more 
straightforward assessment of their thought processes. Students’ expressions were extracted from 
the transcripts to evaluate the depth of their algebraic thinking following both individual work 
and group discussions. General terms and phrases were gathered from both settings to identify 
shared expressions among students. A coding scheme was developed to capture these 
commonalities, incorporating insights from the existing literature. For example, English and 
Warren (1998) emphasized the crucial role of understanding variables as a foundational concept 
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for making generalizations. Similarly, Lew (2004) asserted that the concept of a variable is pivotal 
in comprehending algebraic concepts like patterns. Therefore, a solid grasp of variables was 
considered a prerequisite for engaging in algebraic thinking, denoted as Level 1 in the coding 
schema. Furthermore, deducing the rule of growing patterns requires an analysis of covariation, 
rather than paying attention to the change in one variable (Warren, 2005). Consequently, the 
coding schema also integrated the concept of simultaneous change in both the dependent and 
independent variables as another level of algebraic thinking. With these considerations in mind, 
the coding schema was refined and subsequently applied to evaluate students' responses in their 
worksheets, as well as their expressions following individual work and group discussions. The 
coding schema specifically designed for identifying the rules and terms of the pattern is outlined 
in Table 2. 

Table 2 

Algebraic Thinking Levels For Finding the Rule of the Pattern 

 Level                                                         Explanation 

NA               Student irrelevant answer or no answer 

Level 1 

Student finds a rule by paying attention to the changes in one (dependent) variable 
rather than focusing on the relationship between two (independent and dependent) 
variables OR student only understands that each of the letters n, m, a, b corresponds 
to a variable 

Level 2 
Student finds the rule by the trial-and-error process but does not what leading 
coefficient or constant term stands for OR student understands what leading 
coefficient and constant term represent but could not write the rule 

Level 3 
Student finds the rule by looking at the relationship between the independent and 
dependent variables and understanding what the leading coefficient and constant term 
represent stands for 

 

In this study, students’ algebraic thinking was analyzed through pattern tasks and compared 
in terms of their performance before and after group discussions. The primary unit of analysis 
was the level of students’ algebraic thinking, which was evaluated for each task based on their 
verbal expressions from the implementation videos and their written work. Following the group 
discussion, pre-service teachers instructed students to write their solutions on the worksheets and 
articulate students’ current thought processes through verbal expressions. These expressions were 
then coded according to the coding schema presented in Table 2. Additionally, the frequency of 
cases falling into the categories of NA, Level 1, Level 2, and Level 3 was determined. For each 
task, the total number of cases was proportionally compared to the occurrences of NA, Level 1, 
Level 2, and Level 3 within the same task, allowing for the calculation of percentages for each 
level of algebraic thinking. This approach unveiled the shifts in percentages for each level of 
algebraic thinking within the same task and across different tasks. 

Students’ algebraic thinking levels were coded by the researcher according to the levels 
given in Table 2. For the interrater reliability, two different researchers blindly coded 20% of the 
cases. After the coding process was completed, the researchers came together and agreed on every 
case when there were different levels of coding.  

 

FINDINGS 

In this section, the results will be proposed to dwell on how students’ algebraic thinking 
changed through the task implementation. To conduct a more in-depth analysis of students’ 
algebraic thinking, a sub-group of 9 students was selected based on the criteria outlined in the 
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methodology section. From this sub-group, one student’s algebraic thinking will be mentioned to 
exemplify the changes observed in each task (with a different student chosen for each task). This 
approach allows for an examination of the sub-group’s progress in terms of algebraic thinking. A 
descriptive figure illustrating the evolution in the sub-group’s algebraic thinking within the same 
task and from one task to another is presented in Figure 1. This figure includes percentages 
representing different levels of algebraic thinking (NA, Level 1, Level 2, Level 3). 

Figure 1  

The Change of Frequencies of Students’ Algebraic Thinking In Component 1 

 

 

Figure 1 provides an overview of students’ levels of algebraic thinking in the respective 
tasks, summarizing their proficiency in recognizing patterns. The analysis encompassed students’ 
performance during individual work and after engaging in discussions with both students from 
the same group and pre-service teachers. The occurrences of NA, Level 1, Level 2, and Level 3 
cases were proportionally compared to the total related cases within each task, and percentages 
were calculated for each level of algebraic thinking. 

As depicted in the chart, there was a notable increase in students’ levels of algebraic 
thinking after the discussions, compared to their individual work. This was evident from the 
relatively high percentages of Level 2 and Level 3 responses in the discussion phase across all 
tasks. For example, in the individual work portion of Task 8, Level 2 thinking was observed in 
only 10% of cases, whereas after the discussions, the percentage of cases exhibiting Level 2 
thinking exceeded 30%. Similarly, the increase in Level 3 thinking from individual work to the 
discussion within the same task was 25%, 10%, and 45% in Task 1, Task 2, and Task 8 
respectively. 

