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ABSTRACT

In this study, a novel variable gain PI controller structure is introducedprbipesed controllestructure consists of a sector
bounded nonlinear function of the relative error value in cascade with a lineagéike®! controller. The stability analysis

of the closed loop system is examined through Popov stability criterion,JRiewititz stability method and stability boundary
locus methodor both seconabrder and higheorder systemdn addition the performance of the controller against parameter
variations and disturbances is investigatedublosome simulations for secontder systems. Aexperimental study, an
active suspension system, is conducted to examine the performance of the cémttuligver order systems. In the literature
thereare similar controllers, but the proposed one is superb in terms of effectiveness and Jtiabitigiv controller prevents

the saturation of the controller signal. Simulation results and experimental studies reveal that proposed controléeisstructur
quite effective for both lower and higher order systems.

Keywords: Nonlinear PI, Variable gairRopov criterion Stability boundary locus, Active suspension

1. INTRODUCTION

In several decades, numerous new andepful methodologies ardeveloped in the fieldf control
engineeringhowever, conventional PID and Pl type controllers are pa@ilar among these structures
especially in the industrial control systerffibie mainmotivationbehindthis choices the simplicity of
the structure of controller and their unquestionable stability properties.

Generally, the expectation from the contsgktem is that the controlled system has fast response, no
steady state error with small overshoot, as well as robust performance against parameter uncertainties
and disturbances. A constant disturbance to the systnbe rejected utilizing an integrarm in the
controller, but it is known fact that this term introduces undesired incredlse system overshoot [1,

2]. Remedy of thisontradiction nonlinearvariable gain controller structures are proposed to diminish
steady state error due to disturbances, while maintaining acceptable overshoeiniessistenspeed

[3, 4]. In the literature, there are quite a few studies on such nonlinear variable antlecs for linear
systems to improve the controller performané&e$q]. In [5], Hunnekent al. proposed aariablegain
integral controlleto improvetransient performance of linear motion systelweyfocusecn tradeoff
introduced by integradction. They alsgroposé an optimization strategy, which enables performance
optimaltuning of the variable gaif\rmstronget al. proposed a nonlinear PID controliesa function

of system statel hey extended their previous studies] to tracking and to systems with stétedback

and integralkcontrol [9]. In [10], authors designedreonlinear filterbased on Lyapunov argumenes
improve nanopositioning servo permances in higlspeedmotion systems They demonstrated
proposed struare on a shorstroke wafer stage of an industrighfer scanner.A method for the
performance assessment of a variadaden control design for optical storage drives is propas¢l]

to overcome welknown linear control design traadfs between lowfrequency trackig properties and
high-frequencynoise sensitivity.
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The main goal of this study is to modulate several or all the controller coefficients to enhance the
controller performance. A nonlinear gain, which is associated in series @dgtistant coefficient linear
controller,is employed to achieve this goal. The function of the nonlinear gain is generally preferred as
a sigmoid, hyperbolic or fractionéihear function of the errod, 13].

One of the key components of the design of variable coefficient controllers is to assess the stability of
the system with respect to the variation of nonlinear gain. In literature, Popov stability criterion and
Lyapunov method are employed for this purposehe stability analysis using the Popov stability
criterion of nonlinear P, PD, Pl and PID controllers on a simple robotic system with sacend
dynamics has been extensively discusseddhdid similar analyses have been investigated in different
studies [L5, 16]. In these analyses, the systems are considered as Lure type of system. The proposed
nonlinear controller was handled as an independent deatmded nonlinear function and the stability
analysis presents a range of the sector, in othedsytie range of the variation of nonlinear gain. In

[17] and [18], the Lyapunov method is employed for the stability analysis. The total energy of the system
including the controller is considered as the descriptive Lyapunov function and it is provesehat

the controller satisfies certain conditions, the derivative of the Lyapunov function-posiiive.

The main contribution of this study is a new nonlinear ge&turewhich is not only function of the

error but also referencggnal In this scheng, the gain increases with function oftheerrorrelativeto

the reference, thus the control signal increases exponentially, and similarly, decrease in relative error
results an exponential decrease in control sightais novel gain structure of the controller has two
advantages. First advantage is an exponential change in proportional term, which facilitates controller
to applyastrong control action to decreaberise time of the system response. Second advargage
integral termeffect of the controllerExponential decrease of integral action when error reaches to zero
inarguably prevents overshoat the system responsempared tdixed-gain integral controllerThe
combination of these two improved actionpresents a novelty in PID controllers.

