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A NEW DEFINITION AND PROPERTIES OF QUANTUM

INTEGRAL WHICH CALLS q-INTEGRAL

NECMETTIN ALP AND MEHMET ZEKI SARIKAYA

Abstract. In this paper, we present a new definition of q-integral by using
trapezoid pieces and we name second sense q-integral which is showed q-integral

and we give some results and properties of q-integral. Finaly, we establish some

new q-Hermite-Hadamard type inequalities for convex functions.

1. Introduction

Quantum calculus is the modern name for the investigation of calculus without
limits.The quantum calculus or q-calculus began with FH Jackson in the early twen-
tieth century, but this kind of calculus had already been worked out by Euler and
Jacobi. Recently it arose interest due to high demand of mathematics that models
quantum computing. q-calculus appeared as a connection between mathematics
and physics. It has a lot of applications in different mathematical areas such as
number theory, combinatorics, orthogonal polynomials, basic hyper-geometric func-
tions and other sciences quantum theory, mechanics and the theory of relativity.

Many of the fundamental aspects of quantum calculus. It has been shown that
quantum calculus is a subfield of the more general mathematical field of time scales
calculus. Time scales provide a unified framework for studying dynamic equations
on both discrete and continuous domains. In studying quantum calculus, we are
concerned with a specific time scale, called the q-time scale, defined as follows:
T := qN0 := {qt : t ∈ N0} see [1]-[5], [7]-[13] and references cited therein.

Many inequalities have been established for convex functions but the most fa-
mous is the Hermite-Hadamard’s inequality [6], due to its rich geometrical signifi-
cance and applications, which is stated as follows:

Let f : J ⊆ R→ R, be a convex mapping and a, b ∈ J with a < b. Then

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x) dx ≤ f (a) + f (b)

2
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Both the inequalities hold in reversed direction if f is concave. Since its discovery,
Hermite-Hadamard’s inequality has been considered the most useful inequality in
mathematical analysis. This inequality has been extended in a number of ways and
a number of papers have been written.

The main aim of this paper is to establish some new quantum integral inequal-
ities for midpoint formula on convex functions. Many consequences of Hermite-
Hadamard type inequalities are obtained as special cases when q → 1.

2. Preliminaries

In this section, we give definition q-derivates. Let J := [a, b] ⊂ R, J◦ := (a, b)
be interval and 0 < q < 1 be a constant. We define q-derivative of a function
f : J → R at a point x ∈ J on [a, b] as follows.

Definition 2.1. Assume f : J → R is a continuous function and let x ∈ J . Then
the expression

aDq f (x) =
f (x)− f (qx+ (1− q) a)

(1− q) (x− a)
, x 6= a,(2.1)

aDq f (a) = lim
x→a aDq f (x)

is called the q-derivative on J of function f at x.

We say that f is q -differentiable on J provided aDq f (x) exists for all x ∈ J .

Note that if a = 0 in (2.1), then 0Dq f = Dqf , where Dq is the well-known
q-derivative of the function f (x) defined by

Dq f (x) =
f (x)− f (qx)

(1− q)x

For more details, see [7].

Lemma 2.1. [12] Let α ∈ R, then we have

(2.2) aDq (x− a)
α

=

(
1− qα

1− q

)
(x− a)

α−1
.

3. Definition and Properties of q-integral

In this section, we present a new definition of q-integral by using trapezoid pieces
and we name second sense q-integral which is showed q-integral and we present some
results and properties of q-integral. Let J := [a, b] ⊂ R, J◦ := (a, b) be interval and
0 < q < 1 be a constant.