Furthermore, it can be inferred that students’ algebraic thinking progressed from Task 1 to 
Task 8. This is indicated by the decrease in percentages of NA and Level 1 responses, coupled 
with an increase in Level 2 and Level 3 responses throughout Task 1 to Task 8. In Task 1, seven 
out of nine students provided answers categorized as "no attempt" in their individual work, 
whereas in Task 8, this number was reduced to three. Moreover, nearly all of the student’s answers 
in Task 8 were classified as Level 3 after the discussions. 

In Task 2, certain questions saw an increase in students’ algebraic thinking to Level 3 after 
the discussions, likely due to the use of pattern blocks by pre-service teachers to bolster students’ 
algebraic thinking. For instance, in one question, Gonca initially derived an incorrect rule for the 
pattern, resulting in a Level 1 categorization. Following the pre-service teacher’s guidance to 
reevaluate her rule using pattern blocks, Gonca realized the rule was flawed. She also identified 



1054 
 

that the roof represented the constant term, and the increase in the number of apartments each 
year corresponded to the coefficient of the rule. Consequently, Gonca’s algebraic thinking was 
reclassified as Level 3 after the discussions. In two questions, the majority of students’ algebraic 
thinking was enhanced with the aid of pattern blocks, leading to an elevation to Level 3 thinking 
in those specific questions. Additionally, in Task 8, no "no attempt" answers were recorded. 
Considering there were some instances of "no attempt" answers in the individual portions of Task 
1 and Task 2, it can be inferred that even in their individual work, students were able to augment 
their algebraic thinking from Task 1 to Task 8. 

In Task 1, during individual work, the majority of students struggled to provide an answer, 
resulting in their algebraic thinking being categorized as NA. For example, Alper focused solely 
on calculating the number of rails installed in one minute, failing to discern the underlying pattern. 
Consequently, his response was coded as NA. However, during the discussions, a student from 
Alper’s group pointed out that the difference between the number of rails built on consecutive 
days was 40. When the pre-service teacher prompted them to determine the rule for the 10th day, 
this student correctly identified it as "40n." This realization prompted Alper to grasp that in the 
pattern’s rule, the variable represents the number of days, leading to his thinking being coded as 
Level 1. 

While working individually on the second question, Alper once again struggled to derive a 
rule. However, during the discussion phase for the second question, he was able to apply the 
insight gained from his earlier interaction with his friend. He correctly identified the difference 
between seats on consecutive days as the coefficient of the rule. Nonetheless, he still faced 
difficulty determining how to incorporate two constant seats into the rule. As a result, his algebraic 
thinking was coded as Level 2. In the second question, Alper demonstrated improvement in his 
thinking, thanks to the discussions from the first question. 

In this task, it was evident that all students experienced a shift in their thinking levels, 
moving up by at least one level after the discussions for each question. Likewise, when comparing 
the first question to the second question, it was observed that four students improved at least one 
level in their algebraic thinking. The remaining students’ thinking levels remained unchanged, as 
two students were already operating at Level 3, while the others continued to concentrate solely 
on the change in the dependent variable by the end of the discussions. 

In Task 2, there were a few instances where thinking levels were coded as NA (No Attempt 
or irrelevant answer) during the individual work of the students. Most students' algebraic thinking 
in their individual work was coded as Level 1. For instance, Harun considered only the increase 
in one variable rather than the relationship between the two variables. He correctly identified that 
the increase in the number of families moving each year was 3, leading to his thinking being 
categorized as Level 1. In the second question, Harun also found the change in the number of 
apartments in successive years. However, in the third question, he mistakenly derived a pattern 
rule by only examining how the number of weeks and streets related for the first row. Therefore, 
his algebraic thinking was categorized as NA. Similar to Harun’s approach, other students 
primarily focused on the increase in the number of families, apartments, and streets during their 
individual work. However, during the discussion of the first question, the teacher redirected them 
to find a rule representing the relationship between the two variables, rather than focusing solely 
on changes in one variable. This prompted Harun to realize that this relationship could be 
identified through multiplication, and he arrived at the rule through a trial-and-error process. 
Consequently, after the discussion, his algebraic thinking was categorized as Level 2. 

In the second question, the pre-service teacher instructed the students to construct the 
apartments with pattern blocks and initiated a discussion within the group. In the individual work, 
Harun paid attention to the increase in the dependent variable and wrote the number of apartments 
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was increasing 4 by 4 as seen in Figure 2. Therefore, his algebraic thinking was coded as Level 
1. 

Figure 2 

Harun’s Answer From Individual Work   

 

Since Harun is part of the sub-group, the conversation between the pre-service teacher (PT) 
and Harun (H) will be provided below. 

PT: What is the constant in these shapes?” 

All of the students: The roof… 

PT: The roof is constant right? Apart from the roof; in the first year there are four 
apartments, in the second year eight apartments, and in the third year 12 apartments, can you 
deduce the rule from there?”.  

Harun: 4 apartments are added, teacher. 

PT: If 4 apartments are added, how you can express when you think as in the first question? 