Another aspect of the nonlinear gain function, which presents a key advantage against the similar
approaches in the literature, is that the function is a sigmoid type which limits the nonlinear gain thus
the contol signal. The stability analysis of this controller is elaborated for second and higher order
systems, respectively. A basic magpsingdamper system is considered as a second order system, and
a fourthorder active suspension system as a higher ord#ersy Moreover, the experiments are
conducted using the active suspension benchmark developed by Gzosgany.

Three different stability analysis method are utilized for both systems; Popov stability criteriort, Routh
Hurwitz stability criterion and ability boundary locus method. The stable range of the sector of
nonlinear variation is obtained utilizing the Popov stability criterion. The nonlinear function is
considered as a variable gain and the stable range of the gain is determined via tHéuRuitzh
stability method. The stability boundary locus method provided the stability locus loaktipdane [L9,

20]. All three stability analysis revealed the same results for each type of system.

The paper isrganizedas follows; the proposed method is describeection 2. In Section, e stability
analysis for the seconorder masspringdamper systemwith the controller is studied using Popov
stability criterion, RoutiHurwitz criterion and stability boundargdusmethod, respectively. The section

is concluded with the simulatiorsults. In Section 4, the active suspension system is introduced; the
stability analysis is inspected using all three methods, followed by the simulgidts. The results of

the experimental studyra presented in Section 5hd conclusion remarks are in Section 6.
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2.CONTROLLER STRUCTURE

The mathematical description of a fixgdin PI controller is generally expressed as follows

66 Q6 0 Qo0 (1)

whereu(t) is control signalr(t) is system referencg(t) is system outpug(t)is error signal, an&, and
ki are constant proportional and integral gains, respectively.

The proposedcontrol structure consists of a nonlinear glfa,r) which is placedin cascade with a
fixed-gain PI controller irEquation 1, as in Equation Zhe block diagrarof the proposed structure is
illustratedin Figure 1.

60 MQQO6 0 Q06QoQQ (2)

In previous studies, the nonlinear géiie) is defined as a nonlinear function of only the error signal
e(t), and it is bounded in an intervé( @i, k(€)}nad. The proposed a novel nonlinear gain funct¢ar)
is defined as

foXe; I o) (3)

whereg Qo7 os and,U, an@o arepositivevaluedcontrollerdesignparametersNote that, the
k(e,r)function is bounded iro[- U ,] with this definition.

Pl
Nonlinear gain ~ controller System
k| u Y
r k(er) >k, » G(9) >
e s

Figure 1. Nonlinear PI control system block diagram.

In the proposed control structure, the error signal is amplified with a term, which is defined by the ratio
of errorto the reference and fed into fixgdin controller. Thus, a rapid change in the reference results
in a larger relative error. Consequentlye exponential term verge on zero and thecprerollersignal

is amplified by approximatelytimes of the error. In other words, when the relagiver value is large,
controller gains exponentially increase anddbetroller drives theystem outputp the referencealue

rapidly. On the hand, when the relative error value tenddeitrease, the controller coefficients
exponentially decrease and nonlinear dg@r)a ppr oxi mat es t oU)t hveh e no wehset
vanishes. In essee,the controller behaves as an aggressive controller with heghéroller parameters

for large error, andh moderate controllewith smaller controller parameters for small error, which
shortens the rise time and allows the system output behaviay $mioother in the process of settling
when compared to the fixeghin PI controller.
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The majomodificationof this controller structure from the other nonlinear controller structures in the
literature isthe variation othe nonlinear gain with the reference value. In this way, the control signal is
proportiorally generatedo the relative error, which has positive effect on system respMesanwhile,
thedecrease of the error is translated in an exponel@akase ithe control signal anthis effectively
prevents the system from overshoot. This structure also reducemthieg of the integraterm which

is another cause of overshoot.

