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Article Info              Abstract 
  
                                                                               The rise of the electronic music industry has led to a need for creative playlist-

generation methods, particularly for DJs aiming to deliver seamless and 
harmonically enhanced performances. Harmonic mixing, a crucial process of 
DJing, involves synchronizing and aligning songs based on musical harmony, 
making the mix sound soft and clear. In harmonic mixing, the DJ has to select 
songs from the extensive music archive, considering notes, tempo, length, and 
popularity of the songs. However, manually generating playlists that adhere 
to harmonic mixing principles can be time-consuming. This paper introduces 
a mixed-integer mathematical model and a novel greedy heuristic to automate 
playlist generation, considering factors like popularity, tempo, and harmonic 
mixing rules.  We compare the novel greedy heuristic's performance to the 
mathematical model on 16 test problems created with Spotify's API, 
incorporating real-world data on song characteristics. The results show that 
the heuristic method generates playlists at least seven times faster and has an 
average gap of 13.84% with the mathematical model. 

 
 
1. Introduction 

 
The electronic music industry has grown significantly in recent years, driven by the increasing number of music 
fans, DJs, and live events. One of the main tasks of DJs today is to generate seamless playlists that captivate the 
audience and elevate the overall experience. Generating such playlists, however, is a complex and laborious task 
considering notes, tempo, length, and song popularity.  
 
Harmonic mixing has become vital for DJs seeking to deliver polished performances. DJs apply the method of 
harmonic mixing to beat-synchronize and harmonically align two or more songs (Gebhardt, Davie, and Seeber, 
2016). Despite its importance, existing literature lacks comprehensive studies combining harmonic mixing 
principles with other critical factors such as song popularity and tempo transitions. The importance of harmonic 
mixing cannot be underestimated because it contributes significantly to the integrity and clarity of a DJ's 
performance. However, given the many factors to consider, manually editing a playlist that adheres to harmonic 
mixing principles can be time-consuming and challenging. Accordingly, our research aims to help DJs by enabling 
them to quickly create playlists automatically while ensuring harmony in notes, tempo, popularity, and playlist 
duration. This study is unique in its combination of harmonic mixing principles with other key factors such as song 
popularity, tempo transitions, and playlist duration an approach not previously explored in automatic playlist 
generation studies. 
 
This paper presents a mixed-integer mathematical model and a novel greedy heuristic designed to generate 
playlists that adhere to harmonic mixing principles. Our mathematical model aims to maximize the total popularity 
of the songs within the playlist, considering playlist duration and tempo transitions. Given the computational 
complexity of the model, we develop a greedy heuristic algorithm. The greedy heuristic algorithm builds playlists 
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by strategically adding songs based on popularity, suitability for harmonic mixing, playlist duration, and tempo 
transitions, which start by selecting a random first song. To validate the mathematical model and greedy heuristic, 
we apply them to a diverse set of 16 test problems of varying sizes, drawing upon data obtained through Spotify's 
API, which includes information on song popularity, key, notes, tempo, and duration. 
In the subsequent sections of this paper, we examine the related works, give the problem statement, mathematical 
model, and greedy heuristic algorithm in detail, present the results from our comprehensive computational testing, 
and analyze these results. 
 
 
2. Related works 
 
Dias et al. (2017) categorized the playlist generation problems under three headings; manual generation, automatic 
generation and recommendation, and assisted playlist creation. This study considers automated methods that create 
playlists nearly entirely without human interaction. Automatic playlist generation has become one of the main 
fields in music information retrieval (Shuhendler and Rabin, 2024). Mainly, automatic playlist generation 
approaches are similarity-based algorithms, collaborative filtering, frequent pattern mining, statistical models, 
case-based reasoning, discrete optimization, and hybrids (Bonnin and Jannach, 2014). This section focuses on 
discrete optimization techniques for automatic playlist generation, as the proposed methods in this study are under 
this category. In discrete optimization, the goal is to create a sequence of songs from a catalogue that meets 
predefined constraints, reflecting the desired rules, while maximizing a utility function (Gabbolini and Bridge, 
2024). Automatic playlist generation is NP-hard (Pauws et al., 2008), hence existing studies about discrete 
optimization performed metaheuristic or heuristic algorithms to solve large-size problems.   
 