Harun: 4.n… 

PT: How we can include the roof in my pattern rule? 

Harun: Wouldn’t be 6.n teacher? 

PT asked him to try his rule.  

PT: We have 4.n, you already said that. Since it goes 4 by 4, so how can I add the roof? 
Which operation did we use?  

Harun: Adding… 

PT: We used the addition operation. 

Harun: 4.n+10… 

PT: Where did 10 come from? In this first year, there are 4 apartments and what else? 

Harun: +2… 

PT: Then, what is the rule?  

Harun: 4.n+2… 
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Figure 3 

Harun’s Answer After The Group Discussions 

 

 

In his answer after the group discussions, Harun realized that 4n in the pattern rule comes 
from the increase in the number of buildings whereas the roof was presented by 2 which is the 
constant in the pattern rule. Harun was able to derive the pattern rule with the assistance of the 
teacher, resulting in his algebraic thinking thought as Level 2, similar to the first question. 
Likewise, in a similar vein to Harun, after the discussions of the questions, most students’ 
algebraic thinking reached Level 2. This was because they were able to deduce the pattern rule 
with the guidance of their teachers and articulate where the coefficient or constant term originates. 

In Task 8, the related question included growing patterns. Since the pattern was different 
from the patterns in Task 1 and Task 2, some of the students had difficulties in writing the rules 
of the pattern in their individual work. The majority of the students’ algebraic thinking was coded 
as Level 1. For instance, Tansu focused on the increase in the number of squares in consecutive 
shapes and thought pattern rule as n+4 as seen in Figure 4.  

Figure 4 

Tansu’s Answer From Individual Work 

 

The following dialogue indicates the interaction between Tansu (T) and the pre-service 
teacher (PT) who was the responsible teacher from this group.  

PT: How we can express the amount of increase in the group? 

Tansu: n+4 since the number of squares increased 4 by 4.  

PT: Can you try your rule?  

Tansu: The rule is correct for the first pattern but is not provided for the others.  

PT: What is the constant for these shapes?  

Tansu: The middle… (she was pointing the middle square in the figures) 

PT: What do you mean by middle?  How we can express the middle? 

Tansu: +1… 
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PT: How many squares increased from one shape to the other? How can we state the 
increase in the rule? 

Tansu: 4n+1… 

Figure 5 

Tansu’s Answer After Group Discussions  

 

  

As evidenced by the conversation and her written work, Tansu successfully derived the 
pattern rule through discussion with the pre-service teacher. She discerned that the constant square 
represented the constant term of the rule, while the number of square increases constituted the 
coefficient of the rule. Consequently, her algebraic thinking was classified as Level 3. At the end 
of the task, the majority of students demonstrated at least Level 2 algebraic thinking, with only 
one exception. This is noteworthy given the higher complexity of the question compared to those 
in Task 1 and Task 2. Furthermore, five students were able to independently derive the rule and 
articulate their reasoning, underscoring an advancement in their algebraic thinking compared to 
previous tasks. 

In certain groups, students initially struggled to determine the pattern rule on their own but 
received assistance from their peers in constructing it. Burak, who had encountered difficulties in 
prior tasks, continued paying attention to solely on the change in one variable. Conversely, within 
the same group, Erdem could examine how the dependent and independent variables were related 
even during individual work. Through discussions with Erdem, Burak was able to enhance his 
algebraic thinking and provide detailed explanations in his worksheet. 

Throughout the task implementation, it was evident that some students derived greater 
benefit from the task-assisted instruction compared to others. By the conclusion of Task 8, 5 out 
of 9 students had elevated their algebraic thinking to Level 3. Among these students, three initially 
provided irrelevant answers during the early stages of task implementation. For example, one 
student was unable to determine the pattern rule in Task 1, resulting in their algebraic thinking 
being categorized as an NA answer. Similarly, another student’s response did not pertain to the 
pattern rule, leading to the assignment of an NA level of thinking in Task 1. However, following 
the discussions held in Task 8, all three of these students demonstrated significant progress in 
their algebraic thinking. They came to understand the rationale behind the coefficient and constant 
term in the pattern rule. Of the five students who reached Level 3, Harun and Tansu initially 
possessed algebraic thinking levels of 1 and 3, respectively, at the commencement of the tasks. 
This indicates that they had some prior knowledge in finding the rule and terms of the pattern. 
Harun focused on discerning the difference in the number of rails each day, while Tansu was able 
to accurately write the pattern rule. Consequently, their levels of algebraic thinking exhibited less 
change compared to the other students. 

On the contrary, in Task 8, after the discussions, some students’ algebraic thinking reached 
at most Level 2. By the conclusion of the task implementation, three students were categorized as 
having Level 2 algebraic thinking. Two of these students, Burak and Mert, were from the same 
group, while the other two students had some learning difficulties. In light of this, Burak’s group 
was restructured to provide additional support for his algebraic thinking. In the new group, with 
the assistance of his friend and the pre-service teacher, Burak was able to derive the pattern rule 
successfully. Similarly, the pre-service teacher guided Mert to recognize the constant and 
changing squares, achieved by posing questions about the differences between the shapes. With 
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the researcher's help, Mert was able to state the pattern rule accurately. In some groups, students 
derived pattern rules together. As an example, in Doruk’s group the pre-service teacher what was 
the constant within the shapes and all students realized the red square was the constant one. 