3. CONTROL OF SECOND ORDER SYSTEM

In many physical applications, systatynamcs are generally modelled by second order differential
equationsBesides it is possible to express higher order systems with second order dynamic equations
formed by dominantamplex roots of original systefh4]. In order to understand the main idea behind

the proposed controller structure and analyze the stability, a second ordespniragdamper system

given in Figure 2 ipreferred HereJ , @ and 4 represent mass, spring constant and damping constant,
regectively. The transfer functiobetween the appliefdrce (system inputy v, and positior(system

output) £ v, is presentedn Equation 4.

k FVX
m —» F
:’7
b

Figure 2. The schematic of secorwtder masspringdamper system

"Oi ai wi Q )

The stability analysis of the closed loop unit feedback syst#imthe proposed controller is studied
utilizing Popovstability criterion stability boundary locus methdd9] and RouthHurwitz stability
criterion The outcomef these three tests coincided

3.1. Popov Stability Criterion

The Popov stability criteonis used for the stability analysis of theiadble coefficient Pl contraystem
with sectorbounded nonlinear gain that connected in series to #fseslinearfixed-gain P1 control
systemasin [14, 21]. The Popov critedn states sufficient condition for the closed loop system to be
globally asymptotic stable for all nonlinear gains indbetor - 0+ This meanghat the
Popov plotof W( j) whichis the forwardtransfer function of the linear part of the systéasg entirely
onthe right of a stight line with a nonnegative slope passing through the ptifijg - + .[14].

Thelinear part of the open loop transfer functfonthesystem is given in Equation 5.

Q Qi
[ aic o Q

()

The crossing point of the Popov plot of thi¢ | with the real axis should be obtairfedthe application
of the Popov stability criteriarThe real andmaginarypart of thew( | igdivenin Equation 6.
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. Qa1 wQ M
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w 1 W] Q a7
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06 Q @0Q Q4 T (00)]
! @ w1 Qa1
The Popov plobf theW( j) stars from | for v=0,and encat |t h for

¥= B Here, depending on thg andk; values, two cases are p035|bla thecase f {10 the

¥ 1.W(¥) termis always negativeegardless of the values and the Popov plot of tiié&( j afways
remairsin the third and fourth quadrants of the complex plaréch meanshe plot does not cross the
real axis.Therefore one can ploa straight lingpassing through the origimith nonnegative slopehile
the Popov plot o¥W( j entijrely liesonthe right of that line

In the case . . the Popov plot of th&V( j argsesin the real axis and the caff
frequencyand the crossmg poirg given in Equatior? and 8, respectively.

0 ]
1 R (7)

. »Q  Qa
Y Q — (8)

wQ

The Eaqiation8 revealsthat the Popov plot of th&/( | argsses into negative real axis, and here, the
maximum nonlinear coefficient value is abvied as

Qi P 60 9
Yoo @ o0 a ©)

In both caseghe graphical results are givanFigure 3forO 8 kg, -H- 8 Nsec/m:
N/m, (for case (b)).
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Figure 3. The Popov plot of th&/( j (&))the case o2  ¥a Q (b) the case of2 &G Q.
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3.2. Routh-Hurwitz Stability Criterion

The stability of closed loop systei® examined by using RoutHurtwitz stability criteria. In this
method, the boundaries of nonlinear gei®,r) aredetermined by considering thgdink(e,r)is a fixed
parameter.

The closed loop system transfer function with propaesedrol structure is given in Equation.10

A Q Qi

' Td 0 o ad a4 al

(10)

Routh table generated according to the characteristic equation of closed loop system in Eqaation 10
based orthe criterion it is said thak(e,r) gain must satisfy the following conditions so that the system
is stable

Condiion1:Q mandifQ —-"Q,thenQQ 1
Condition2:Q mandandifQ —"Q,thenmt QQ ——.

It should be noted that both stabilapalysigprovidesame results.
3.3. Stability Boundary Locus Method

This method is proposed for computation of stabilizing PI controllers
[18, 19. Here the problem is to compute the parameters of PI controllers which stabilize the system
given Figure 1 withthe nonlinear gairk(e,r) thatis consideredas afixed gain. So,nonlinear PI
controller becomes

8i — (11)

T (13)

The stability boundary locus is obtained in e plane bysolving the equations given Equation
13. The stabilitypoundarylocus and the ling divide the parameter planeto stable and unstable
regions[20]. Following the partitionto determinghe stability region, each region in e plane
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should be tested byicking a pointin the setand checking the stability of thebosed loopsystem.In
Figure 4(a) the parametric stability boundary locus of a second order system with a Pl controller in (11)
is depicted

pair that located in the stability regidi, and®_ values lie on a&traightline passing
through the pair and origin (foff g» ). The crossing maximui(e, r) values is evaluated
from the intersection point between the straight line and the stability lgcusust be positiveo
guarantee the stabilityhich forces the minimum value &f(e,r) to be zero.