The Traveling Salesman Problem (TSP) can be used to translate the challenge of creating a playlist that satisfies 
specific constraints into a problem of determining the optimal route (Hartono and Yoshitake, 2013). Pohle et al. 
(2005) presented an approach to generate playlists for mobile music players that prioritize similarity between 
consecutive songs, using a TSP algorithm with timbral similarities as distances. They evaluated the fitness of four 
different TSP algorithms based on runtime, route length, and genre distribution entropy. Pohle et al. (2007), who 
again address the problem as TSP, presented a new interface for music players that uses a combination of audio 
signal analysis and web-based artist profile comparison to create intelligently structured playlists with minimal 
distance between songs. On the other Mocholi et al. (2012) handled playlist generation problem as an Orienteering 
Problem and proposed multicriteria ant colony algorithm for a solution. Why they used OP instead of TSP is that 
they considered playlists created with some songs selected from music archives.  Hsu and Lai (2014) applied a 
tabu search algorithm to a generate playlist automatically for users based on user listening history. All these studies 
in discrete optimization generated personalized playlists based on the user's music preference. Discrete 
optimization-based research on automatic playlist generation appears to have stopped after 2014 (Gabbolini and 
Bridge, 2024). This could be because of the growing popularity of machine learning and artificial intelligence 
techniques. However, discrete optimization approaches still hold significant promise for developing customized 
and effective automatic playlist creation, especially for DJs with specific needs, such as harmonic mixing 
requirements. 
 
There are a limited number of studies on automatic playlist generation for DJs. Kahanda and Kanewala (2007), 
combined similarity-based and constraint-based techniques to generate playlists automatically for radio stations. 
They ensure two songs of the same album/artist are not included in a playlist, the genre of two consecutive songs 
should be different, and the tempos of consecutive songs should be very close with Improved Adaptive Search 
Algorithm. Besides, they use content-based similarity functions to measure the similarity of songs. To our 
knowledge, none of these studies have addressed harmonic mixing rules for playlist generation problems. To fill 
this gap, we formulate the playlist generation problem with harmonic mixing rules as a mixed-integer mathematical 
model and propose a novel greedy heuristic for the solution. 
 
 
3. Problem statement and mathematical model 
 
DJs generating playlists for an event should plan carefully and create an engaging musical experience for the 
audience of an event. When creating a playlist, DJs pick songs from their music archives that suit the event concept 
and the audience. Some musical rules apply when selecting and sorting songs.  
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Generally, people would rather listen to familiar songs than unfamiliar ones. One of the factors of a good playlist 
is the audience's familiarity with the songs in the playlist (Fields et al., 2010). Therefore, including popular songs 
in the playlist may attract the audience's attention. 
 
Most DJs apply the rules of harmonic mixing when preparing the playlist, which they will use in their performances 
so that the transition between songs played back to back is smooth. The most crucial point of the harmonic mixing 
method is to mix by considering a mathematical set of rules when mixing songs. This way, the total harmony of 
the songs is ensured. Harmonic mixing is based on selecting notes created by the notation method called Camelot 
by paying attention to a mathematical rule. In Camelot's notes, 24 notes start from 1A and 1B to 12A and 12B. 
Whatever the note of the song playing at that moment is, the note of the next song must either have the same note 
as the song playing or have a note adjacent to the note of the song playing on the Camelot wheel shown in Figure 
1. Figure 1 also shows the adjacent (neighbors) notes of 8A, which are 9A, 7A, and 8B. According to the harmonic 
mixing rule, a song with 8A, 7A, 9A, or 8B can be played after a song with the note 8A. 

 

Figure 1. Camelot Wheel  

The flow of the playlist is an aesthetic phenomenon; so, a DJ may want the tempo to stay relatively close between 
the consecutive songs in addition to consecutive songs to be acoustically similar (Bittner et al., 2017). The 
acoustically similarity can be achieved by ensuring that the bpm difference between the tempo of two consecutive 
songs in this playlist does not exceed a specific value. 
 