Figure 6  

The Screenshot of One Student’s Pointing Out the Constant Red Square  

 

 

The pre-service teacher also asked how many squares were added besides the red square in 
each shape Whole group stated 4, 8, 12, and 16 squares were added respectively. Then they 
continued the group discussion based on the rule of the pattern. Related group discussion is given 
below: 

PT: You said 1 is always constant; what is the rule among 4,8,12,16 as changing ones? 

S1: Increasing 4 by 4. 

PT: I added 4 for the first shape, 8 for the second shape, and 12 for the third shape. What 
does this state for you? 

S2: It increased four by four. 

PT: 4 in the first shape, 8 in the second shape. 

Doruk: 4×2 

PT: How can you express in the third shape? 

Doruk: 3×4 

S1: 4 multiplied by 4, fixed 4… 

PT: What is changing? You multiplied by 1, multiplied by 2… 

S1: The number of shapes… 

PT: What does the shape number represent? 

S2: n… 

PT: Then, what is the rule? 

Doruk: 4n+1… 

After the group discussion, all of the students wrote the correct rule of the pattern. Within 
the subgroup, only one student maintained their focus on the differences between the squares, 
even in Task 8. Consequently, his algebraic thinking was coded as Level 1. This student 
demonstrated improvement in their algebraic thinking by only one level throughout the tasks. In 
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summary, 8 out of 9 students were able to enhance their algebraic thinking by at least two levels 
through task-assisted instruction. 

Upon analyzing the interactions between students and teachers, it is evident that specific 
students derived notable benefits from task-assisted instruction, likely attributable to the probing 
inquiries posed by their instructors. When pre-service teachers effectively harnessed the 
opportunities outlined in the MOST Framework, they engaged students with questions aimed at 
bolstering their proficiency in algebraic thinking. According to Leatham et al. (2015), the timing 
and initiation of discussions play a pivotal role in defining a case as MOST. As a result, 
prospective teachers encouraged students to think more through additional questions. For 
example, in Task 2, Alper directed his attention toward the alteration in the dependent variable in 
two out of three questions. Subsequently, his teacher discerned the mathematical concepts evident 
in Alper's independent work and proceeded to inquire about the covariance of variables in both 
instances. This collaborative effort led to Alper grasping the underlying logic behind the pattern's 
rule, elevating his cognitive level to Level 2. Thus, it can be inferred that the tasks served as a 
conduit for revealing students' mathematical aptitude and effectively utilized the MOST scenario 
to stimulate algebraic thinking. In contrast, certain pre-service teachers failed to capitalize on 
these opportunities, even though the researcher had apprised them of potential MOST instances 
during discussions. Some were constrained by time limitations, resulting in the omission of certain 
questions or a preference for instructing higher-achieving students in solution methods rather than 
fostering broader discussions. Consequently, it may be beneficial to decrease the number of 
questions in tasks, allowing for more extensive discussion time. 

 

DISCUSSION 

Many researchers, such as Lannin (2005), have advocated the use of tasks to facilitate 
students' understanding of identifying the rule and terms within a pattern. Lannin (2005) 
concluded that students could derive generalizations about the pattern's rule through small group 
discussions. This study's findings also demonstrated an enhancement in students’ algebraic 
thinking following these discussions. For instance, in Task 8, Erdem successfully tackled Level 
2, even in his individual work, while Burak struggled to grasp the relationship between the 
variables. In the small group discussions, Erdem elucidated the pattern’s rule to Burak, aiding 
him in recognizing the reasoning behind the constant term and coefficient in the pattern rule. 
Consequently, his algebraic thinking benefited from the small group discussions. Furthermore, 
Billings et al. (2007) and Moyer-Packenham (2005) employed growing patterns, akin to the first 
question in Task 8 of this study. Moyer-Packenham (2005) asserted that this type of pattern helps 
students discern the underlying rule, as they can perceive the incremental change from one shape 
to another. In this study, tasks involving growing patterns (as exemplified in Task 8) also proved 
beneficial in bolstering students’ algebraic thinking. Notably, students like Tansu, Erdem, and 
Burak (as discussed in the later part) engaged in discussions where they recognized the evolving 
and constant aspects of growing patterns. In summary, the outcomes of prior studies align with 
the current study’s findings regarding the positive impact of task-assisted instruction on students’ 
proficiency in algebra. 