Remember that the definition of an integral may be phrased in terms of Riemann
sums, each part of some width, h. Let us replace the strips of length h with strips
between x = qn+1b+

(
1− qn+1

)
a and x = qnb+ (1− qn) a, which means that the

strips become thinner and thinner x→ a, as the figure below. Let’s show that

An = (1− q) qn (b− a)
f
(
qn+1b+

(
1− qn+1

)
a
)

+ f (qnb+ (1− qn) a)

2
.
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The integral is simply the sum of each of the trapezoid pieces gives that

∞∑
n=0

An =
(1− q) (b− a)

2

[ ∞∑
n=0

qnf
(
qn+1b+

(
1− qn+1

)
a
)

+

∞∑
n=0

qnf (qnb+ (1− qn) a)

]

=
(1− q) (b− a)

2

[
1

q

∞∑
n=0

qn+1f
(
qn+1b+

(
1− qn+1

)
a
)

+

∞∑
n=0

qnf (qnb+ (1− qn) a)

]

=
(1− q) (b− a)

2

[
1

q

∞∑
n=1

qnf (qnb+ (1− qn) a) +

∞∑
n=0

qnf (qnb+ (1− qn) a)

]

=
(1− q) (b− a)

2

[
1

q

{
f (b)− f (b) +

∞∑
n=1

qnf (qnb+ (1− qn) a)

}
+

∞∑
n=0

qnf (qnb+ (1− qn) a)

]

=
(1− q) (b− a)

2

[
1

q

{
−f (b) +

∞∑
n=0

qnf (qnb+ (1− qn) a)

}
+

∞∑
n=0

qnf (qnb+ (1− qn) a)

]

=
(1− q) (b− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnb+ (1− qn) a)− f (b)

]

=

b∫
a

f (s) adqs .

Definition 3.1. Let f : J → R is continuous function. For 0 < q < 1

(3.1)

b∫
a

f (s) adqs =
(1− q) (b− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnb+ (1− qn) a)− f (b)

]

which second sense quantum integral definition that call q-integral for x ∈ J.

Moreover, if c ∈ (a, x) then the definite q-integral on J is defined by
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x∫
c

f (s) adqs(3.2)

=

x∫
a

f (s) adqs −
c∫
a

f (s) adqs

=
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnx+ (1− qn) a)− f (x)

]

− (1− q) (c− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnc+ (1− qn) a)− f (c)

]
.

Theorem 3.1. Let f : J → R be a continuous function. Then we have

(3.3) aDq

x∫
a

f (s) adqs =
qf (x) + f (qx+ (1− q) a)

2q
.

Proof. From definition of q-integral, we have

x∫
a

f (s) adqs =
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnx+ (1− qn) a)− f (x)

]

and take q-derivative of above equality write that

aDq

x∫
a

f (s) adqs

= aDq

{
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnx+ (1− qn) a)− f (x)

]}

=
1

(1− q) (x− a)

{
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnx+ (1− qn) a)− f (x)

]

− (1− q) (x− a) q

2q

[
(1 + q)

∞∑
n=0

qnf
(
qn+1x+

(
1− qn+1

)
a
)
− f (qx+ (1− q) a)

]}

=
1

2q

[
(1 + q)

( ∞∑
n=0

qnf (qnx+ (1− qn) a)−
∞∑
n=0

qnf
(
qn+1x+

(
1− qn+1

)
a
))

+f (qx+ (1− q) a)− f (x)]

=
qf (x) + f (qx+ (1− q) a)

2q
.

The proof is completed. �
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Theorem 3.2. (Change of Variables Property) Let f : J → R be a function and
0 < q < 1. Then we have

(3.4)

1∫
0

f (sb+ (1− s) a) 0dqs =
1

b− a

b∫
a

f (t) adqt .

Proof. From definition of q-integral, we have

1∫
0

f (sb+ (1− s) a) 0dqs

=
(1− q) (1− 0)

2q

[
(1 + q)

∞∑
n=0

qnf ([qn1 + (1− qn) 0] b+ (1− [qn1 + (1− qn) 0]) a)

−f (1b+ (1− 1) a)]

=
(1− q)

2q

[
(1 + q)

∞∑
n=0

qnf (qnb+ (1− qn) a)− f (b)

]

Multiplying by b−a
b−a then we have

1∫
0

f (sb+ (1− s) a) 0dqs =
1

b− a

b∫
a

f (t) adqt

The proof is completed. �

Theorem 3.3. Let f : J → R be a continuous function. Then we have

x∫
c

aDq f (s) adqs(3.5)

=
qf (x) + f (qx+ (1− q) a)− qf (c)− f (qc+ (1− q) a)