DJs generate their playlists per all these rules manually by spending hours or by paying significant fees through 
paid programs. To solve this problem, first of all, a mixed integer mathematical model is presented in this study. 
Then, a greedy heuristic algorithm is proposed to solve large problems in a reasonable time. The definition of the 
sets, parameters, and decision variables of the mathematical model is as follows: 
Sets: 
I, J, K: The set of songs which in the music archive {1,…, n}  1:dummy starting song n: dummy last song 
 
Parameters: 
𝑝! : The popularity score of song i 
𝑡!: The tempo of song i 
𝑠!: The duration of song i 

𝑑!": &
1, 𝑖𝑓	𝑠𝑜𝑛𝑔	𝑖	𝑎𝑛𝑑	𝑠𝑜𝑛𝑔	𝑗	𝑎𝑟𝑒	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑛	𝑐𝑎𝑚𝑒𝑙𝑜𝑡	𝑤ℎ𝑒𝑒𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																					  

𝑏: The maximum tempo changes between two consecutive songs in the playlist 
𝑐:  The playlist's duration in seconds 
𝑛: number of songs in the music archive 

Decision variables: 

𝑥!" 	= &1, if	song	j	plays	after	song	i	in	the	playlist0, otherwise																																																								  

𝑦!	 =	 &
1, if	the	song	i	plays	in	the	playlist
0, otherwise 																																							  
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Max 𝑧 =&𝑝!𝑦!
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!#$
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𝑥!% 	≤ 	𝑑!% 				∀𝑖, 𝑗 ∈ 𝐼																																																																																																																																																																																				(4)   

𝑥!%6𝑡! 	−	𝑡%6 	≤ 𝑏				∀𝑖, 𝑗		                                                                                                                                                        (5) 
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	≤ 1				∀𝑗																																																																																																																																																																																												(8) 
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= 0				∀𝑗																																																																																																																																																																						(10) 

𝑢! 	−	𝑢% 	+ 1	 ≤ (𝑛 − 1)A1 − 𝑥!%B			∀𝑖, ∀𝑗	, 𝑖 ≠ 𝑗																																																																																																																																	(11) 

0	 ≤ 	𝑢! 	≤ 𝑛 − 1				∀𝑖																																																																																																																																																																																	(12) 	 

𝑥!% ∈ {0,1}				∀𝑖, 𝑗																																																																																																																																																																																										(13)  

𝑦! ∈ {0,1}				∀𝑖																																																																																																																																																																																															(14)   

0 ≤ 𝑢!				∀𝑖																																																																																																																																																																																																						(15)   

The objective function (1) maximizes the popularity of the playlist. The capacity constraint (2) ensures that the 
total duration of the songs in the playlist does not exceed the total duration of the playlist. If a song plays before 
another song, it will be assigned to the playlist in (3). (4) assures that songs can only be played back to back on 
the playlist if they are neighbors on Camelot wheel. This constraint ensures that the playlist fits the harmonic 
mixing rules. (5) checks that the difference between the tempos of consecutive songs in the playlist does not exceed 
the determined maximum tempo change limit. (6) and (7) make sure that the playlist starts and ends at the dummy 
starting and closing songs. (8) and (9) allow at most one song to be played before and after each song. The flow 
constraint of the model is given in (10). (11) represent Miller-Tucker-Zemlin subtour elimination constraints. In 
this problem, this subtour elimination constraint prevents the generation of subplaylists. (12) to (15) define 
decision variables, respectively. 

4. Proposed method: A greedy heuristic 
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The proposed method for automatic playlist creation utilizes a greedy heuristic algorithm designed for efficiency 
and effectiveness in generating playlists based on harmonic mixing principles. The algorithm aims to maximize 
the playlist's popularity, considering constraints such as tempo differences, harmonic mixing rules, and the 
playlist's desired duration. The algorithm starts with a randomly selected song and builds a playlist iteratively by 
greedily selecting the next most popular song that ensures the constraints. The greedy heuristic algorithm is 
demonstrated in Table 1. 
 
 
 

 
Table 1.  Pseudocode of the greedy heuristic algorithm  

 
Input: I Music archive, 𝑏 the maximum tempo changes between two consecutive songs in the playlist, c the 
playlist's duration in seconds 
Output:  P Playlist  
maxPopularite=0 
For i=1 to populationSize: 
   Initialize I, candidatePlaylist 
   Select a song randomly from I as a currentSong 
   Add currentSong to candidatePlaylist 
   currentDuration = currentSong’s duration 
   currentPopularite= currentSong’s popularity 
   while currentDuration <= c: 
       feasibleSongList={} 
          For j in I: 
           if song j neighbors of current song in Camelot and tempo(song j)-tempo(currentSong)<=b 
                Add song j to feasibleSongList 
             if length (feasibleSongList)==0: 
                Break 
             else: 
                Assign the song with maximum popularity in the feasibleSongList as the currentSong 
                currentDuration+= current_song’s duration 
                currentPopulerite+= current_song’s popularity 
                Add current_song to candidatePlaylist 
                Remove current_song from I 
                if maxPopularite< currentPopulerite: 
                     maxPopularite= currentPopulerite 
                     P= candidatePlaylist 

5. Computational experiments and discussions 
 
5.1 Generation of test problems 
 
One of the world's most popular music streaming platforms, Spotify allows users to listen to songs on smart devices 
from prominent international record companies without purchasing songs legally. Besides, developers can retrieve 
content metadata with Spotify Web API (2023) for free. We also use the Spotify Web API to generate test problems 
for this study. 
 