The investigation of Gonca’s responses in the findings section serves as compelling 
evidence for the advantages of incorporating manipulatives. When it came to finding the rule and 
terms of the pattern, Gonca demonstrated Level 3 thinking after engaging in discussions for two 
out of four questions in Task 2. The pre-service teacher, following the researcher’s 
recommendations, employed manipulatives in these two questions. Gonca’s articulations, 
elucidating the origins of the constant term and coefficient, provide clear indications of how she 
leveraged manipulatives to enhance her grasp of algebraic concepts, as she recognized that the 
constants corresponded to the constant term in the pattern’s rule. The results of this study align 
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with the findings of Saraswati and Putri (2016), who asserted that the utilization of algebra tiles 
can be a valuable tool in aiding students’ comprehension. 

The instructional approach followed a student-centered teaching model during task 
implementation. The pre-service teachers provided scaffolding by posing questions to guide 
students in their discussions. In Task 8, the researcher directed questions about the constant square 
and how to incorporate the constant term into the rule. Through these inquiries, Doruk 
independently arrived at his pattern rule and corrected his initial incorrect response from his 
individual work. This aligns with the study's objective, resulting in an elevation of his thinking to 
Level 3. Furthermore, the interactions between pre-service teachers and students Harun and Tansu 
were detailed for Task 2 and Task 8, respectively. The pre-service teachers recognized 
opportunities to foster students’ algebraic thinking and appropriately intervened in the group 
discussions. Given that all pre-service teachers had prior discussions with the researcher regarding 
potential scenarios, they were well-informed about how to provide support for students. 
Consequently, it can be inferred that these discussions and the student-centered teaching approach 
effectively bolstered students’ proficiency in discerning the rules of the pattern. 

In the current study, the tasks were meticulously crafted to bring out the most illustrative 
instances, thereby offering robust support for students’ development of algebraic thinking. The 
teacher-student interactions underscored that these highlighted instances played a pivotal role in 
eliciting and refining students’ grasp of algebraic concepts. For example, one of the most 
illustrative instances highlighted in Task 2 emphasized focusing on the change in one variable 
rather than the covariation. In this scenario, the anticipated student response was n+4, given the 
consistent increase of 4 in the number of apartments over consecutive years. During the task 
implementation, these instances surfaced in multiple groups. Harun, for instance, honed in on the 
change in apartment numbers and initially defined the rule as n+4, even though the correct rule 
was 4n+2. The researcher intervened with strategic questions to help him discern the relationship 
between variables, ultimately guiding Harun to arrive at the correct answer. Furthermore, Harun 
applied this newfound understanding in the subsequent question that featured similar illustrative 
instances. This ease of knowledge transfer likely stemmed from the closely related contexts of 
the problems. In both cases, there existed constant terms within the rule, with the coefficient term 
representing the increment. To put it succinctly, these most illustrative instances not only serve 
as a scaffold for enhancing students' thinking but also allow them to rectify their misconceptions 
and deepen their comprehension of mathematical concepts and procedures. 

 

CONCLUSION 

The findings of the present study underscore the effectiveness of pattern tasks in bolstering 
students’ proficiency in algebraic thinking. This was evident in their ability to apply previously 
acquired knowledge from one question to the subsequent tasks. Additionally, the instructional 
approach, which included elements like group work, utilization of pattern blocks, and the 
incorporation of scaffolding questions, proved instrumental in enhancing students’ algebraic 
thinking. What sets this study apart from others is its analytical framework, which leveraged the 
MOST theoretical framework (Leatham et al., 2015) as a lens through which task-assisted 
instruction was evaluated. Consequently, the tasks were meticulously designed to not only have 
the potential to generate MOST instances but also to foster students’ mathematical 
comprehension. To support this understanding, tasks were contextualized around scenarios 
relevant to students’ immediate surroundings, whether close or far. Some tasks required the use 
of tangible materials and necessitated collaboration among students. While these attributes may 
not be entirely novel in research studies on tasks, the deliberate effort to create a setting conducive 
to generating MOST instances to enhance students’ understanding and rectify misconceptions 
was a distinctive feature of this study. As a result, this study presents an opportunity for further 



1061 
 

exploration into the design of tasks that can generate MOST instances in a classroom setting, with 
the potential to significantly advance students’ comprehension while addressing their 
misconceptions and challenges. This innovative approach holds promise for future research 
endeavors in this domain. As a suggestion, in further research, MOST can be used as a theoretical 
lens to elaborate students’ comprehension of different mathematics topics. In addition, the 
effectiveness of the MOST framework can be investigated for the task implementation process in 
terms of support of students’ mathematical knowledge and the timing of pedagogical 
opportunities.  