2q
for c ∈ (a, x) .
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Proof. Applying definitions of q-integral, q-derivative and by change of variables,
we have

x∫
c

aDq f (s) adqs

=

x∫
c

f (s)− f (qs+ (1− q) a)

(1− q) (s− a)
adqs

=

x∫
a

f (s)− f (qs+ (1− q) a)

(1− q) (s− a)
adqs −

c∫
a

f (s)− f (qs+ (1− q) a)

(1− q) (s− a)
adqs

=

x∫
a

f (s)

(1− q) (s− a)
adqs −

qx+(1−q)a∫
a

f (s)

(1− q) (s− a)
adqs

−
c∫
a

f (s)

(1− q) (s− a)
adqs +

qc+(1−q)a∫
a

f (s)

(1− q) (s− a)
adqs

=
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnx+ (1− qn) a)

(1− q) qn (x− a)
− f (x)

(1− q) (x− a)

]

− (1− q) q (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf
(
qn+1x+

(
1− qn+1

)
a
)

(1− q) qn+1 (x− a)
− f (qx+ (1− q) a)

(1− q) q (x− a)

]

− (1− q) (c− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnc+ (1− qn) a)

(1− q) qn (c− a)
− f (c)

(1− q) (c− a)

]

+
(1− q) q (c− a)

2q

[
(1 + q)

∞∑
n=0

qnf
(
qn+1c+

(
1− qn+1

)
a
)

(1− q) qn+1 (c− a)
− f (qc+ (1− q) a)

(1− q) q (c− a)

]

=
1 + q

2q

∞∑
n=0

[
f (qnx+ (1− qn) a)− f

(
qn+1x+

(
1− qn+1

)
a
)

−f (qnc+ (1− qn) a) + f
(
qn+1c+

(
1− qn+1

)
a
)]

+
1

2q
[−f (x) + f (qx+ (1− q) a) + f (c)− f (qc+ (1− q) a)]

=
f (x)− f (c)

2
+
f (qx+ (1− q) a)− f (qc+ (1− q) a)

2q

The proof is complated. �

Theorem 3.4. Assume f, g : J → R are continuous functions. Then, for x ∈ J ,

(3.6)

x∫
a

[f (s) + g (s)] adqs =

x∫
a

f (s) adqs +

x∫
a

g (s) adqs .
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Proof. Using definition of q-integral write that

x∫
a

[f (s) + g (s)] adqs

=
(1− q) (x− a)

2q

{
(1 + q)

∞∑
n=0

qn [f (qnx+ (1− qn) a) + g (qnx+ (1− qn) a)]

−f (x)− g (x)}

=
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnx+ (1− qn) a)− f (x)

]

+
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qng (qnx+ (1− qn) a)− g (x)

]

=

x∫
a

f (s) adqs +

x∫
a

g (s) adqs .

The proof is completed. �

Theorem 3.5. Assume f, g : J → R are continuous functions. α ∈ R. Then, for
x ∈ J ,

(3.7)

x∫
a

(αf) (s) adqs = α

x∫
a

f (s) adqs .

Proof. Using definition of q-integral we have

x∫
a

(αf) (s) adqs =
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qn (αf) (qnx+ (1− qn) a)− (αf) (x)

]

= α
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qnf (qnx+ (1− qn) a)− f (x)

]

= α

x∫
a

f (s) adqs .

We obtained (3.7) as required. �

Theorem 3.6. Assume f, g : J → R are continuous functions. Then, for x ∈ J
x∫
c

f (s) aDq g (s) adqs(3.8)

=
qf (s) g (s) + f (qs+ (1− q) a) g (qs+ (1− q) a)

2q

∣∣∣∣x
c

−
x∫
c

g (qs+ (1− q) a) aDq f (s) adqs .
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Proof. Using definition of q-derivative

aDq f (s) g (s)

=
f (s) g (s)− f (qs+ (1− q) a) g (qs+ (1− q) a)

(1− q) (s− a)

= f (s)
g (s)− g (qs+ (1− q) a)

(1− q) (s− a)
+ g (qs+ (1− q) a)

f (s)− f (qs+ (1− q) a)

(1− q) (s− a)

= f (s) aDq g (s) + g (qs+ (1− q) a) aDq f (s) .