With Spotify Web API, we accessed 16 public electronic music archives and the songs' characteristics in these 
archives: popularity, tempo, key, mode, and duration. These music archive lists contain different numbers of songs 
from 20 songs to 1077 songs. A song's popularity score ranges from 0 to 100, with 100 being the most popular. 
The number of plays the song has received and how recently those plays have occurred are used to calculate the 
popularity score. The key value representing the pitch class takes a value between 0 and 11, and a mode value of 
1 or 0 represents major or minor. Harmonic mixing is usually based on a notation called Camelot. For this reason, 
we converted the key value and mode values to notes of Camelot notation. Finally, duration is the song length in 
milliseconds. We used Python 3.6 to create the test problems. 
 
5.2 Parameters 
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While solving test problems in this study, we set the maximum value of the tempo difference of two consecutive 
songs as 10 bpm and the playlist's duration in seconds as 3600300 ms. Also, for the greedy heuristic, we take the 
initial population size as 25% of the number of songs in the archive included in each test problem. Moreover, we 
run all experiments on a computer with a macOS Mojave, Intel Core i7 at 2.5GHz, 4 cores, and 16.00 GB RAM. 
 
5.3 Computational results and discussions  
 
To find out how long they can wait to see the results of a program that automatically generates a playlist based on 
harmonic mixing, we reached out to DJs. According to the responses we received, the working time of the model 
was limited to 3 hours. In addition, we employed Gurobi solver with Python to solve the proposed mathematical 
model. The results obtained from solving the test problems with the mathematical model are given in Table 2. In 
the given 3-hour solution time, the mathematical model reached the best solution for 11 of the 16 test problems. 
However, for the remaining 5 test problems, the best solution found within the given time was reported. 

Table 2. Mathematical model results 
 

Test Problem Number of songs Model status Run time (sec) Total popularity of the playlist 

Test 1 20 optimal 0.470 401 

Test 2 30 optimal 0.598 492 

Test 3 40 optimal 1.061 492 

Test 4 50 optimal 1.695 492 

Test 5 60 optimal 7.945 503 

Test 6 92 optimal 8.107 934 

Test 7 101 best solution 10800.048 1117 

Test 8 156 best solution 10800.095 537 

Test 9 150 best solution 10800.104 1117 

Test 10 200 optimal 1983.153 1021 

Test 11 251 optimal 675.280 1687 

Test 12 387 best solution 10800.357 1547 

Test 13 788 optimal 296.008 1134 

Test 14 860 optimal 103.828 1437 

Test 15 1000 best solution 10804.308 1478 

Test 16 1077 optimal 307.932 1399 
 
As an example, Table 3 shows the playlist obtained with the mathematical model was created from an archive of 
40 songs called Test 3. 
 

Table 3. Playlist generated by the mathematical model for test 3 
 

Song Name Note Tempo Popularity Duration 
Kaizoku 6B 145 42 7 min 07 sec 

Deine Angst 7B 144 52 5 min 21 sec 
Full of Fire 8B 146 39 5 min 24 sec 

Weltschmerz 8A 140 53 6 min 24 sec 
Adrenaline 8B 134 49 6 min 51 sec 
Still Raving 9B 135 45 5 min 57 sec 
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300000003 10B 133 52 5 min 45 sec 
Born In 1968 10A 135 42 5 min 7 sec 

Rave Harder Techno Bass 9A 136 69 6 min 
Sparkling System 9A 136 49 5 min 58 sec    

Total: 492 Total: 59 min 54 sec 

 
The greedy heuristic algorithm with random-start generates playlists with ¼ of the number of songs in the archive 
and selects which has the most total popularity. Because the first song in each playlist is randomly selected, the 
algorithm does not produce the same result every time. For this reason, the greedy heuristic algorithm was run ten 
times for each test problem to get more reliable results. The average results for each test are shown in Table 4. 
Table 4 demonstrates that the solution of the heuristic algorithm is below the total popularity values reached by 
the mathematical model. However, it produces solutions in a shorter time than the mathematical model. 