 

LIMITATIONS AND IMPLICATIONS FOR FUTURE RESEARCH 

Numerous scholars, such as Lannin (2005), have recommended the utilization of tasks to 
assist students in deducing the rules and terms of a pattern. Lannin (2005) determined that students 
can formulate generalizations about the pattern’s rule through collaborative discussions in small 
groups. The outcomes of this research additionally illustrated an enhancement in students’ 
proficiency in algebraic reasoning after such discussions. For instance, in Task 8, Erdem’s 
individual work already exhibited a Level 2 understanding, whereas Burak encountered 
difficulties in comprehending the connection between the variables. During the small group 
deliberations, Erdem elucidated the pattern’s rule to Burak and aided him in comprehending the 
basis of the constant term and coefficient. As a result, small group discussions provided crucial 
support for Burak’s algebraic reasoning. Moreover, Billings et al. (2007) and Moyer-Packenham 
(2005) incorporated burgeoning patterns, as exemplified in the initial inquiry of the final task in 
this investigation. Moyer-Packenham (2005) argued that this pattern assists students in discerning 
the underlying rule, as they can apprehend the incremental change from one shape to another. To 
summarize, the preceding studies' discoveries correspond with the present study’s findings, 
emphasizing the favorable influence of task-guided instruction on students’ accomplishments in 
algebra. 

The analysis of Gonca’s responses in the results section presents compelling evidence in 
favor of integrating manipulatives. In the task of discerning the rules and terms of the pattern, 
Gonca exhibited Level 3 reasoning after participating in discussions for two out of four questions 
in Task 2. The teacher, following the researcher’s recommendations, incorporated manipulatives 
in these two questions. Gonca’s explanations, clarifying the origins of the constant term and 
coefficient, offer clear indications of how she utilized manipulatives to deepen her understanding 
of algebraic concepts. She recognized that the constants corresponded to the constant term in the 
pattern’s rule. The outcomes of this investigation are consistent with the findings of Saraswati 
and Putri (2016), who emphasized the usefulness of algebra tiles in enhancing students’ 
comprehension. In further studies, algebra tiles and manipulatives can be constructed in dynamic 
environments to elaborate students’ algebraic thinking. These environments might allow them to 
create their own patterns and observe the constant terms among different patterns.  

In this study, tasks were implemented using a student-centered teaching approach, where 
pre-service teachers employed scaffolding techniques through questioning during discussions. In 
Task 8, the researcher raised questions about the constant square and how to incorporate the 
constant term into the rule. Through these inquiries, Doruk was able to independently deduce the 
pattern rule and correct his initial incorrect response from his individual work. This aligns with 
the study’s objective, resulting in an elevation of his thinking to Level 3. Furthermore, 
conversations between pre-service teachers and students Harun and Tansu were documented for 
Task 2 and Task 8, respectively. The pre-service teachers keenly identified opportunities to 
enhance students’ algebraic thinking and effectively contributed to the group discussions. Since 
all pre-service teachers had prior discussions with the researcher regarding potential scenarios, 
they were well-equipped to offer appropriate support to the students. As a result, it can be 
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concluded that these discussions and the student-centered teaching approach effectively enhanced 
students’ proficiency in identifying the pattern rule.  

Additionally, the tasks in this study were intentionally crafted to highlight the MOST 
instances, providing further support for students’ development of algebraic thinking. Through 
interactions among teachers, researchers, and students, it became evident that these MOST 
instances played a crucial role in eliciting and refining students’ understanding of algebraic 
concepts. For example, one of the MOST instances emphasized in Task 2 focused on isolating 
the change in one variable rather than the covariation. In this scenario, the expected student 
response was n+4, given the consistent increase of 4 in the number of apartments over successive 
years. This pattern was observed in many groups during task implementation. For instance, Harun 
initially concentrated on the change in the number of apartments and formulated the rule as n+4, 
even though the correct rule was 4n+2. The researcher used targeted questions to assist him in 
discerning the relationship between variables, ultimately guiding Harun to arrive at an accurate 
answer. Furthermore, Harun applied this newfound understanding in the subsequent question 
featuring similar illustrative instances. This ease of knowledge transfer likely stemmed from the 
closely related contexts of the problems. In both cases, there were constant terms within the rule, 
with the coefficient term representing the increment. In summary, these MOST instances not only 
serve as a support structure for enhancing students’ thinking but also enable them to rectify their 
own misconceptions and deepen their comprehension of mathematical concepts and procedures. 
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APPENDIX 1 

Figure 7 

Related Questions In Task 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 

The First and Third Questions of Task 2 

 

 

 

 

 

 

 

 

 

Figure 9 

The Second Question of Task 2 
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Figure 10 

The Related Question of Task 8 

 

 

 

 

 

 

 

 

 

 

 

GENİŞLETİLMİŞ ÖZET 

Giriş 

Cebir, matematiğin en önemli alanlarından biridir. Öğrenciler, cebirsel kavramları ve 
işlemleri anlamakta zorlanarak matematikte güçlük yaşayabilmektedir (Akkaya & Durmuş, 2006; 
Dede & Peker, 2007; Jupri vd., 2014; Lucariello vd., 2014; Welder, 2012). Bu konuda birçok 
araştırmacı, öğrencilerin cebirsel başarılarını ve kavrayışlarını artırabilecek eğitim ve öğretim 
yöntemleri üzerine çalışmalar yapmışlardır.  

