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ABSTRACT 
 

This paper is concerned with a control design of an electro-hydraulic suspension system. In some practical problems, for 

instance in the active suspension design, the state derivative signals such as acceleration and velocity are easier to obtain 

rather than the state variables such as displacement and velocity, since the most commonly used sensors are the 

accelerometers. Hence, design of an optimal state derivative feedback controller is proposed by employing the linear matrix 

inequalities framework. In order to demonstrate the effectiveness of the proposed controller, a two-degree-of-freedom quarter 

vehicle suspension model equipped with an electro hydraulic actuator is preferred. Throughout the numerical simulation 

studies, bump type road irregularities at different vehicle forward velocities are applied to evaluate the performances of the 

controller in terms of ride comfort and safety. 
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1. INTRODUCTION 
 

The primary concern of a vehicle suspension is to isolate the vehicle body from road induced 

vibrations to improve the ride comfort. Other functions of the vehicle suspensions are to maintain road 

holding and to prevent excessive suspension deflection to avoid safety problems and road damage. 

Enhancement of ride comfort and safety are conflicting demands, since improved ride comfort results 

in a higher suspension deflection and lightly damped wheel motions [1].  

 

Many types of vehicle suspension systems such as passive [2], semi-active [3] and [4] and active [5], 

[6] and [7] are currently being employed and studied in both academy and industry. It is widely 

accepted that active suspensions have a great potential to meet the aforementioned conflicting 

demands. For instance, it has been shown that suspension performance can be improved significantly 

by Linear Quadratic (LQ) type optimal controllers when the weighting factors of the cost function are 

chosen properly [8]. Ulsoy et al. [9] investigated robustness properties of optimal controllers against 

parameter variations by neglecting actuator dynamics. As an important field of study, preview control 

strategies with capability of sensing incoming road irregularities are proposed to improve active 

suspension performance. Look-ahead preview active suspension control problem was formulated as an 

optimal LQ state feedback design by Abdel-Hady [10]. In order to eliminate steady state errors due to 

ramp type road inputs or inertial forces/moments caused by maneuvers, an optimal active vehicle 

suspension having integral constraints was developed by El Madany and Al-Majed [11]. Han et al. 

designed LQ type feedforward and feedback optimal vibration control law for active vehicle 

suspension system with input delay [12]. All the LQ type optimal control laws discussed above were 

designed with a solution of Algebraic Riccati Equations (AREs). However, Linear Matrix Inequalities 

(LMIs) based optimal controller design has received considerable attention in recent years [13], [14], 

[15], [16], [17]. An optimal LMI based active suspension controller, which is robust against parameter 
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variations and having pole location constraints, has been proposed by Soliman and Bajabaa [18]. 

Soliman et al. [19] has extended the robust regional pole placement controller with actuator saturation. 

Aforementioned research studies addressed the active suspension controller design by state feedback 

or full order observer based optimal controllers. In active suspensions, accelerometers are mostly used 

due to their simple structure and low operational cost [20]. In order to design state feedback active 

suspension controllers, displacement and velocity signals has to be measured. However, displacement 

signals are not possible to obtain accurately, since the signals of accelerometers are noisy and contain 

offset [21]. Moreover, full order observer based compensators, such as LQG, are sensitive to 

parameter variations and implementation errors. In the light of aforementioned considerations, the 

state derivative feedback appears as a promising active suspension controller approach in the 

following aspects. Firstly, the measured signals are the velocity and acceleration signals which are 

more available than displacement and velocity signals. Secondly, the order of the closed loop system 

is not increased, since the state derivative feedback controllers are static and memoryless with no 

additional state variables. 

