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A NEW DEFINITION AND PROPERTIES OF QUANTUM
INTEGRAL WHICH CALLS g-INTEGRAL

NECMETTIN ALP AND MEHMET ZEKI SARIKAYA

ABSTRACT. In this paper, we present a new definition of g-integral by using
trapezoid pieces and we name second sense g-integral which is showed g-integral
and we give some results and properties of g-integral. Finaly, we establish some
new g-Hermite-Hadamard type inequalities for convex functions.

1. INTRODUCTION

Quantum calculus is the modern name for the investigation of calculus without
limits.The quantum calculus or g-calculus began with FH Jackson in the early twen-
tieth century, but this kind of calculus had already been worked out by Euler and
Jacobi. Recently it arose interest due to high demand of mathematics that models
quantum computing. g¢-calculus appeared as a connection between mathematics
and physics. It has a lot of applications in different mathematical areas such as
number theory, combinatorics, orthogonal polynomials, basic hyper-geometric func-
tions and other sciences quantum theory, mechanics and the theory of relativity.

Many of the fundamental aspects of quantum calculus. It has been shown that
quantum calculus is a subfield of the more general mathematical field of time scales
calculus. Time scales provide a unified framework for studying dynamic equations
on both discrete and continuous domains. In studying quantum calculus, we are
concerned with a specific time scale, called the ¢-time scale, defined as follows:
T := ¢ := {q" : t € No} see [1]-[5], [7]-[13] and references cited therein.

Many inequalities have been established for convex functions but the most fa-
mous is the Hermite-Hadamard’s inequality [6], due to its rich geometrical signifi-
cance and applications, which is stated as follows:

Let f:J CR — R, be a convex mapping and a,b € J with a < b. Then

(1.1) f(“b)g ! /bf(x)d:cgw

2 b—a 2
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Both the inequalities hold in reversed direction if f is concave. Since its discovery,
Hermite-Hadamard’s inequality has been considered the most useful inequality in
mathematical analysis. This inequality has been extended in a number of ways and
a number of papers have been written.

The main aim of this paper is to establish some new quantum integral inequal-
ities for midpoint formula on convex functions. Many consequences of Hermite-
Hadamard type inequalities are obtained as special cases when ¢ — 1.

2. PRELIMINARIES

In this section, we give definition ¢-derivates. Let J := [a,b] C R, J° := (a,b)
be interval and 0 < g < 1 be a constant. We define g-derivative of a function
f:J —Ratapoint x € J on [a,b] as follows.

Definition 2.1. Assume f:J — R is a continuous function and let « € J. Then
the expression

(2.1) Dy f) = HECHIEE S0

aDq f(a) = ,}}g}l aDg f(2)

is called the g-derivative on J of function f at x.

We say that f is g -differentiable on J provided ,D, f (z) exists for all z € J.
Note that if « = 0 in (2.1), then oD, f = D,f, where D, is the well-known
g-derivative of the function f (z) defined by

f(x) = £ (gz)

qu(fﬂ): (1—q)x

For more details, see [7].

Lemma 2.1. [12] Let a € R, then we have

(2.2) WDy (z—a)® = <1 - qa> (x—a)* .

1—¢

3. DEFINITION AND PROPERTIES OF G-INTEGRAL

In this section, we present a new definition of g-integral by using trapezoid pieces
and we name second sense g-integral which is showed g-integral and we present some
results and properties of g-integral. Let J := [a,b] C R, J° := (a,b) be interval and
0 < g < 1 be a constant.

Remember that the definition of an integral may be phrased in terms of Riemann
sums, each part of some width, h. Let us replace the strips of length A with strips
between z = ¢" b+ (1 — ¢"™') a and z = ¢"b+ (1 — ¢") a, which means that the
strips become thinner and thinner x — a, as the figure below. Let’s show that

f@o+(1—¢"™)a)+ f(¢"b+ (1 —q")a)
5 .

