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Abstract

The critical exponents of LaCeMn,Sk (x=0.35 and 0.45) compounds are studied in
the vicinity of Curie temperature {J which is a second order phase transition. The
magnetic field dependence of the magnetic entrdpgnge is brought out and
implemented to deduce the critical exponents. Tiieal exponents are estimated by
various techniques such as the Modified Arrott plad critical isotherm technique. The
obtained values of critical exponents for both comqls have been satisfied with the
scaling theory. The results have showed that tlitcakr values and universal curve
depends on the strength of secondary magnetic pdaseng in the compound, which
is antiferromagnetic phase in our case.

Keywords: Intermetallics, magnetic properties, magnetocaloraffect, critical
phenomena.

La; ,CeMn,Si, (x=0.35 ve 0.45) kritik davraginin manyetik
entropi dgisim bazliligina gore argiriimasi

Ozet

La;CeMn,Sh (x=0.35 ve 0.45)bilesiklerinin, kritik Gstelleri ikinci derece bir faz
gecisi olan, Curie sicakl (Tc) civarinda incelenmtir. Manyetik entropi d@siminin,
manyetik alana bamhligi ortaya konulmp ve kritik Ustelleri bulmak icin
uygulanmgtir. Kritik Gsteller, Modifiye Arrott ¢izimi ve kik izoterm teknji gibi ¢eyitli
yontemlerle tahmin edilgtir. Elde edilen kritik Gsteller, Olcekleme teorisiygun
olduklar belirlenmjtir. Sonugclar, kritik dgerin ve evrensel ginin; bu c¢alymada

: Bars EMRE, bemre@eng.ankara.eduhtitp://orcid.org/0000-0003-3468-7026

186



BAUN Fen Bil. Enst. Dergisi, 20(1), 186-197, (2018)

antiferromanyetik faz olan, biite olwan ikinci manyetik fazinsiddetine bgh
oldugunu gostermtir.

Anahtar kelimeler:Intermetalik, manyetik 6zellikler, manyetokalorikigkritik olay.

1. Introduction

It is a fact that energy consumption and the waiargy demand of countries is
continuously increasing. Refrigeration is one afaawhere energy is intensely used,
thereby demand of environmental-friendly refrigenattechniques is also increasing.
Simultaneously, alternative ways of energy effitie@chnologies are receiving more
attention. As a consequence of this situation, nasedisplaying large caloric effects
such as magnetocaloric, barocaloric, electrocalanid elastocaloric are also receiving
more attention, which are the response of mataiakternal change of magnetic field,
pressure, electric field, and force, respectivély?].

Among these caloric effects, the most studied snthé magnetocaloric effect [1-2].
Large MCE reported in various systems, such asSi@de, RCe, MnAs, MnAsSb,
LaFe.Sih s, MNFePGe, Heusler alloys, and some manganite$9R generally shows
first-order ferromagnetic to paramagnetic phasesitn. However, these alloys have
large thermal and magnetic field hysteresis on ati@m in magnetization with
temperature and magnetic field, respectively. Aapttategory of materials that exhibit
substantial magnetocaloric effect (MCE) are thdsat tundergo antiferromagnetic-
ferromagnetic (AF-FM) transitions and are founainariety of intermetallic alloys and
compounds [16]. In many cases, these transitioasfrae of thermal hysteresis—a
property that makes such systems particularly@tteas magnetic refrigerants [16].

In addition, it is reported that the knowledge adgnetic field dependence of magnetic
entropy change £4Sy) of a magnetic refrigerant material is importarsince
understanding the field dependence can providendurknowledge to improve the
performance of refrigerant materials [17]. Inveatign of MCE is not only providing
practical application knowledge it may also providelerstanding the properties of the
material. In particular, the details of the magngihase transition and critical behavior
can be obtained by studying the MCE of the mat¢tia) 18]. Magnetocaloric effect is
one of the issues observed in the ternary intedficetampounds of the RJX, series (R