 

In the last few decades, the state derivative feedback control strategy has received the considerable 

interests of researchers. Abdelaziz and Valasek studied the state derivative feedback design of pole 

assignment and Linear Quadratic Regulator (LQR) problems [22] and [21]. Design of state derivative 

feedback controllers for uncertain systems and regional pole placement constraints were formulated as 

convex optimization problem via LMIs framework [23], [24] and [25]. A state derivative feedback 

controller having regional pole location constraint was applied to an experimental quarter vehicle 

active suspension system [26]. In order to design an active suspension controller for an integrated 

suspension system, an L2 gain state derivative feedback controller has been proposed by Sever and 

Yazici [27]. Thereafter, the L2 gain state derivative feedback controller has been extended with 

robustness property for the systems having polytopic type uncertainties by Yazici and Sever [28]. To 

the best knowledge of the authors, there is no work employing optimal state derivative feedback LQR 

controller for active suspension design in the literature. Thus, an LMI based design of optimal state 

derivative feedback LQR controller and its application to an electro-hydraulic suspension system is 

introduced. 

 

The rest of the paper is organized as follows: Section 2 provides the modelling of electro-hydraulic 

vehicle suspension system. In Section 3, solvability conditions of the proposed optimal state derivative 

feedback LQR controller are formulated by LMIs. Then, effectiveness of the electro-hydraulic active 

suspension with proposed controller is tested against bump type road irregularities in Section 4. 

Finally, Section 5 concludes the paper. 

 

Notation: Throughout the text, a fairly standard notation is used. The superscript “T” stands for the 

transpose of a matrix; ℝ𝑛 denotes the n dimensional vector space, ℝ𝑚×𝑛 is the set of all 𝑚 × 𝑛 real 

matrices; “𝑡𝑟” is the standard trace operator; notation 𝑃 ≻ 0 (≺,≼,≽ 0) means that P is symmetric 

and positive definite (negative definite, negative semi-definite, positive semi-definite); I and 0 

represent identity and zero matrices. In addition, in symmetric block matrices, we use “*” to represent 

a block matrix which is induced by symmetry. 𝑑𝑖𝑎𝑔(𝑀1, 𝑀2,⋯ ,𝑀𝑛) stands for a diagonal matrix 

with elements 𝑀1, 𝑀2,⋯ ,𝑀𝑛 appearing on its diagonal. Matrices if their dimensions are not explicitly 

stated, are assumed to be compatible for algebraic operations. 

 

2. MODELLING OF ELECTRO HYDRAULIC VEHICLE SUSPENSION 

 

In this study, a two degree-of-freedom quarter vehicle suspension model equipped with an electro-

hydraulic actuator is used to design the active suspension controller. Figure 1 illustrates such a system. 

In Figure 1, ms is the sprung mass which corresponds to vehicle body, mu is the unsprung mass which 

represents the wheel assembly. zs(t) and zu(t) are the vertical displacements of sprung and unsprung 

masses. zr(t) is the road irregularity. ks and cs are the spring and damping coefficients of vehicle 
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suspension system. kt is the coefficient of tire stiffness. Finally, Fa(t) is the active control force 

generated by the electro-hydraulic actuator. 

 

 
 

Figure 1. Quarter vehicle suspension model with an electro-hydraulic actuator 

 

In order to generate the active control force, the electro-hydraulic actuator is installed between the 

sprung and unsprung masses. Hence, active control force is obtained as [29] 

 

𝐹𝑎(𝑡) = 𝐴𝑝𝑃𝐿(𝑡) (1) 

where 𝑃𝐿(𝑡) is the load pressure across the piston and 𝐴𝑝 is the area of the piston. A four-way valve-

piston system has been considered as the electro-hydraulic actuator. Therefore, the load pressure 

dynamics are given by [5]. 

 

𝑉𝑡
4𝛽𝑒

�̇�𝐿(𝑡) = −𝐶𝑡𝑝𝑃𝐿(𝑡) − 𝐴𝑝(�̇�𝑠(𝑡) − �̇�𝑢(𝑡))+𝑄𝐿(𝑡) (2) 

Here, 𝑉𝑡 is the total actuator volume, 𝛽𝑒 is the effective bulk modulus, 𝐶𝑡𝑝 is the total piston leakage 

coefficient. In (2), the 𝑄𝐿(𝑡) is the load flow and considered as the control input [5].  