To compare the stability boundary locus with the results of other stability criteria, one can divide the
stability region into two parts shown as Figure 4 (b). The pattseastability region correspond to case
1 and case 2 that explained in Popov and Rbluttwitz stability criterion sections.

kFl =mk;/k
Stability region k¢ b kp/m A

k(e.r)>0

kp*
kp*

ki >b kp/m

0<k(e,r)<-b*k/(b*k p»k‘*m)

0 0
/b*k/m /b*k/m
ke -k

0 0
ki* ki*

@) (b)

Figure 4. (a) The whole stability region of the system (b) the part of the stability region that correspond to case 1
and 2.

In the last step, it is necessary to define the boundaries of the parddhki@nslo of the noninear gain
expression given in Equatiod, which satisfy condition 1 andcondition 2. It is obvious that the
boundaries fok(e,r) in conditions correspond theboundaries of nonlinear gain function that is given
earlier. When both conditions aexamined it is seen that theris no constrait for b parameteffor
stability point of view, bufollowing inequalitiesdepending otJando parametershouldbe satisfied

Condition 1:Q mandifQ —"Q,then 7.

Condition 27Q mandifQ —-"Q, then

and| [.

3.4. Simulation Studies

A second order maspringdamper system (see Figure 2gahtrolled using theroposed controllen

order to test the performancene simulation diagram in Figukeis constructed in Matlal&imulinkE,

and performance of proposed nonlinear Pl controller is compared with egfkedPl controller which
hassame controller parametdgsandk; . The parameters in simulation are given in Tablddte that

with thesesystem parameters and controller pagtersincludingU and o2 are in stabl
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Table 1.Simulation parameters

Parameter Value
Mass,m 2.45 kg
Damping coefficientb 18 Nsec/m
Spring constank 400 N/m
Proportional gainkp 25
Integral gaink; 150
Controller parametet) 0.4
Controller parameteh 1
Controller parameten 2

ref system

N

»
L | feed 1
Pulse u » »
alpha »| alpha > >
Generator I < den(s) ]
p| beta
alpha

Scope

T

Nonlinear Pl controller
=
beta

den(s)

+

A\ 4

=
°
\4
+

A4

ol =

>

Figure 5. Simulation diagram constructed in Matlab/Simulink.

In the simulations, a square wave with a frequency of 0.0125 Hz and amplitudgilizésl asthe

reference signal. The results aresentedn Figure6 and 7. In Figre6, it is visiblethat theproposed

structure accelerates the system response compittethe fixedgain Pl controller. When reference

signal changes, the relative error readtigh values, and asisiblein Figure7, k (e, r) gainincreases

Similarly, when the output value approaches the reference, the error decreases and kéalihgain
decreases as expectdbhte that for zeroreference i nce r el ative error ter m,

epsilon term is added to tdenominatoo f 0, sdeaii ot h & Here- is selected as 0.001.
The proposed controller increases the performance of the classical controller withowermpot.

0.5

position [m]

0 20 40 60 80 100 120 140 160 180 200
time [sec]

Figure 6. System response for nonlinear and fbgadn PI controllersNonlinear PI controller response in blue
line, fixed-gainPI controller response in red line, reference in black line.
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Z 18
5
16
0 20 40 60 80 100 120 140 160 180 200

time [sec]
Figure 7. Variation of nonlinear gaik(e,r) with respect to time.
The disturbance rejection performance of proposed contiisllgrvestigated by introducing step

disturbanceénput with the amplitude of 0.&tt=20 s. Theresult of this case is Figure8. Accordingly,
it is clearthat nonlinear PI controllggerformsbetter both reference tiking and disturbance rejection.

I

i "
a

0 5 10 15 20 25 30 35 40
time [sec]

position [m]
=

©
ol

Figure 8. The output disturbance rejection response of the nonlinear FikadeyainP1 control systemNonlinear
P1 controller response in blue line, &ntroller response in red line, reference in black line.

Figures 9, 10 and 11 illustrate the effect of controller parameteranéo on controller performance,
respectively. Thoughthe system response accelerates wherltharameter is decreased within the
stability limits, the system response slows down wherbth&ameter is decreased. For higher values
of theo parameter, system response becomes more aggressive.