= rare earth, T =transition metal, X = Si or Gehe$e compounds have attracted
considerable attention because of the rich vaétinteresting phenomena, including
superconductivity, magnetism-magnetocaloric effeaitxed valence, heavy fermions,
and Kondo behavior [16, 19 - 23]. Most of the studyRMn,Si, structure concentrated
on properties at low temperatures and moderate danhpes. However, the magnetic
properties around Curie temperatufe)(may also provide additional information about
the magnetic structure with the critical behavioalgsis by using the dependence of
magnetic entropy change. To further understanchttiere of magnetic transition 1La
«CeMn,Si, system, in this paper, the critical propertietaf .CeiMn,Si, (x=0.35 and
0.45) compounds around the Curie temperature haea Investigated by using the
field dependence of magnetic entropy change metHadaddition, to the best of our
knowledge there exists a few works on the criteogdonents analysis on ThSk type
ternary intermetallic compounds [24-27].
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2. Experimental

Experimental details of this study were explainedRef. [19], such as polycrystalline
samples La,CeMn,Si, (x=0.35 and 0.45) synthesized by arc melting teenents in a
water-cooled Cu hearth under purified argon gasgridtization measurements were
carried out in the temperature range 5-350 K ancthf® T up to 7 T with a physical
property measurement system (PPMS) (Quantum Design)

According to the scaling hypothesis, a continuohase transition at near the critical
temperature 4, shows a power law dependence of spontaneous tegiten Ms(T)
and an inverse initial susceptibilityo(T) on the reduced temperature with a set of
interdependent critical exponentsy ando etc [28]. Generally, the critical exponents
are not defined for the first-order transition besm the magnetic field can shift the
transition, leading to a field-dependent phase HamnTc(uoH) [29]. The mathematical
definitions of the exponents from magnetization sueaments can be described as [28,
30, 31].

e Below T¢, the temperature dependence of the spontaneousetizjion
Ms(T) = limy—o(H) is governed by exponent through the relation:

My (T) = My(—€)P,e <0, T< T, (1)

e AboveTg, the initial susceptibility*(T)= limy_o(H/M) given by
(1T = (1’;—2) e,e>0,T>T, )
e At Tc M and H are related by the following equation:

M=DuH® ' e=0,T=T, (3)

where M), /My and D are the critical amplitudes aMy, xgl, e = (T-Tg)/Tc are

spontaneous magnetization, initial susceptibilitpd athe reduced temperature,
respectively.

3. Results and discussions

RT,X, compounds form mainly in the ThSi, structure (space group 14/mmm), with
the layered nature of this crystal structure legdmstrong dependence of the magnetic
interactions on the interplanar and intraplanaeratibmic distances [20-23]. RiyXy
compounds with X = Si or Ge have attracted speti@ntion, due to the interesting
interplay between the magnetism of the layers of a@dl 4f atoms, the strong
dependence of the magnitude of the Mn moment aadnthgnetic state of the Mn
sublattice on the Mn—Mn interatomic distances [Zlje high sensitivity of exchange
parameters to the intralayer Mn-Mn spacing govetnethe lattice parameter a leads to
complex and very interesting magnetic phase diagrafirthese compounds, which is
very well explained in Ref. [23] and referencegd¢ire
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The thermomagnetization curves of the;j@eMn,Sip (x=0.35 and 0.45) were
published in a previous study [19]. Briefly, thex35 compound shows ferromagnetic
properties below Curie temperatuiie)= 294 K, while decreasing temperature, till 200
K where the magnetization decreases with furthefieg. Below 200 K this compound
showed antiferromagnetic properties. The magnétictire of these systems depends
on Mn-Mn intralayer distance [16, 20, 21]. Similarlx=0.45 compound shows
ferromagnetic properties beloV¢ =285 K. But thely of x=0.45 is observed around at
254 K [19]. In the parent compound LapB®n, the Mn moments within the (0 0 1)
plane order antiferromagnetically belolw = 470 K [23] down tolc. Therefore, one
can imagine a similar for x=0.35 and x=0.45 aboke Tc. Thereby, we have a
dominant ferromagnetic component amid the two emtimagnetic components.
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Figure 1. The critical isotherm analysisTatfor the x = 0.35 (a) and x=0.45 (b)
compounds in In-In scale. Inset shows the dataedio€urie temperature. The modified
Arrott plot of the x = 0.35 (c) and x=0.45 (d).