 

Then, equations of motion of the quarter vehicle are given by 

 

𝑚𝑠�̈�𝑠(𝑡) = −𝑐𝑠[�̇�𝑠(𝑡) − �̇�𝑢(𝑡)] − 𝑘𝑠[𝑧𝑠(𝑡) − 𝑧𝑢(𝑡)]+𝐹𝑎(𝑡) (3) 

𝑚𝑢�̈�𝑢(𝑡) = 𝑐𝑠[�̇�𝑠(𝑡) − �̇�𝑢(𝑡)] + 𝑘𝑠[𝑧𝑠(𝑡) − 𝑧𝑢(𝑡)] − 𝑘𝑡[𝑧𝑢(𝑡) − 𝑧𝑟(𝑡)] − 𝐹𝑎(𝑡). (4) 

The state variables, the control input and the exogenous input can be defined as follows: 
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𝑥(𝑡) = [𝑧𝑠(𝑡) 𝑧𝑢(𝑡) �̇�𝑠(𝑡) �̇�𝑢(𝑡) 𝑃𝐿(𝑡) �̅�𝐿⁄ ]T (5) 

𝑢(𝑡) = 𝑄𝐿(𝑡) (6) 

𝑤(𝑡) = 𝑧𝑟(𝑡), (7) 

Notice that, the fifth state of the system is the normalized load pressure. The normalization operation 

is performed to avoid ill conditioning problem during the controller design and simulation [30]. The 

state space representation of the electro-hydraulic quarter vehicle suspension system can be described 

by  

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑤𝑤(𝑡) (8) 

where 𝐴 ∈ ℝ𝑛×𝑛 is the state matrix, which is given as 

 

𝐴 =

[
 
 
 
 

0
0

−𝑘𝑠 𝑚𝑠⁄

𝑘𝑠 𝑚𝑢⁄
0

0
0

𝑘𝑠 𝑚𝑠⁄

−(𝑘𝑠 + 𝑘𝑡) 𝑚𝑢⁄
0

1
0

−𝑐𝑠 𝑚𝑠⁄

𝑐𝑠 𝑚𝑢⁄

−𝑎1𝐴𝑝 �̅�𝐿⁄

0
1

𝑐𝑠 𝑚𝑠⁄

−𝑐𝑠 𝑚𝑢⁄

𝑎1𝐴𝑝 �̅�𝐿⁄

0
0

𝐴𝑝�̅�𝐿 𝑚𝑠⁄

−𝐴𝑝�̅�𝐿 𝑚𝑢⁄
−𝑎2 ]

 
 
 
 

, 

 

(9) 

𝐵 ∈ ℝ𝑛×𝑚 is the control input matrix which is given by  

 

𝐵 = [0 0 0 0 𝑎1 �̅�𝐿⁄ ]T, (10) 

𝐵𝑤 ∈ ℝ
𝑛×𝑝 is the disturbance input matrix which is given by  

 

𝐵𝑤 = [0 0 0 𝑘𝑡 𝑚𝑢⁄ 0]T (11) 

where 𝑎1 = 4𝛽𝑒 𝑉𝑡⁄  and 𝑎2 = 𝑎1𝐶𝑡𝑝. The suspension parameters used throughout the controller design 

and numerical simulations are given in Table 1 [5] and [29].  

 
Table 1. Electro-hydraulic suspension parameters 

 

Parameter value unit parameter Value Unit 

𝑚𝑠 320 [kg] 𝑎1 4.515 × 1013 [N/m5] 

𝑚𝑢 40 [kg] 𝑎2 1 [s-1] 

𝑐𝑠 1000 [Ns/m] 𝐴𝑝 3.35 × 10-4 [m2] 

𝑘𝑠 18 × 103 [N/m] �̅�𝐿 1.03425 × 107 [Pa] 

𝑘𝑡 200 × 103 [N/m]    

 

3. OPTIMAL STATE DERIVATIVE FEEDBACK CONTROLLER 

 

In this section, solvability conditions of the optimal state derivative feedback LQR controller are 

presented. In order to obtain the optimal active suspension controller, minimization of quadratic cost 

function is ensured by using convex optimization techniques based on LMI conditions. 