An:(lfq)qn(bia)
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f(x)

0 a bg*+(1-g%)a ba+(1-q)a b

The integral is simply the sum of each of the trapezoid pieces gives that

f:oAn - 1-dl-o i; O (@t (- ) a) + fjoq"f @b+ (1-q") a>]
_ (-qb-a q)Z(b —9) ; gq"“f ("o + (1 — ¢ a) + gq”f (¢"b+ (1 —q") a)]
- 1=dl-o ; ni_ojlq"f (@"b+ (1~ g a) + iq"f (" + (1 ") a>]
- (1-al-a) j] {f(b) £ )+ iqnf (" + (1~ q”)co} +§q"f<q”b+ (1- q”>a>]

R [1 {—f 0)+ 3 a"F g™+ (1~ ") a)} Y (1 q")a)}

n=0 n=0

(1-q)(b—a)
2q

b
/ £(5) adgs -

Definition 3.1. Let f: J — R is continuous function. For 0 < ¢ < 1

b
(3.1) / F(5) adgs _(d-q(-a)

I+ q"f(g"b+(1—q")a)— f (b)]

n=0

1+ a"f(@"b+(1—q"a)—f (b)]

n=0

2q

which second sense quantum integral definition that call g-integral for = € J.

Moreover, if ¢ € (a, ) then the definite g-integral on J is defined by
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(3.2) /f(s) adgs
= / 75 _/f(s)
_ (1“1)2((]‘” Zq”fqul_ﬂ) f(f)l
_(1_‘1;;_) (1+q)Zq”f(q”c+(1—q”)a)—f(C)l-
n=0

Theorem 3.1. Let f: J — R be a continuous function. Then we have

(@) + flaz+ (1~ qg)a)
2q

(3.3) oDy /f oldgs =

Proof. From definition of g-integral, we have

Jrir e -t

and take g-derivative of above equality write that

aDq jf (s)

1+9)> ¢ f(ge+(1—qg")a)—f (x)]

n=0

+9)> q"f "z +(1—q")a) - f(x)] }

n=0

_ 1 (-9 @-a)
- <1—q><x—a>{ 2 |07

W (L+a) Y a"f (¢ o+ (1-q"")a) — [ gz + (1 -q) a)] }
n=0

(1+q) (quqwr 1-q") qu " q"“)@)

n=0

9)Y ¢"f(@"e+(1—q")a)—f (x)]

n=0

2q

+f (g + (1 —q)a) — f(z)]

qf (x) + f (qgz + (1 — q) a)
2q '

The proof is completed. [l
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Theorem 3.2. (Change of Variables Property) Let f : J — R be a function and
0 < g < 1. Then we have

1
1
(3.4) f(sb+(1—=9)a) odgs = f(t) odgt .
| j

Proof. From definition of g-integral, we have

1
/f (sb+ (1 —s)a) odgs
0

1-90-0 )( DM+ dF (@1 + @ —g0lb+ (1 "1+ (1 —g")0)a)

n=0
—f(lb+ (1-1)a)]

-9 (1+q)Zq”f(q”b+(1q”)a)f(b)]

2q n=0

Multiplying by 2:—2 then we have

b

1
/f (sb+(1—s)a) odgs :ﬁ/f(t) odgt
0

a

The proof is completed. (Il

Theorem 3.3. Let f:J — R be a continuous function. Then we have

_ @)+ flert+-ga)—af(c) = flee+ (1 =-qg)a)
= 2 force (a,x).
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Proof. Applying definitions of g-integral, ¢-derivative and by change of variables,
we have

J o

_ /f qs+ 1—61) a) .
(1-q)(s—a) “rd
f(s qs+1—q f(s qs+ 1—q) a)
- / (1-q)(s—a) / (1-q)(s—a) adgs
7(s) T )
- a/<1—q><s—a> o / =g (- "
c f( ) gct+(1—q)a f( )
_a/u—q)(s—a) s / T-gG-a "
_ (1-q(z—a) —"f("z+(1—¢"a)  f(x)
Rl (SR D Dy s e oy el s Y ey
(1-9g)gq(z—a) o~ "f(¢"r+ (1—q¢"")a)  fler+(1-q)a)
2 (”q)nzo (1- )¢ (@ —a) (1—q>q<a:—a>]
(=g (- — ¢"f(g"c+(1—¢qM)a)  f(o
2q (1+q) Z (1-q9)¢*(c—a) (1-¢q)(c—a)
(1-q)g(c—a) — ¢"f (¢ e+ (1-¢"")a)  flge+(1-g)a)
’ 2q (HQ); (1-q)q¢"t (c—a) (1q)q(ca)1
_ 1+qz Fl@"z+(1—¢")a)— f(q"“a:—l—(l—q”“)a)
n=0
—f(g"c+ (=g a)+ [ (" et (1—¢"") a)]
e [ @)+ £ G+ (1= 0)a) + 7€) = f (ge+ (1 = @)a)
_ f@-f flertA-g)a) = flgetd—g)a)
2 2q
The proof is complated. u