To analyze the nature of the magnetic phase transiroundT¢ in detail, we carried
out a critical exponents study on the compoundshiBicontext, we have used the field
dependence oASy to investigate the critical behavior. According tfee scaling
hypothesis [32], a second-order magnetic phassitiam nearTc is characterized by a
set of critical exponent$ (the spontaneous magnetizationjthe initial susceptibility),
and & (the initial isotherm). To investigate the magogtroperty, the M(H) curves
represented as In-In form in Fig. 1(a) and (b), Aweott plots presented around the
Curie temperature are shown in Fig. 1(c) and (e3pectively. In an Arrott plot, a
negative slope represents a first order phase iti@nsneanwhile a positive slope
represents second order transition [33]. It isrcthat, the positive slopes in Figs. 1(c)
and (d) refer to 2nd order transition for both counpds. However, the curves are all
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nonlinear and show downward curvature even at high magnetic field region.
According to the mean field theory, the criticaperents have value 0.5 ffrand 1.0
for y [33]. However, the nonlinearity refers that theditions for mean field theory will
not be not satisfied. Therefore, the mean-fieldbtirecannot be used to describe the
critical behavior.

To further clarify the nature of the magnetic titioa, we attempted to use various
techniques to investigate the critical behavior aefr compounds. Generally, the
common method to deduce the critical exponentsyawigpends on the fitting values
obtained from the Arrott plot according to Arrotted&kes equation of state. In this
technique one needs to apply some different theatetnodels to first build some
Arrott plots and afterwards pick the best one ftin) data, in light of the obscure
fitting information toward the beginning. Nonethgde initial choice of the critical
exponents influences the last esteem value theatrgxponents. In this manner, it is
hard to settle on of the critical exponents [34hny authors used the field dependence
of magnetic entropy in literature [34 - 36]. Inghapproach, first, the Widom scaling
relates the critical exponent§ y, and 8 to each other withé =1+ y/B [37].
Meanwhile, according to the scaling hypothesis#the exponené is associated with
the critical magnetization isotherm B = DH/®, where D is the critical amplitude
[30 - 32,38]. In this context, Fig. 1(a) and (b)wis the magnetic isotherms M(H)
curves aroundlc for x=0.35 and 0.45 compounds in In-In scale, Whstould be a
straight line with a slope &/where inset shows normal scale. A linear behasaor be
observed under high field region closeTigin In-In scale. From the linear fit of the
straight line, the obtained values &fare 2.293 and 2.798 for x=0.35 and 0.45,
respectively.

Furthermore, for a magnetic system with ¥ @rder phase transition, a universal

relation of the field dependence of magnetic entiisgproposed alsasﬁ,k| vs H', where
n=2/3 [39]. In addition, a new relation proposedahhagrees with experimental result
and confirmed the existence of the universal c{@9¢

n=1+[] (4)

thereby one can calculate critical exponent$ @ndy if n is known value afc. In
order to obtain the value of n, we first calculatesl, as in Ref. [11] and shown as a
function of magnetic field change (H) in Fig. 2 (@pd (b). By this manner, we
calculated the n value for x=0.35 and 0.45 compeuas 0.78 and 0.72, respectively. In
addition, we illustrated the variation of n withspect to temperature by using the
formula