 

Consider the linear time-invariant system given by 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (12) 
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where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector and 𝑢(𝑡) ∈ ℝ𝑚 is the control input vector. Our goal is to find an 

optimal state derivative feedback control in the form of 

 

𝑢(𝑡) = −𝐾�̇�(𝑡) (13) 

where 𝐾 ∈ ℝ𝑚×𝑛 is a controller gain matrix. The closed-loop system can be written in the Reciprocal 

State Space (RSS) [20] framework as follows. 

 

𝑥(𝑡) = 𝐴−1(𝐼 + 𝐵𝐾)�̇�(𝑡) (14) 

The quadratic cost function is given in the form of 

 

𝐽 = ∫[�̇�(𝑡)T𝑄�̇�(𝑡) + 𝑢(𝑡)T𝑅𝑢(𝑡)]𝑑𝑡

∞

0

. (15) 

Here, 𝑧(𝑡) ∈ ℝ𝑐  and  𝑧(𝑡) = 𝐶𝑧𝑥(𝑡) is a linear function of the states and the vector of variables to be 

minimized. 𝑄 ∈ ℝ𝑛×𝑛 and 𝑅 ∈ ℝ𝑚×𝑚 are performance weight matrices. The following Lemma [21] 

presents a Lyapunov equation which provides the optimal state derivative feedback controller. 

 

Lemma [21]: The optimal value of the quadratic cost function (14) converges to 

 

𝐽 = 𝑥(0)T𝑃𝑥(0) (16) 

where 𝑃 ∈ ℝ𝑛×𝑛 is the solution of the Lyapunov equation given by 

 

𝑃𝐴−1 + 𝐴−T𝑃 + 𝑃𝐴−1𝐵𝐾 +𝐾T𝐵T𝐴−T𝑃 + 𝐾T𝑅𝐾 + �̅� = 0. (17) 

Here, �̅� = 𝐶𝑧
T𝑄𝐶𝑧.  

 

Proof: Assume a symmetric positive matrix 𝑃 which satisfies  

�̇�(𝑡)T(�̅� + 𝐾𝑇𝑅𝐾)�̇�(𝑡) = −
𝑑

𝑑𝑡
(𝑥(𝑡)𝑇𝑃𝑥(𝑡)). (18) 

An integration to the both sides of (18) is applied:  

 

𝐽 = ∫ �̇�(𝑡)T(�̅� + 𝐾𝑇𝑅𝐾)�̇�(𝑡)𝑑𝑡

∞

0

= 𝑥(𝑡)𝑇𝑃𝑥(𝑡)|0
∞ = −𝑥(∞)𝑇𝑃𝑥(∞)+𝑥(0)𝑇𝑃𝑥(0). (19) 

The quadratic cost function converges to  

 

𝐽 = 𝑥(0)𝑇𝑃𝑥(0) (20) 

since the closed loop system is asymptotically stable and the state vector goes to the origin by time 

goes to the infinity. Rewrite the equation (18) as given below.  

 

�̇�(𝑡)T(�̅� + 𝐾𝑇𝑅𝐾)�̇�(𝑡) = −(�̇�(𝑡)𝑇𝑃𝑥(𝑡) + 𝑥(𝑡)𝑇𝑃�̇�(𝑡)). (21) 

Substitute the closed loop system (14) in the RSS framework into the (21),  

 

�̇�(𝑡)T(�̅� + 𝐾𝑇𝑅𝐾)�̇�(𝑡) = −�̇�(𝑡)𝑇(𝑃𝐴−1(𝐼 + 𝐵𝐾) + (𝐼 + 𝐵𝐾)𝑇𝐴−𝑇𝑃)�̇�(𝑡). (22) 

is obtained. The equation (17) can be easily derived by simply arranging the equation (22). This 

completes the proof.                               ■ 
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Design of the optimal state derivative feedback controller problem can be cast to the matrix inequality 

constraint problem by the change of variables. Let us define a new variable 𝑌 = 𝑌T ≻ 𝑃. Then, 

substituting Y into (17) allows us to write 

 