F [
F-

position [meter]

10 15

time [second]

Figure 9. The controller performance for differeﬁ!tparameters.v Fixedain PI controller response in red line,
U=1.5 in blue linelJ=1 in green linel)=0.5 in cyan line|=1.5 in magenta linebE€1l ando=2).
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position [m]

10 15
time [sec]

Figure 10. T h er per f or man c-gainfPlocontralleirdsgorse ia red linedh par an
b= e i

C_
line, b =10 in green |line, b =1 1in

|

10 15

time [sec]
Figure 11.The controll er per f or man cgain Plaantrolier réespoase e blte lime, par a m
2=1 in o@r=en nlirred, | i ne, 2=4 in magenta | ine, 2=5
b=1).

Finally, performance of proposed controller is tested by changing the system parameters given in Table
1. The system responses inHigl2 shows that proposed doaller is more robusthan the fixeegain
PI controlle against parameter variations.

Vfr /- 7

0 20 40 60 80 100 120 140 160 180 200
time [sec]

position [m]

Figure 12. System responses for b=7.5 and k=986nlinear Pl controller response in blue lifixed-gain Pl
controller response in red line, reference in blémdk

4. CONTROL OF HIGHER ORDER SYSTEMS
In this sectionasa higher order systemwve examinea vehicleactive suspensiorcontrol system.In

active suspension systems, the passive force elemerdscmmpaniedyy active force element3he
objective of control is to improve the ride comfort drashdlingability under different road conditions.
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An active suspension system on a quactgrmodel is schematically illustratedrigure13. The system
consists of two masses; mass of theislehbody, Ms and mass of tire, M A spring and a damper
support each mas¥he springs and the dampeBs support the body weight over the tire, while the
springKys and the dampdB,s represent the stiffnessd damping propertiesf the tire in contact with
the road.The generalized coordinate represents the tire displacement andepresents the vehicle
body displacement all with respect to the graufide system has two external inpuisad surface
positionz and control forcé-..

%
M 1

Figure 13. Double masspringdamper model for active suspension syst2ah [
Governingequations of motiorwhere & the initial conditions are assumedrq are obtaine@ds below

O 6w 6w Lw L

0 0 0 0 0

. e (14)
O 0 0 w Ow 0@ U U W vVw U a

0 0 0 0 0 0 0

The gravitationalforce only changes the equilibriupoint of the positionsn the equations of motion

and ithas no effect on theéynamics of the systerfror omittinggravity forces from the equations of
motion, the following change of variables to the equations of magiappied. In other words, the

relaxed position of the sipgs, i.e.z.s=0, z=0, will be the equilibrium point of the systd?].

. , b O . . , ®d Qb 0 .
w a —h o a ! , h (15)
0] 0] V)

Following the transformatiqrihe equations of moticmrn inta

0 & 6a o6« O 0@ 6@ a b a
C o m e xaaa (16)
VO oaq O oaq a a v
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In our approach, the active suspension control comnianid the control signal, andoad surface
velocity »,, also represents road roughness, is regarddgedssturbance signal. The aim of control is
to ensure that vehicle body positjag tracks the road positigrz, with minimum vibration. 8ing
Equation 16the transfer function between vehicle badyodty and disturbance signand also, the
transfer function between vehicle body position and control comier@ndbtained as follows

a 006 i (V) O 6i 0L

a UL I [Ve] ov U O I (V] ouvo (VN U L I o oL 1 (VY] (17)
. Q 0 i 6 i 0

O UL I (Vo] (oY) U O I (VANV] ouvo [VERV] U L I vo ou |1 (ViV}

In the following pars of the study, the transfer function between vehicle body position and control
commandis employed The stabilityanalysis of the given system éxamined bythree methodss
discussedin Section3. However, mcethetransfer function is fourth order, analyzitite closed loop
system stability with proposed control structure va#inametridransfer functions quite complicatel.
Therefore, weconsiderthe active suspension system with numeric values of system pargmwich
areevaluatedn Table 2.

Table 2. Active suspension system parameters.