din|ASy|
- dinH (5)
in Figs. 2 (c) and (d), for x=0.35 and 0.45 compmsjrespectively. In generally, the
value of n is approximately to 2 for the temperatwvell below Tc and ~1 for
temperature well abovéc [39]. In the case of the temperature correspondinthe
maximum entropy change based on mean field made&si been predicted close to 2/3
[40]. Both compounds show similar behavior, n dases gradually with increasing
temperature and show a minimum at arodigdthen increases gradually with further
increasing temperature. As one can see the valu#e &=0.35 is more in line with
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proposed earlier [39]. As stated previously, acewydo the thermomagnetization data
[19], the ferromagnetic region of x=0.35 compoursdbetween 294 K — 200 K,
meanwhile, for x=0.45 compound is 290 — 254 K. Tdq@d increase of n at 267.5 K of
x=0.45 compound should be related with antiferronesig magnetic structure around
255 K. We guess that the anomaly below 275 K is digm of antiferromagnetic
ordering this antiferromagnetic structure, whicbwd be further investigated.
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Figure 2. The maximal entropy changes vs. H (c#)céend the solid line is the fitting
curve for x=0.35 (a) and x=0.45 compounds (b). Terajre dependence of the
exponent characterizing the field dependence of ®$0.35 (c) and x=0.45 compounds

(d).

Moreover, one can obtajhandy by using the obtained values of n ahdith Eq. (4).
For the x = 0.35 compound, we calculafedndy as 0.665 and 0.793. For the x=0.45
compound, we calculate@ andy as 0.561 and 1.008. The value of the critical
exponentg} andy for the x = 0.45 compound is close to that ob@ifrem the mean
field theory, which indicates a long-range magnéiteraction. However, the derived
values of the critical exponents of the x = 0.3%npound are slightly lower. The
modified Arrott plots are shown in Fig. 1(c) and ydth the obtaineds andy.

The obtained critical exponents, {, 6, andTc) can be also verified by the prediction of

the scaling theory in the critical region. Accoglito the scaling theory, the magnetic
equation of state can be written as [31, 32]:

M (H.e)=¢"1.(H/.) (6)

wheree=(T-T¢)/Tc, f+ andf_ are regular functions foF>Tc andT<Tg, respectivelyMe™®
vs He ®* yields two universal curves: one for temperataiesveTc and the other for
temperatures belowWc. Thus we can verify the reliability by comparirngetobtained
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results with the scaling hypothesis. As shownim B(a),all the experimental data fall
on two curves which is in agreement with the scplineory for x=0.35 compound,
therefore field dependence ofy @ire reasonably accurate. However, for the x=0.45
compound, it falls on belowic, data abové@c almost fall on one branch (Fig. 3(b)). It is
proposed that non-collapsing character could be tduéhe existence of a second
magnetic phase, even its transition temperaturkabelve the experimental range [39].
We know that both samples have a intra antiferrorafig structure abovéc, therefore
the non-collapsing behavior of the x = 0.45 commgbumght be due to strength of
antiferromagnetic structure. In other words, th@ 45 compound behaves as if double
phase magnetic system meanwhile x=0.35 compoun@vkeshas if mono phase
magnetic system. Since the values of the x=0.48poaind is more close to the mean
field theory, then we can conclude that the belravia=0.45 compound is more in line
with the observed thermomagnetization curves [I@jntthe x=0.35 compound. In
addition, as shown in Fig. 2 (c) and (d), the valter n of x=0.45 compound is higher
than previously stated in Ref. [39], which might de to significance of the second
magnetic phase (intra layer antiferromagnetic is thase).
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Figure 3. (a) logarithmic scaling plot bfs® vs He ** in the critical region for x=0.35
compound all experimental data fall on either & tlvo branches of the universal
curve, (b) x=0.45 compound all experimental dataadiofall on above 4. Rescaled
curves of x=0.35 (c) and x=0.45 (d) compounds foraximum applied field of 7 T.

Recently Franco and co-workers proposed that ABg(T) curves measured with
different maximum applied fields should collapsetora single master curve for alloys
with second order phase transition [41]. To thd bes knowledge the master curve of
ASy for ThCrSi; system is absent. Here, we have attempted to makaster curve for
the x=0.35 and 0.45 systems. A phenomenologicaleusal curve forASy| has been
proposed to extrapolate magnetocaloric propertigh different applied fields and
temperatures. The construction can be achievedibg mormalized entropy change