Table 4. Greedy heuristic results 
 

Test Problem Number of songs Average run time (sn) Average total popularity 
Test 1 20 0.0003 340.4 
Test 2 30 0.0010 447.3 
Test 3 40 0.0014 450.2 
Test 4 50 0.0025 447.1 
Test 5 60 0.0039 468.5 
Test 6 92 0.0108 695.5 
Test 7 101 0.0103 911.8 
Test 8 156 0.0710 524.1 
Test 9 150 0.0499 866.4 
Test 10 200 0.0811 796.5 
Test 11 251 0.3061 1343.9 
Test 12 387 1.5459 1273.2 
Test 13 788 14.8403 1050.8 
Test 14 860 3.1289 1247.6 
Test 15 1000 36.5382 1259.3 
Test 16 1077 42.0617 1276.1 

 
Run time analysis of the methods is given in Table 5 in detail. In the last column of the table, the greedy heuristic 
algorithm is given how many times faster the mathematical model is. According to run time, it is clear that the 
greedy heuristic algorithm surpasses the mathematical model. In the large-scale test problems 13 to 16, where the 
heuristic algorithm runs slowest, it has been observed to be approximately 14, 3, 36, and 42 times faster than the 
mathematical model, respectively. This result shows that the heuristic algorithm can be more useful in large-scale 
real-life problems. 

Table 5. Run times 
 

Test 
Problem 

Run time of the 
mathematical model (sec) 

Run time of 
the greedy heuristic (sec) Relative Speed  

Test 1 0.470 0.0003 1566.6667 

Test 2 0.598 0.0010 598.0000 

Test 3 1.061 0.0014 757.8571 
Test 4 1.695 0.0025 678.0000 
Test 5 7.945 0.0039 2037.1795 
Test 6 8.107 0.0108 750.6481 
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Test 7 10800.048 0.0103 1048548.3495 
Test 8 10800.095 0.0710 152114.0141 
Test 9 10800.104 0.0499 216434.9499 
Test 10 1983.153 0.0811 24453.1813 
Test 11 675.280 0.3061 2206.0764 
Test 12 10800.357 1.5459 6986.4526 
Test 13 296.008 14.8403 19.9462 
Test 14 103.828 3.1289 33.1835 
Test 15 10804.308 36.5382 295.6990 
Test 16 307.932 42.0617 7.3210 

In Figure 2, the results of the mathematical model and the greedy heuristic algorithm are compared regarding the 
total popularity of playlists. From Figure 2, it can be seen that the greedy heuristic approach produces results that 
are comparable to those of the mathematical model when the playlists. In addition, Figure 3 shows the gap between 
the solutions obtained by the mathematical model and the greedy heuristic. This gap is calculated by (16). 
According to this comparison, the maximum gap between the greedy heuristic algorithm and the mathematical 
model in the Test 6 problem is 25.4%. This maximum gap is acceptable, considering the speed of the greedy 
heuristic algorithm. The test problem in which the heuristic algorithm comes closest to the result of the 
mathematical model is the Test 8 problem with a gap of 2.4%. This result emphasizes the capacity of the heuristic 
methodology to provide practical and effective solutions. Besides, it is seen that the greedy heuristic algorithm 
approaches the mathematical model with an average gap of 13.84% in all test problems. In particular, the gap value 
in large test problems 13, 14, and 16, in which the mathematical model reaches the optimal solution, is lower than 
the average openness. This finding indicates that the heuristic algorithm can find effective solutions for large-scale 
real-life problems in a short time. 

 
 

Figure 2. Comparison of mathematical model and greedy heuristic algorithm 
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Figure 3. Gaps between mathematical model and greedy heuristic algorithm 

 

 
Gap = ./0123/0)4/5	.6725	86590)6:(;12	<=227>	129=)?0)4	?6590)6:

./0123/0)4/5	.6725	86590)6:
. 100                                                                                          (16) 

The greedy heuristic's primary goal is to solve the problem much more quickly than a mathematical model, which 
takes a significantly longer. In addition, the mathematical model is solved using the license-required Gurobi solver. 
The algorithm has a cost advantage because the heuristic does not require a Gurobi license, which is quite 
expensive. One can reach datasets, the codes of the mathematical model, and the heuristic algorithm used in this 
study on the https://drive.google.com/drive/folders/1qM3cLsHzzDx6U3IbjHVcYuXUo9sI_PN9?usp=sharing. 