Parameter Value
Vehicle body massyis 2.45 kg
Tire massMus 1 kg
Suspension stiffnesks 900 N/m
Tire stiffnessKus 1250 N/m
Suspension damping coefficieB 7.5 Nsec/m
Tire damping coefficienBus 5 Nsec/m

By substituting the system parameters,rnibimericaltransfer function is obtained as

a i i vi pgum
Oi 80 oOo@cgiv egmuU poYixvppCUTINT

(18)

PID type controlleris employedto suppress theibrations ofthe active suspension systemnore
effectively. Therefore, to separate the PI part of controller froemwhole plantyehicle suspension
systemin Equation 18 and PD controllisrconsideed, which is connected in series witie suspension
systemasanew systento be controlledA PD type controller with proportional gain 1 and derivative
gain 5, one can obtain th@nsfer function othe cascadesystemas

a i vi P o@cguivuvpcgum (19)
Oi 80 o@civ ogmu poYixvppCguUTNT

From now on, we study tretability of the system in Equation.19
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4.1. Popov Stability Criterion

To investigate the absolute stability of the closed loop systerigure 1 with Popov criterionit is
necessary to compute the linear part of open loop transfer functibeantrol system, andivide its
frequency response into real and imaginary parts as follows

Qi Qui c¢cd ¢@ocvuvpcgum
— : , , (20)
icg b o@giv egmuv poYixuvppguUIMT

Qxdig pm 18 pn toovyp® Qp8 pm RYpnNM  pT o8V pcap
Y Q
P& @ pTT P& X p M WP CYWL P @
(21)
Y N p&8 pm TRYPT pT O8IV pCaY Q1 x8ic pm 18 pm TooL Y p &
1 0w Q

PR @ pTT PE X p T L cYwup @

In this case, examing the Popov plot otV(j¥), it not straightforward as it is inégtion3. Therefore,
we choose some test points fgrandk; to plot the curveandfind the crossing point of real axisor

example, the Popov plot is obtained fbr 8 and (see Figre 14(a)) and fo
(seeFigure 14 (b)).

T T T T T T T T T
50 A
50~

-100[~

-150~

&
o
T

-200~

w Im(W(jw))

-2501~

w Im(W(w))

-100 -~

-300~

0\

-15

-3501~
-150 -

-4001~

-20

0 0.5 1
: : : : : : : : :
0 2 4 6 8 10 12 14 16 18 20
Re(W{jw))

(b)

Figure 14. (a) Popov plotfor 'Q & vand’Q v T ) Popovfor Q@ p @ndQ pu.m

-450
-20

-200
20 5

In Figure14(a) the Popov plot ofV( j) crosses the real axis. The crossover frequency rEsdaver
pointmaybeobtainedoy usingequation21. Then, the maximum value of nonlinear gk(e,r)is equal
tothenegative reciprocal of the crossing pdihthis case it is equal to 21.56 dgmentionedn Section
3.1.Thus the range of nonlinear géife,r)is determined as (0, 21.5675).Figure 14(b) the Popov plot

of W( j) remains entirely in the first, thirdnd fourth quadrants and does not cross the negative real
axis.A straight line with a nonnegative slope passing through the onigyibe built that locatedntirely

on the left of Popov plot. Hence, the range of nonlinearlifa@m)i s f ound as (0, D).

As a result, itis possibleto determine e range of nonlinear gak(e,r) numericallyby using this

stability criterionfor fixed-valued controller parameteksandk, to control the vehicle active suspension
system
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4.2. Routh-Hurwitz Stability Cri terion

The characteristic equationf the vehicle active suspensicontrol systenwith proposed control
structure isasin Equation22:

o

Yi ¢80 VQH Q o®co ¢c@MA Q vQt Q ¢ miv
CRT Q g Q poyxu (22)
PO Q @cUh Q ppgurnnmpmc 0K Q

WhenRouth tabulation is produced the following conditions are obtained for closed loop system
stability:

Condition 1: f'Q  mandm Q@  —thenm QG " Qi QRQ Mp

Condition2f'@ mand — Q ” Qi QRQ Alothenm QG ” "Qi QRQ Hl¢

Condition 3: f'Q mand” Q1 QAQ Alo Q ” Qi QhQ K11 then

m QA 7 Qi QhQ Hlcor” Qi QhQ Hlo QG ” Qi QhQ H1t
Condition4: 1If Q mand™@ ” Q1 QhQ Hlitthenm QM ” Qi QRQ H1¢or
"0l QRQ e Q@ " Qi QFQ At
Conditon4: 1fQ mand™ @ ” Qi QhQ H1t thenmt Q@ ” Qi QhQ Hl¢