𝑌𝐴−1 + 𝐴−T𝑌 + 𝑌𝐴−1𝐵𝐾 +𝐾T𝐵T𝐴−T𝑌 + 𝐾T𝑅𝐾 + �̅� ≺ 0. (23) 

By applying the Schur complement formula [31], (23) is congruent to  

 

[
𝑌𝐴−1 + 𝐴−T𝑌 + 𝑌𝐴−1𝐵𝐾 + 𝐾T𝐵T𝐴−T𝑌 𝐶𝑧

T 𝐾T

∗ −𝑄−1 0

∗ ∗ 𝑅−1
] ≺ 0. (24) 

The inequality (24) is not in the LMI form yet due to the multiplication of decision variables Y and K. 

Pre- and post- multiply the (24) by  

 

𝑑𝑖𝑎𝑔(𝑆, 𝐼, 𝐼) (25) 

where 𝑆 = 𝑆T = 𝑌−1 and 

 

[
𝐴−1𝑆 + 𝑆𝐴−T + 𝐴−1𝐵𝑊 +𝑊T𝐵T𝐴−T 𝑆𝐶𝑧

T 𝑊T

∗ −𝑄−1 0

∗ ∗ 𝑅−1
] ≺ 0 (26) 

is obtained. Here, 𝑊 = 𝐾𝑆 is a modest variable change operation. Recall that the quadratic cost 

function (16) has to be minimized by the optimal state derivative feedback control law (13). Then, a 

new decision variable 𝑀 ∈ ℝ𝑐×𝑐 is introduced to set an upper bound on the cost as follows: 

 

𝑀 ≻ 𝑌 ⟷ [
𝑀 𝐼
∗ 𝑆

] ≻ 0. (27) 

In the light of the results obtained above, the following theorem presents an LMI based method to 

design an optimal state derivative feedback LQR controller. 

 

Theorem: For a given values of 𝑄 and 𝑅, asymptotic stability of the linear time invariant system (12) 

is ensured with a minimum value of the quadratic cost function (16), if there exists a solution for the 

following optimization problem 

 

min 𝑡𝑟(𝑀) 
𝑠. 𝑡. (26)𝑎𝑛𝑑 (27) 

then, the optimal control law can be calculated as 𝑢(𝑡) = −𝐾�̇�(𝑡) = 𝑊𝑆−1�̇�(𝑡). 
 

4. NUMERICAL SIMULATION STUDIES 

 

In this section, numerical simulations are studied to demonstrate the effectiveness of the proposed 

controller against bump type road irregularities at different vehicle forward velocities. All the 

simulations and computations were accomplished by using MATLAB and Simulink.  

 

Recall that 𝑧(𝑡) = 𝐶𝑧𝑥(𝑡) is the vector of variables to be minimized. Then, 𝑧(𝑡) is given by  

 

𝑧(𝑡) = [𝑧𝑠(𝑡) 𝑧𝑠(𝑡) − 𝑧𝑢(𝑡) �̇�𝑠 �̇�𝑠(𝑡) − �̇�𝑢(𝑡) 𝑃𝐿(𝑡) �̅�𝐿⁄ ]T (28) 
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and 

 

𝐶𝑧 =

[
 
 
 
 
1
1
0
0
0

0
−1
0
0
0

0
0
1
1
0

0
0
0
−1
0

0
0
0
0
1]
 
 
 
 

. (29) 

The performance weight matrices which are used in the controller design are 

 

𝑄 = 𝑑𝑖𝑎𝑔(106, 10−2, 106, 10−2, 10−2),   𝑅 = 10. (30) 

In the light of Theorem, in order to minimize the quadratic cost given by (28)-(30), the proposed 

controller was calculated by YALMIP parser [32] and SeDuMi solver [33]. Thus, the optimal state 

derivative feedback LQR control law is computed as 
 

𝑢(𝑡) = −𝐾�̇�(𝑡) = −[3.3500 −3.3500 −0.0001 0.0001 0.0023]�̇�(𝑡). (31) 

In order to analyze vehicle suspension performance with respect to ride comfort, suspension stroke 

and tire deflection, the road irregularity is considered as an isolated bump in an otherwise smooth road 

surface. It is very common to use bump type road irregularities in the literature [5] and [34], since it 

allows analyzing the transient response for severe road conditions.  
 