From here take q-integral

x∫
c

aDq f (s) g (s) adqs

=

x∫
c

f (s) aDq g (s) adqs +

x∫
c

g (qs+ (1− q) a) aDq f (s) adqs

Applying (3.5) we have

qf (s) g (s) + f (qs+ (1− q) a) g (qs+ (1− q) a)

2q

∣∣∣∣x
c

=

x∫
c

f (s) aDq g (s) adqs +

x∫
c

g (qs+ (1− q) a) aDq f (s) adqs

and following equality holds

x∫
c

f (s) aDq g (s) adqs =
qf (s) g (s) + f (qs+ (1− q) a) g (qs+ (1− q) a)

2q

∣∣∣∣x
c

−
x∫
c

g (qs+ (1− q) a) aDq f (s) adqs .

The proof is completed. �

Theorem 3.7. For α ∈ R\ {−1} , the following formula holds:

(3.9)

x∫
a

(s− a)
α

adqs =

(
1− q

1− qα+1

)(
1 + qα

2

)
(x− a)

α+1
.
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Proof. Using definition of q-integral, we have
x∫
a

(s− a)
α

adqs =
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qn (qnx+ (1− qn) a− a)
α − (x− a)

α

]

=
(1− q) (x− a)

2q

[
(1 + q)

∞∑
n=0

qn (qn (x− a))
α − (x− a)

α

]

=
(1− q) (x− a)

2q

[
(1 + q) (x− a)

α
∞∑
n=0

(
qα+1

)n − (x− a)
α

]

=
(1− q) (x− a)

α+1

2q

[
(1 + q)

1− qα+1
− 1

]
=

(
1− q

1− qα+1

)(
1 + qα

2

)
(x− a)

α+1
.

The proof is completed. �

4. q-Hermite-Hadamard Inequalities

In this section, we present q-Hermite-Hadamard type inequalities for convex
functions. Let 0 < q ≤ 1, we consider the following graphics:

Theorem 4.1 (q-Hermite-Hadamard). Let f : J → R be a convex continuous
function on J and 0 < q < 1. Then we have

(4.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x) adqx ≤
f (a) + f (b)

2

Proof. Since f is differentiable function on [a, b], there is a tangent line for the
function f at the point a+b

2 ∈ (a, b). This tangent line can be expressed as a
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function h2 (x) = f
(
a+b
2

)
+ f ′

(
a+b
2

) (
x− a+b

2

)
. Since f is a convex function on

[a, b], then we have the following inequality

(4.2) h2 (x) = f

(
a+ b

2

)
+ f ′

(
a+ b

2

)(
x− a+ b

2

)
≤ f(x)

for all x ∈ [a, b] (see Figure 2). q-integrating the inequality (4.2) on [a, b], we have

b∫
a

h2 (x) adqx

=

b∫
a

[
f

(
a+ b

2

)
+ f ′

(
a+ b

2

)(
x− a+ b

2

)]
adqx

= (b− a) f

(
a+ b

2

)
+ f ′

(
a+ b

2

) b∫
a

(
x− a+

a− b
2

)
adqx

= (b− a) f

(
a+ b

2

)
+ f ′

(
a+ b

2

)
×

[(
1− q
1− q2

)(
1 + q

2

)
(x− a)

2

∣∣∣∣b
a

+
a− b

2
(b− a)

]

= (b− a) f

(
a+ b

2

)
+ f ′

(
a+ b

2

)[
(b− a)

2

2
− (b− a)

2

2

]

= (b− a) f

(
a+ b

2

)
≤

b∫
a

f (x) adqx .(4.3)

On the other hand, line connecting the points (a, f (a)) and (b, f (b)) can be ex-

pressed as a function k (x) = f (a) + f(b)−f(a)
b−a (x− a). Since f is a convex function

on [a, b], then we have the following inequality

(4.4) f(x) ≤ k (x) = f (a) +
f(b)− f(a)

b− a
(x− a)
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for all x ∈ [a, b] (see Figure 2). q-integrating the inequality (4.4) on [a, b], we have

b∫
a

f (x) adqx

≤
b∫
a

k (x) adqx

=

b∫
a

(
f (a) +

f(b)− f(a)

b− a
(x− a)