Condition5: If Q@  mandQ mthen'QCh i

Here, thenotation” "Qi H& represents the smallestmoot of'Qi  function, and limit polynomials
are as follows

QR povoBHYY oYY pconQRY I p R G XD

VX ®EQQ wme&0 | mTMi¢noaPrd 1 1 VR
TOHYXQQ wwdv® i MITNQ mi¢ tyQ uvdt TQQ (23)
Q

VIO MWINCXPoTHT QUK QX ™ Yp dQYQ
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MIiQ xepmn i oBlopm i Q pdlwpni Q xBT @

PTTIQ Mt ™bdQ O
The resultsn previous sectiorin case ofQ ™ vrandQ v mand the case of Q@ p cand@Q
p v are examined. First caserresponds to 3rd conditipand the boundary fd((e,r)is found ast
iQ‘(ﬁ‘ ¢ @ @ x Becond case corresponds to last condition, and the bound#(e ®iis found as
QQ 1

In brief, using this crérion, the range of nonlinear gaute,r)is determinedy functions ofk, andk;.
4.3. Stability Boundary Locus Method

In this case, the controller structure in (kLlyised, and the function g and}
are computed as described in Section 3.3.

with respect tos

X8IpwWLUOPXKT TENMCYYOEPXIU TLORIY PRD
P CD PUGGUTEMXU |

jo!

(24)

PTTMOGCU MUBIKMPP YR PT OTAUXIL p C&CU
P G puUOCULUTEXUL ]

The stablllty boundary locus @ottedin the ky- ki plane by solving the equatieet inEquation 24

i is also the bouraty of stability. The boundary locus plotfar¢ h is given

in Figure15. The stable region in the plotrisvealedy testing points in eaclegion.As discussed in
Section 3.3, theninimum value ofk(e,r) is 0, sincek; mustbe positive. Maximum value ok(e,r) is
calculated from the intersection pointtafundary locus and the line that passing through the chiasen (
ko) pointand origin.

Kol

200 T

Stability region

T ——

-200 - \ .
0

S -400 - - g
5

-600 - .

_10 r r
-800 |- 0 500 1000 1500 2000 |
_1000 r r r r r r
1000 -500 0 500 1000 1500 2000 2500 3000
ki*

Figure 15. The stability boundary locusf active suspension system

Again here, the case d ™ vandQ v mandthecase ® p candQ p v are examined.
For the first case, théGRG points are located on tistraightline Q ¢ m i@ When this equadn
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of line and Equatior24 are solved together the intersection point is foundgas x Fhyod wp Y @
Hence maximum value ok(e,r)is computed a21.5674. For the second case, the straight line is
computedas’@ p @& Q which lies on the first quadrant. Therefore, there is no intersection point and
limit for k(e,r) parameter as seen in Big15.

Ultimately, by using these three stability analysis method, the range of nonlinear fikgetidis mh

Qi . To ensure the stability of proposed nonlinear function in Equation 3, its range must remain
in the determined(e,r)interval. In the proposed structure, the rangk(efr)is f | i as mentioned
earlier. Therefore, for stability the condition 1 and QQ is obtained.

4.4, Simulation Studies

In order to test the performance of proposed controller for active suspension, shstesimulation
diagram in Figurd6 is constructedThe parameters in Table 2 is used in the simulatidms controller
coefficients and parameters &@e p ¢ Q pu,m ™, Tmand ¢. Note that, this parameter
set is in stable region defined in previous sections.

15.306152+5663.27s+459184 1
zr| zr zr_dot] » | —
4 +15.561253+2532.6552+5663.275+459184 s
Road Surface Differentiator +
zsd/zrd +
Generator1
ref
feed 50012s 0.40816352+2.04082s+510.204
alpha . > —» 5 g
P den(s) 2 s#+15.561253+2532.6552+5663.27s+459184 ) 4
.
beta K 93
Differentiator1 zs/Fc C
Nonlinear Pl > ™
>
Simulation
zs
1 500125 0.408163s2+2.04082s+510.204
150 - s —»{ 5 +
S k3 den(s) L3 4 +15.561253+2532.6552+5663.275+459184
ki . - kd1
Differentiator2 zs/Fc1
12
kp

Figure 16. Simulation diagram constructed in Matlab/Simufiriér active suspension systdmsimulationsroad
profile a square wave signal wighfrequency 00.1667Hz and aramplitudeof 0.02 is applied athe
reference signaln Figure 17, open loop system responsegigsentedAs it is revealed in the figure
open loop system with no suppression ability has vibrations with large amplitudes.