(AS, =A §%) and rescaling the temperature axis as [42]:
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_ IT-T¢|
0= T —Tc (7)

where 6 is the rescaled temperatuf; is the Curie temperaturd; is the reference
temperature corresponding to 0&AS** . It should be noted that a factor (0.75 in this
case) close to 1 would enhance the effect of exymrial noise in the resulting master
curve [43]. The rescaled magnetic entropy chang®esuof the present alloys are
shown in Figs. 3(c) and (d). All the curves collapsto a single curve in temperature
regions near to ordering temperatube=Q) further validating our treatment of data
according to second order phase transition in ticesepounds [43]. However, as we
move away from the ordering temperature where isented, breakdown can be
observed in the curve which is acceptable as s¢édivs need not hold far away from
Curie temperatureT¢). As proposed in Ref. [39], this might be due he sample
consisting of different magnetic phases. The usialecurve (Fig. 3(c-d)) and scaling
theory (Fig. 3(a-b)) shows similar result for x=8.8nd 0.45 compounds with a small
deviation for x=0.45 compound which might be redateith the strength of the
antiferromagnetic structure. Namely, that diffeenmight be due to different
significance of intralayer antiferromagnetic chaeadn two compounds. Thereby, the
non-collapsing character of the magnetocaloric esimight be helpful for detecting the
existence of second magnetic phase [39].

In neutron diffraction studies on §.&Ndy3gVn,Si; [21, 44], LadPr.Mn,Si; [45],
LaMn,Si, [46] authors reported several magnetic momentsegali,,) at different
temperatures given in Table 1. The magnetic straafithese compounds explained in
Ref. [23, 21, 46]. Above the Curie temperature dampave antiferromagnetic
structure called AFI (magnetic structure is chaazed by antiferromagnetic (001) Mn
layers). Below Curie temperature samples have fegmetic structure called Fmc
(ferromagnetic interplane coupling of Mn planessoni with in-plane antiferromagnetic
coupling), down toly. Below Ty in-plane antiferromagnetic coupling was obsernved.
Ref. [46], it was stated that there exists the dami antiferromagnetic Mn-Mn
intralayer couplings observed in Lab8b.Since the magnetic structure around Curie
temperature is governed by Mn-Mn planes, one mag&xsimilar magnetic moments
values as listed above. However, the results arexarctly the same, which shows the
below T¢ antiferromagnetic — ferromagnetic and abdyeantiferromagnetic strength of
each sample differs due to the different in-planerivbments. The different behavior of
the studied alloys in this research is also miglg tb this strength difference for each
sample.

Table 1.uspvalues of several compounds im LBMnN,Si; system.

Lag 6sNdo 3sMN2Si,  Lag g3\ do 35MIN2Siz Lag 6Pro.aMnSi, - LaMn,Sio

[44] [21] [44] [45]
287K 350K 267K 312K 260(K) 350K 315K
(F) (AF) (F) (AF) (F) (AF) (AF)
Hab 1.29 0.75 1.26 1.10 1.44 =~1.2 1.20

(1)
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4. Conclusions

In conclusion, in order to further analyze the nmetgnstructure of the LaCeMn,Si,
(x=0.35 and 0.45), we have studied the field depeod ofASy and critical behavior
with the aid of previously published neutron difftian data. According to the analyze,
the strength of antiferromagnetic structure maedcifithe behavior of the magnetic
structure even if it exists as secondary phase. @ignihe field and temperature
dependent magnetization behavior of x= 0.35 comgofweaker antiferromagnetic
sample in this study) follows the scaling theorgl amiversal curve in Fig. 3(a-c). For
x=0.35 compound, all data points fall onto the w&trict branches which indicates the
obtained critical exponents are reasonably accurdt@vever, for the x = 0.45
compound, data fall almost fall fd> Tc. Thereby we deduced that the small deviation
from collapsing behavior of the x = 0.45 compousddue to the inherent of the
multiphase system. The master curve of both sampleles that actually both samples
are multiphase system, however the varying streafjimtiferromagnetic phase, leads
to different critical behavior. In other words, tltkfference between the critical
exponents of both compounds is related with thength of the antiferromagnetic state
aroundTc. This result is supported with previous resulta@ditron diffraction results.
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