Literatürde değinilen eğitim öğretim yöntemlerinden biri, iyi planlanmış görevlerin 
uygulanmasıdır. Watson ve Mason (2007), bir etkinlik ve bir görev arasında bir ayrım olduğunu 
belirtmişlerdir. Bir etkinliği, öğrenciler arasındaki tüm iletişim olarak tanımlamışlardır. Bir görevi 
ise sadece öğrenciler tarafından gerçekleştirilen etkinlikler olarak değil, aynı zamanda etkinlikleri 
nasıl yorumladıkları, etkinliklerden nasıl yararlandıkları ve ne öğrendikleri, öğretmen tarafından 
sağlanan rehberliği de kapsayacak şekilde ifade etmişlerdir. Türkçe alanyazında hem “task” hem 
de “activity” kelimelerine karşılık olarak etkinlik kelimesinin kullanıldığı görülse da bu çalışmada 
literatürde belirtilen ayrımı vurgulamak için görev terimi tercih edilmiştir. Önceki çalışmalarda 
cebirde başarıyı artırmak isteyen araştırmacılar, örneğin Lannin (2005) ve Palabıyık ve İspir 
(2011), örüntü temelli görevleri tercih etmişlerdir.  Walkington vd., (2013) ise günlük hayat 
bağlamlarını içeren görevleri araştırmalarında kullanmışlardır. Bu çalışmalar, örüntü temelli ve 
günlük yaşam bağlamı içeren görevlerin öğrencilerin cebir başarısına katkıda bulunduğunu 
gözlemlemişlerdir. Ayrıca, somut materyallerin, örneğin cebir karolarının, kullanımına da önem 
vermmişlerdir. Örneğin, Saraswati ve Putri (2016), cebir karolarının kullanıldığı çalışmalarında 
öğrencilerin tek değişkenli denklemleri daha iyi anlamalarına yardımcı olduğu sonucuna 
varmışlardır. 

Carpenter ve Lehrer (1999) ile Lin (2004), matematik görevlerinin öğrencilerin 
matematiksel düşünme süreçlerine olumlu etkilerde bulunduğunu savunmuşlardır. Bu görevlerin 
sınıf ortamında öğretmenler tarafından kullanılması, öğrencilerin matematiksel düşünme 
becerilerini geliştirerek öğrenmelerine katkı sağlama fırsatı sunabilir. Leatham vd., (2015), bu 
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öğrenme fırsatlarını "Öğrenci Düşünmesine Dayalı Matematiksel Önemli Pedagojik Fırsatlar" 
olarak tanımlamışlardır. Bu tanım, üç birbirine bağlı ve sıralı değişkeni içerir: öğrenci 
düşüncesine dayalı olma, matematiksel açıdan önemli olma ve pedagojik bir fırsat olma. Leatham 
vd., (2015), matematik görevlerinin bu fırsatları ortaya çıkaracak şekilde düzenlenerek, derslerin 
öğrenci matematiğine dayandırılabileceğini ve öğrencilerin matematik anlayışını değerlendirme 
fırsatı yakalayabileceğini belirtmişlerdir. 

Yöntem 

Bu çalışmanın amacı, alanyazındaki çalışmaları dikkate alarak, görev temelli öğretimin 7. 
sınıf öğrencilerinin cebirsel öğrenme ve düşünmelerini nasıl etkilediğini araştırmaktır. Araştırma, 
İstanbul'daki bir devlet okulunun 7. sınıf şubesinde gerçekleştirilmiştir. Bu sınıfta 7 hafta 
süresince görev temelli öğretim uygulanmıştır. Bu görevler, öğrencilerin cebirsel düşünce 
süreçlerini geliştirmek amacıyla örüntü kuralı ve terimlerini bulma, cebirsel ifadeler, denklem 
kurma ve çözme bileşenlerini destekleme üzere tasarlanmıştır. Bu makalede, örüntü kuralını 
bulma ile ilgili olan Görev 1, Görev 2 ve Görev 8'e dair bölümler raporlanacaktır. 

Uygulamalar sırasında araştırmacı sınıfı 3 er ya da 4 er kişilik gruplara ayırmıştır. 
Öğretmen adayları her bir grupta uygulamadan sorumlu olmuştur. Öğretmen adayları, her bir 
görev öncesinde araştırmacı tarafından sağlanan yönergeler, uygulama prensipleri ve olası 
öğrenci hataları hakkında bilgilendirilmişlerdir. Ayrıca, öğretmen adaylarıyla görevlerin 
uygulama sürecinde karşılaşılabilecek Öğrenci Düşünmesine Dayalı Matematiksel Önemli 
Pedagojik Fırsatlar da paylaşılmıştır. Tüm uygulama süreci, öğrencilerin onayı alınarak 
kaydedilmiştir. Ayrıca, öğrencilerin görev kağıtları toplanarak veri analizinde kullanılmıştır. 