The bump type road irregularity is given by 
 

𝑧𝑟(𝑡) =

{
 
 

 
 𝑎

2
(1 − 𝑐𝑜𝑠 (

2𝜋𝑉

ℓ
𝑡)) , 0 ≤ 𝑡 ≤

ℓ

𝑉

0                                        𝑡 >
ℓ

𝑉

 (32) 

where 𝑎 = 0.1 m and ℓ = 5 m [5], [34]. Here, 𝑉 is the vehicle forward velocity. Figure 2 shows the 

sprung mass acceleration, suspension deflection, tire deflection and active control force responses for 

vehicle forward velocity of 45 km/h. 
 

 
 

Figure 2. Sprung mass acceleration, suspension deflection, tire deflection and active control force responses. 
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As can be observed from Figure 2, the proposed controller ensures better ride comfort and road 

holding performances by the decrease on peak values of sprung mass acceleration and tire deflection. 

It is clear that lower peak value and shorter settling time is obtained for sprung mass acceleration. 

Reduction on the tire deflection amplitudes, indicates that dynamic tire load does not exceed the 

passive suspension case. Hence the road holding ability is slightly improved. Furthermore, the 

suspension deflection has not been significantly deteriorated. Despite the fact that negative peak is 

larger for active suspension, absolute value of the positive peak for passive suspension is larger than 

the negative peak of the proposed active suspension. Consequently, maximum values of the 

suspension deflection are below 0.1 m for both passive and active suspensions. In order to validate the 

effectiveness of the proposed controller against wide range of road disturbances, simulations were 

performed under different vehicle forward velocities as shown in Figure 3. 

 

Figure 3 demonstrates that the proposed controller provides a great enhancement in the ride comfort 

and the road holding. Moreover, maximum peak values of the suspension deflection have also been 

mitigated for broad range of vehicle forward velocity. It is generally assumed that suspension 

deflection must be kept in the range of ± 0.1 m. Hence, it is apparently seen that road damage has been 

successfully avoided. Besides, active control force demand stays within the range of 2kN, which is 

adequate for practical implementation. The simulation results validate that improved ride comfort is 

achieved, and meanwhile the safety requirements are obtained within allowable bounds. Finally, 

frequency response of the sprung mass acceleration is given in Figure 4.  

 

 
 

Figure 3. Peak values of sprung mass acceleration, suspension deflection, tire deflection and active control 

forces for different vehicle forward velocities. 
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Figure 4. Frequency response of sprung mass acceleration 

 

As expected, the proposed controller yields the significant reduction over a broad frequency range, 

compared with the passive suspension, which clearly indicates that an improved ride comfort has been 

guaranteed. Note that least gain is achieved over the frequency range 4-8 Hz which humans are most 

sensitive to the vertical vibrations according to ISO2631-1 [35]. 

 

Remark: In the literature [8]-[12], [18] and [19], LQ type optimal control of active suspensions has 

been extensively studied. However, in these studies, state derivative feedback type control law has not 

been considered so far. Simulation results provided through the section show that enhancement of the 

ride comfort without sacrificing the road holding has been achieved by the proposed optimal state 

derivative feedback LQR controller. By taking into account that the state derivative signals can be 

obtained more accurately, the proposed controller is a very promising solution for active suspension 

systems.  

 

5. CONCLUSIONS 

 

In this study, design of an optimal state derivative feedback LQR controller is proposed for an electro-

hydraulic active suspension system design. Main goal of this research is to present an easily realizable 

optimal control strategy, compared to the previous LQ type optimal controllers found in the literature. 

Performance of the proposed controller is investigated by bump type road irregularities for different 

vehicle forward velocities. Simulation results revealed that better ride comfort without a considerable 

deterioration in safety can be achieved by proposed controller. Extending the proposed method for 

robustness against parameter uncertainties and gain scheduling capability might be a direction for 

future work.  
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