Theorem 3.4. Assume f,g:J — R are continuous functions. Then, for x € J,

(ORI ACRYTE ds—/f ds+/ () adys -

a
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Proof. Using definition of g-integral write that

x

/ £ () +9(9)] adys

a

_ uq;ff{ 1+q) Zq (@"z+(1—q")a)+g(¢"c+(1-¢")a)
n=0
—f(z) —g(2)}
- %ﬁf*a) (1+q)zqnf(q”x+(1q”)a)f(f'f)l
n=0
+w (1+q)2q”g(q”x+(1—q")a)—g(x)l
n=0
/f s +/ () adgs -
The proof is completed. =

Theorem 3.5. Assume f,g:J — R are continuous functions. o € R. Then, for
T € J,

x

(3.7) /(af s fa/f

a

Proof. Using definition of g-integral we have

x

_ 0-q@-a
[@n s = G0

1+ q"(af) (@"z+ (1 —q")a) - (af) (w)l

a n=0

R (1+q)Zq"f(q”fE+(1—q”)a)—f(w)]
n=0
~ a[70
We obtained (3.7) as required. O

Theorem 3.6. Assume f,g:J — R are continuous functions. Then, for x € J

(3.8) / £(5) oDy () adys

af (s)g(s)+ flgs+(1—q)a)g(gs+ (1 —q)a)|”
2q

(&
x

—/g(q8+(1—q)a) oDy f(8) adgs .

c
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Proof. Using definition of g-derivative

oDqg f(5)g(s)
_ g —flas+(-qga)glags+(1—q)a)
(I1-q)(s—a)
_ a9 —glas+1-q)a) . g L) = fles+(A-q)a)
f(s) 00 (-0 +9(gs+(1—q)a) A—q) (s—a)
= f(s) aDq g(s)+g(gs+(1—q)a) oDy f(s).

From here take g-integral

j aDq f(s)g(s)
/f Dy g(s) adgs +jg(qs+(1Q)a) aDg [ () adgs

Applying (3.5) we have

af (s)g(s)+ flgs+(1—q)a)g(gs+ (1 —q)a)|”
2q

c

/f Dy g(s) adgs +/g(QS+(1*q)a) oDy f(8) adgs

(&

and following equality holds

/f(s) Dy () adys = qf(S)g(S)+f(qs+(12;q)a)g(qs+(1—Q)a)

C

x

—/g<qs+<1—q>a> Dy £(5) adgs .

C

The proof is completed. (I

Theorem 3.7. For a € R\ {—1}, the following formula holds:

(3.9) j(s—a)a odgs = (1:;1H> <1+2q°“> (z —a)*+!.

a
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Proof. Using definition of g-integral, we have

T -

(1-¢q)(z—a)

Je-a s = 001193 " (e + (1= )a- o) - (- )"

2q

a L n=0

i <1+q>Zq"<q"<x—a>>‘“—<x—a>“]
L n=0

- Umolzaig ) <x—a>°‘Z(q(’“>”—<w—a>“]

2(] L n=0
_ (-9E-a* [t
2q 1—qott
1—gq 1+q¢" a+l
- () () e
The proof is completed. O

4. -HERMITE-HADAMARD INEQUALITIES

In this section, we present g-Hermite-Hadamard type inequalities for convex
functions. Let 0 < ¢ < 1, we consider the following graphics:

v

hz (a:)

Theorem 4.1 (g-Hermite-Hadamard). Let f : J — R be a conver continuous
function on J and 0 < ¢ < 1. Then we have

(4.1) f<a+b) <1 /bf(x) pioz < L@ IO

2 b—a 2

Proof. Since f is differentiable function on [a,b], there is a tangent line for the
function f at the point ‘%b € (a,b). This tangent line can be expressed as a

|
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function ho (z) = f(22) + f/ (%E2) (2 — 2£L). Since f is a convex function on
[a, b], then we have the following inequality

a9 me =)+ () (- ) <

for all z € [a, b] (see Figure 2). g-integrating the inequality (4.2) on [a, b], we have

b

/hg (x) odgz

a

[l or (559 (=254 e

( )+f/<a;rb>a/b<x_a+a2_b> adgz
() (55
1

b
a+a2b(ba)]

(b - a)® (b_ﬂ

()

2 2

(4.3)