0.04

gm{\[\f\/\ A A ﬂ[\(\/\f\f\,«
S0 LLARAN TV LLARARI 1Y
Jyvee I

Figure 17. The open loop system response. Road profile in blue line, system response in red line.
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In Figure 18, the close loop system responggdsented witlboth the nonlinear Pl and fixeghin Pl
controller. Itis observed that, the proposed controller is faster i fixedgain Pl controlleandalso

hasless overshoot. In Figure 19, effectstbdndo variations on controller performance are examined
while b is kept constant at 0.3. The results are similar with second order system results in Section 3.4,
for smallUvalues andargeo, system responsacelerates

0.04

£ 0.03“
5
= PN
% 0.02 \
= 001
3
B 2R
[} =
v
5 -0.01 v
>

-0.02

0 1 2 3 4 5 6

time [sec]

Figure 18.The closed loop system response. Road profile in black line, nonlineant®bller response in red
line, fixed-gain Pl controller response in blue line.

0.035 ;
— 0.03 |
E /
§ 0.025 7NN\
-g 0.02 jﬁ'ﬁﬁiﬁ- ‘ _—
> I |
3 0.015
o]
S 001
e
[3]
> 0.005
0 J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time [sec]
Figure19.The controll er performance for different paramet
l'ine, 2lhbl uesl +ne, U=0.5, 9 =1 i n,nagninalgalueslinired e , u=>o0

line.
5. EXPERIMENTAL STUDIES

The proposed nonlinear Pl controller is implemented for the active suspension system fromQuanser
Consulting. It is a benebcale model to emulate a quastar model controlled by an active suspension
mechanism, see Figure 20. The upper mass (blue) represents the vehicle body supported above the
suspension while the middle mass (red) corresponds®oof t he vehiclebs tires.
simulates the road surface by moving vertically. The upper mass is actuated throogbliablemotor

[22]. Manipulating the motor command force, control operation is performed. The parameters are listed

asin Table 2.As controllerparameterssame parameter set with simulations in the previous section is

used.
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Figure 20.The active suspension system by seafR2].

In experimentsa square wave signal with 0.8z and amplitude 0.02 is appliedthsroad profile The
open loop system response can be seen in Figuih2Xesults of experiments are illustrated in Figure
22 and 23. As seen in Figure 2&thoughthe proposed structure accelerates thlateay responsehe
overshoots lessas expectedn addition the impact of integral term in steady state is more effective in
case the proposed controller is used. When the effect of difféesub values are examined, the similar
results with simulations are observed (see Figure 23). Note that in Figure 23, the Jalisekept
constant at 0.3.

0.04 T T T T T

0.03 -

e
s na ll
S 0.02 i -
z Uv V
g
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: A
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g ° j 1
=
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0 5 10 15 20 25 30

time [sec]

Figure 21.The open loop system response. Road profile in blue line, system response in red line.
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Figure 22. The closed loop system response. Road profile in black line, nonlinear Pl controller response in red
line, fixed-gain Pl controller response in blue line.
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Figure 23. The controller performance for different parameters. Road profile in blackJute], 2 =2 in cyan
line, U=1,29=2in blue line,U=0.5,2=1 in green linel=0.5,2=3 in magenta linenominal values in red
line.

6. CONCLUSION

In this paper, a novel nonlinear variable gain PI controller to improve the transient response of control
systems is proposetihis new gain scheme increases the performance of even optimally designed fixed
gain controller introducing a nonlinear gain ftioo of error and reference ratibhe range of nonlinear

PI controller parameters that guarantee stability of the closed loop control system are investigated by
three different methods for both second and higher order systems individbaylations are
conducted to verify the performance of the proposed structure and found that the transient response is
improved by reducing the tracking error with a satisfactory performance. The proposed controller is
implemented on a vehicle active suspension syst@nifi8ant improvements of the transient response
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areobtained experimentally in this castuidy compared with the fixegain controllerin the proposed
control scheme, only one nonlinear gain function is used for both proportional and integral part of th
controller. In future work, asymmetric nonlinear gain functions will be used for each controller element
including variable gain for differential term.
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