)
adqx

= (b− a) f (a) +
f(b)− f(a)

b− a

b∫
a

(x− a) adqx

= (b− a) f (a) +
f(b)− f(a)

b− a

(
1− q
1− q2

)(
1 + q

2

)
(x− a)

2

∣∣∣∣b
a

= (b− a) f (a) +
f(b)− f(a)

b− a
(b− a)

2

2

and then

(4.5) (b− a)
f (a) + f (b)

2
≥

b∫
a

f (x) adqx .

A combination of (4.3) and (4.5) gives (4.1) and the proof is completed. �

Remark 4.1. In Theorem 4.1, if we take q → 1−, we recapture the well known
Hermite-Hadamard inequality for convex function.

Theorem 4.2. Let f : [a, b] → R be a convex differentiable function on [a, b] and
0 < q < 1. Then we have
(4.6)

f

(
qa+ b

1 + q

)
+
q − 1

1 + q

(b− a)

2
f ′
(
qa+ b

1 + q

)
≤ 1

b− a

b∫
a

f (x) adqx ≤
f (a) + f (b)

2
.

Proof. Since f is differentiable function on [a, b], there is a tangent line for the

function f at the point qa+b
1+q ∈ (a, b). This tangent line can be expressed as a

function h (x) = f
(
qa+b
1+q

)
+ f ′

(
qa+b
1+q

)(
x− qa+b

1+q

)
. Since f is a convex function on

[a, b], then we have the following inequality

(4.7) h (x) = f

(
qa+ b

1 + q

)
+ f ′

(
qa+ b

1 + q

)(
x− qa+ b

1 + q

)
≤ f(x)



A NEW DEFINITION AND PROPERTIES OF QUANTUM INTEGRAL ... 157

for all x ∈ [a, b] (see Figure 2). q-integrating the inequality (4.7) on [a, b], we have

b∫
a

f (x) adqx

≥
b∫
a

h (x) adqx

=

b∫
a

[
f

(
qa+ b

1 + q

)
+ f ′

(
qa+ b

1 + q

)(
x− qa+ b

1 + q

)]
adqx

= (b− a) f

(
qa+ b

1 + q

)
+ f ′

(
qa+ b

1 + q

) b∫
a

(
x− a+

a− b
1 + q

)
adqx


= (b− a) f

(
qa+ b

1 + q

)
+ f ′

(
qa+ b

1 + q

)[(
1− q
1− q2

)(
1 + q

2

)
(x− a)

2

∣∣∣∣b
a

+
a− b
1 + q

(b− a)

]

= (b− a) f

(
qa+ b

1 + q

)
+ f ′

(
qa+ b

1 + q

)[
(b− a)

2

2
− (b− a)

2

1 + q

]

and then

(4.8) (b− a) f

(
qa+ b

1 + q

)
+
q − 1

1 + q

(b− a)
2

2
f ′
(
qa+ b

1 + q

)
≤

b∫
a

f (x) adqx .

A combination of (4.8) and (4.5) gives (4.6) and the proof is completed. �

Theorem 4.3. Let f : [a, b] → R be a convex differentiable function on [a, b] and
0 < q < 1. Then we have
(4.9)

f

(
a+ qb

1 + q

)
+

1− q
1 + q

b− a
2

f ′
(
a+ qb

1 + q

)
≤ 1

b− a

b∫
a

f (x) adqx ≤
f (a) + f (b)

2
.