Il
—
>

I

S
S~—"
~

On the other hand, line connecting the points (a, f (a)) and (b, f (b)) can be ex-
pressed as a function k (x) = f (a) + W (x — a). Since f is a convex function
on [a,b], then we have the following inequality

(44) @) < k@) = @+ 1220 @ )
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for all x € [a, b] (see Figure 2). g-integrating the inequality (4.4) on [a, b], we have

b

[ @) g

A\
>
S
N—
S]
Y
<
B

- [+ ) i
b
= (b-a)f(a)+ f(bl)) - Z:(a) /(x —a) odgx
b

= o) f+ 1O (11__;’2) (1?) o0

= (b—a)f(a)+ f(bl)):i(a) (b;a)
and then

b

(45) 0-o 1O 1) e
A combination of (4.3) and (4.5) gives (4.1) and the proof is completed. O

Remark 4.1. In Theorem 4.1, if we take ¢ — 17, we recapture the well known
Hermite-Hadamard inequality for convex function.

Theorem 4.2. Let f : [a,b] — R be a convex differentiable function on [a,b] and
0 < qg< 1. Then we have
(4.6)

f(qa+b>+q—1<b—a>f,(qa+b>§b1a/l’f(x) e < L@ IO

1+¢ 14+q 2 1+g¢ 2

Proof. Since f is differentiable function on [a,b], there is a tangent line for the

function f at the point qf:qb € (a,b). This tangent line can be expressed as a

function h (x) = f (qa'H’) +f (qa+b) (:v - qlafqb). Since f is a convex function on

1+4q 14q
[a, b], then we have the following inequality

an  ne =g (B (1) (o= 1) < )
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for all x € [a,b] (see Figure 2). g-integrating the inequality (4.7) on [a, b], we have

b

[ @) g

b

> /h(x) odg

ab b b b
_ qa + [ 9a+ _gqa+ 2
- /{f<1+Q>+f (1+q><x 1+q>} o

b

_ qa+b ,(qa+b a—b 5
= (b—a)f<1+q)+f<l+q> /(m—a+Hq> adg
B qa+b , (qa+Db [ 1—g¢q 1+g¢ 2b a—>b
B (b_a)f<1+q)+f<1+q> (1—q2)< 2 )CE_G) Tt
B B ga+b ,(qa+b -(b—a)Qi(b—a)2
= ¢ a)f<1+q)+f<1+q> 2 1+¢
and then

b
ga+b q—l(b—a)2, qa+b
4y o-af () I Oy (D) < [ ) e

A combination of (4.8) and (4.5) gives (4.6) and the proof is completed. O

Theorem 4.3. Let f : [a,b] = R be a convex differentiable function on [a,b] and
0 < g < 1. Then we have
(4.9)

T R /bf(x) e @I
“b—a e = '

1+¢ 14+q 2 1+g¢ 2

Proof. Since f is differentiable function on [a,b], there is a tangent line for the
function f at the point %‘{Ib € (a,b). This tangent line can be expressed as a

function hy (x) = f (%‘Zb) + 7 (%(flb) (m - %(Zb). Since f is a convex function

on [a, b], then we have the following inequality

410 b =g (D) 4y (D) (o) < i
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for all = € [a, b] (see Figure 2). g-integrating the inequality (4.10) on [a, b], we have

b
[r@
ab
/hl(x) odg®
ab b + qb + qb
a+q ,fa+q aTq
/{f<1+Q>+f (1+q><m_ 1+61>} g

v

- 0mar(358) e (552) [ (-reeit)
= o (F5) o (559) | (15) (59 o -
= s () e () | OO

and we can write

(4.11) (b—a)f(a+qb> + 1_q<b_2a>2f’ (a+qb) < /bf(x)

1+g¢ 1+4¢ 1+¢

A combination of (4.5) and (4.11) gives (4.9) and the proof is completed. O

Theorem 4.4 (Generalized g-Hermite-Hadamard inequality). Let f : [a,b] — R be
a convex differentiable function on [a,b] and 0 < g < 1. Then we have

b
(412) maX{11,12713} S ﬁ/f(gj) adﬁx < M

- 2
a+b
Il = f ( D) > )
+0b —1(0b- +0b
12:f<qa >+q ( a)f/(qa )
1+4+¢ 14+q 2 1+¢
a+qb l1—-gb—a ,(a+qb>
Is = .
s f<1+q>+1+q 2 / 1+g¢
Proof. A combination of (4.1), (4.6), and (4.9) gives (4.12) and the proof is com-
pleted. O

where
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