Görev başlangıcında, öğrenciler ilk olarak 20 dakika boyunca bireysel olarak çalışarak 
cevaplarını görev kağıtlarına yazmışlardır. Bireysel çalışma sürecinin ardından, öğrencilerin 
fikirlerini paylaşmaları için grup tartışması gerçekleştirilmiş ve her bir öğrenci öğretmen adayları 
tarafından tek tek düşüncelerini açıklamaları için teşvik edilmiştir. Grup tartışması sırasında 
fikrini değiştiren öğrencilerden, yeni cevaplarını ek kağıtlara yazmaları istenmiştir. Öğretmen 
adayları, gerekli gördüklerinde öğrencilerden düşünme süreçlerini daha detaylı olarak 
açıklamalarını talep etmişlerdir. Eğer gruptaki hiçbir öğrenci doğru cevap verememişse, öğretmen 
adayları manipülatifler kullanarak ya da daha basit bir soru sorarak öğrencileri yönlendirmişlerdir. 
Bu şekilde, öğrencilerin düşünme süreçlerinin daha kapsamlı bir şekilde analiz edilmesine olanak 
sağlanmıştır. 

Öğrencilerin cevapları ve görev uygulamaları sırasındaki sözlü ifadeleri, cebirsel 
düşünmelerini analiz etmek üzere incelenmiştir. Örüntü kuralını bulma bileşeni için 4 seviyeli bir 
kodlama şeması geliştirilmiştir. Hiç yanıt vermeyen veya ilgisiz cevaplar veren öğrencilerin 
cevapları "deneme yapılmayan cevap" olarak kodlanmıştır. Seviye 1, öğrencilerin sadece 
değişkeni anladıkları veya sadece bir değişkendeki değişime odaklandıklarını gösterirken, Seviye 
2, öğrencilerin örüntü kuralını deneme yanılma yöntemiyle bulduklarını ya da kuralı bulsalar da 
kuraldaki katsayı/sabit terimin nereden geldiğini açıklayamadıklarını göstermektedir. Seviye 3 
ise öğrencilerin bağımlı ve bağımsız değişken arasındaki ilişkiyi örüntü kuralına yansıttıklarını, 
katsayı ve sabit terimin nereden geldiğini açıklayabildiğini göstermektedir. Öğrencilerin cebirsel 
düşünmeleri, araştırmacı ve iki matematik eğitimcisi tarafından bağımsız bir şekilde kodlanmıştır. 
Kodlamaların uyuşma yüzdesi %97'dir. 

Sonuçlar ve Tartışma  

Video analizleri sonucunda öğrencilerin cebirsel düşünmelerinde üç bileşenin en az 
ikisinde ilerlediği görülmüştür. Özellikle örüntü kuralı bulma konusunda, Görev 1’den Görev 8’e 
geçerken öğrencilerin bireysel düşünmelerinde deneme yapılmayan cevap yüzdesinin azaldığı ve 
Seviye 2 ve Seviye 3 cevapların yüzdesinin arttığı gözlemlenmiştir. Ayrıca, her bir görev 
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içerisinde bireysel çalışma sonrasındaki tartışmalarda cebirsel düşünme seviyesinin yükseldiği 
tespit edilmiştir. 

Öğretmen adayları uygulama sırasında ortaya çıkan Öğrenci Düşünmesine Dayalı 
Matematiksel Önemli Pedagojik Fırsatları başarıyla değerlendirebilmişlerdir. Örneğin, Alper, 
Görev 2’de üç sorunun ikisinde sadece bağımlı değişkenin değişimine odaklanmıştır. Öğretmen 
adayı, bağımlı ve bağımsız değişkenlerin birlikte nasıl değiştiğine odaklanan sorular sormuştur. 
Ayrıca, soruları sorarken örüntü bloklarını manipülatif olarak kullanmıştır. Bu sayede, Alper 
örüntü kuralının arkasındaki mantığı anlamış ve bağımlı ve bağımsız değişkenin birlikte nasıl 
değiştiğine odaklanmıştır. Sonuç olarak, cebirsel düşünme seviyesi Seviye 2’ye yükselmiştir. 
Sonuçlar, öğrencilerin cebirsel düşünme becerilerini geliştirmek ve cebir öğrenimlerini 
desteklemek için görev temelli öğretimin etkili bir yöntem olabileceğini göstermektedir. 

Çalışmanın elde ettiği sonuçlar, literatürdeki diğer çalışmalarla uyumlu görünmektedir. 
Örneğin, Saraswati ve Putri (2016) tarafından belirtildiği gibi, örüntü bloklarının manipülatif 
olarak kullanılması öğrencilerin cebirsel düşünme becerilerine olumlu etki yapmıştır. Ayrıca, 
Leatham vd., (2015) önerdiği Öğrenci Düşünmesine Dayalı Matematiksel Önemli Pedagojik 
Fırsatlar, bu çalışmada da öğretmen adayları tarafından değerlendirilmiştir. Bahsedilen bu 
fırsatlar, öğrenci düşüncesine dayandırıldığı için düşünme süreçlerini desteklemiş ve öğrencilerin 
cebirsel düşünme seviyelerinin artmasına katkıda bulunmuştur. 
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