Proof. Since f is differentiable function on [a, b], there is a tangent line for the

function f at the point a+qb
1+q ∈ (a, b). This tangent line can be expressed as a

function h1 (x) = f
(
a+qb
1+q

)
+ f ′

(
a+qb
1+q

)(
x− a+qb

1+q

)
. Since f is a convex function

on [a, b], then we have the following inequality

(4.10) h1 (x) = f

(
a+ qb

1 + q

)
+ f ′

(
a+ qb

1 + q

)(
x− a+ qb

1 + q

)
≤ f(x)
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for all x ∈ [a, b] (see Figure 2). q-integrating the inequality (4.10) on [a, b], we have

b∫
a

f (x) adqx

≥
b∫
a

h1 (x) adqx

=

b∫
a

[
f

(
a+ qb

1 + q

)
+ f ′

(
a+ qb

1 + q

)(
x− a+ qb

1 + q

)]
adqx

= (b− a) f

(
a+ qb

1 + q

)
+ f ′

(
a+ qb

1 + q

) b∫
a

(
x− a+ q

a− b
1 + q

)
adqx

= (b− a) f

(
a+ qb

1 + q

)
+ f ′

(
a+ qb

1 + q

)[(
1− q
1− q2

)(
1 + q

2

)
(x− a)

2

∣∣∣∣b
a

+ (b− a) q
a− b
1 + q

]

= (b− a) f

(
a+ qb

1 + q

)
+ f ′

(
a+ qb

1 + q

)[
(b− a)

2

2
− q (b− a)

2

1 + q

]
and we can write

(4.11) (b− a) f

(
a+ qb

1 + q

)
+

1− q
1 + q

(b− a)
2

2
f ′
(
a+ qb

1 + q

)
≤

b∫
a

f (x) adqx

A combination of (4.5) and (4.11) gives (4.9) and the proof is completed. �

Theorem 4.4 (Generalized q-Hermite-Hadamard inequality). Let f : [a, b]→ R be
a convex differentiable function on [a, b] and 0 < q < 1. Then we have

(4.12) max {I1, I2, I3} ≤
1

b− a

b∫
a

f (x) adqx ≤
f (a) + f (b)

2
.

where

I1 = f

(
a+ b

2

)
,

I2 = f

(
qa+ b

1 + q

)
+
q − 1

1 + q

(b− a)

2
f ′
(
qa+ b

1 + q

)
,

I3 = f

(
a+ qb

1 + q

)
+

1− q
1 + q

b− a
2

f ′
(
a+ qb

1 + q

)
.

Proof. A combination of (4.1), (4.6), and (4.9) gives (4.12) and the proof is com-
pleted. �
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[1] N. Alp, M. Z. Sarikaya, M. Kunt and İ. İşcan, q-Hermite Hadamard inequalities and quantum

estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of

King Saud University - Science, 2016, dx.doi.org/10.1016/j.jksus.2016.09.007.
[2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, JIPAM. J. Inequal.

Pure Appl. Math. 2009., 10: Article ID 86.



A NEW DEFINITION AND PROPERTIES OF QUANTUM INTEGRAL ... 159

[3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 2010, 9: 493–497.

[4] T. Ernst, A method for q-calculus. J. Nonlinear Math. Phys. 10 (4), 487–525 (2003).

[5] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 2004, 47: 281–300.
10.1016/S0898-1221(04)90025-9.

[6] J. Hadamard, Etude sur les propri´et´es des fonctions enti´eres et en particulier dune fonc-

tion consider´ee par Riemann, J. Math. Pures Appl. 58 (1893) 171–215.
[7] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.

[8] M. A. Noor, K. I. Noor and M. U. Awan, Some Quantum estimates for Hermite–Hadamard

inequalities, Appl. Math. Comput. 251, 675–679 (2015).
[9] M. A. Noor, K. I. Noor and M. U. Awan, Quantum Ostrowski inequalities for q-differentiable

convex functions, J. Math. Inequlities, (2016).

[10] H. Ogunmez and U.M. Ozkan, Fractional quantum integral inequalities, J. Inequal. Appl.
2011., 2011: Article ID 787939

[11] W. Sudsutad and S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex
functions, Jour. Math Ineq. Volume 9, Number 3 (2015), 781–793.

[12] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impul-

sive difference equations, Adv. Differ. Equ. 2013, 2013:282.
[13] J. Tariboon and S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal.

Appl. 2014, 2014:121.

Duzce University, Science and Art Faculty, Department of Mathematics, Duzce-

TURKEY
E-mail address: placenn@gmail.com

Duzce University, Science and Art Faculty, Department of Mathematics, Duzce-
TURKEY

E-mail address: sarikayamz@gmail.com