6. Conclusion and future research 
 
This paper presented a new mathematical model for harmonic mixing and a popularity-based playlist generation 
problem. This model generated a playlist that maximized the total popularity, assured the harmonic mixing rules, 
and limited the tempo difference between songs played consecutively. The proposed model was evaluated on 16 
test problems created using real-music archives via Spotify API. While the model reached the optimal solution in 
some of these test problems, it reached the best possible solution in others. Based on this, we proposed a greedy 
heuristic. The heuristic method generated playlists at least 7 times faster than the mathematical model in test 
problems. In addition to its short execution time, the heuristic had an average gap of 13.84% across all test 
problems compared to the mathematical model. The heuristic algorithm provided promising solutions in a short 
time. Future research could explore metaheuristic algorithms, such as genetic algorithms, to solve this problem 
more efficiently. Additionally, a decision support system could be developed to help DJs generate playlists easily. 
 
Contribution of authors 
 
 Zülkar Karakaya was responsible for data collection, data curation, writing, software development, validation, 
and visualization. Zeliha Ergül Aydın was responsible for methodology, software development, validation, data 
curation, supervision, and writing. 
 
Acknowledgement 
 
This study was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) 2209/A 
Program and Eskisehir Technical University Scientific Research Projects Commission under grant no: 22LÖP394. 
 
Conflicts of interest 
 
There is no conflict of interest in this study. 



Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

496 
 

References 
 
Bittner, R. M., Gu, M., Hernandez, G., Humphrey, E. J., Jehan, T., McCurry, H., & Montecchio, N. (2017, 
October). Automatic Playlist Sequencing and Transitions. In ISMIR (pp. 442-448). 
 
Bonnin, G., & Jannach, D. (2014). Automated generation of music playlists: Survey and experiments. ACM 
Computing Surveys (CSUR), 47(2), 1-35. https://dl.acm.org/doi/10.1145/2652481  
 
Dias, R., Gonçalves, D., & Fonseca, M. J. (2017). From manual to assisted playlist creation: a survey. Multimedia 
Tools and Applications, 76, 14375-14403. https://doi.org/10.1007/s11042-016-3836-x  
 
Fields, B., Lamere, P., & Hornby, N. (2010, August). Finding a path through the juke box: The playlist tutorial. 
In 11th International Society for Music Information Retrieval Conference (ISMIR). 
 
Gabbolini, G., & Bridge, D. (2024). Surveying More Than Two Decades of Music Information Retrieval Research 
on Playlists. ACM Transactions on Intelligent Systems and Technology. https://doi.org/10.1145/3688398  
 
Gebhardt, R., Davies, M., & Seeber, B. (2016). Psychoacoustic Approaches for Harmonic Music Mixing. Applied 
Sciences, 6(5), 123. https://doi.org/10.3390/app6050123  
  
Hartono, P., & Yoshitake, R. (2013). Automatic playlist generation from self-organizing music map. Journal of 
Signal Processing, 17(1), 11-19. https://doi.org/10.2299/jsp.17.11  
 
Hsu, J. L., & Lai, Y. C. (2014). Automatic playlist generation by applying tabu search. International Journal of 
Machine Learning and Cybernetics, 5, 553-568. https://doi.org/10.1007/s13042-013-0151-y  
 
Kahanda, I., & Kanewala, U.  (2007) PlayGen: A HYBRID PLAYLIST GENERATOR, in Annual Technical 
Conference 2007 of IET-YMS 
 
Mocholi, J. A., Martinez, V., Jaen, J., & Catala, A. (2012). A multicriteria ant colony algorithm for generating 
music playlists. Expert Systems with Applications, 39(3), 2270-2278. https://doi.org/10.1016/j.eswa.2011.07.131  
 
Pauws, S., Verhaegh, W., & Vossen, M. (2008). Music playlist generation by adapted simulated 
annealing. Information Sciences, 178(3), 647-662. https://doi.org/10.1016/j.ins.2007.08.019  
 
Pohle, T., Pampalk, E., & Widmer, G. (2005, September). Generating similarity-based playlists using traveling 
salesman algorithms. In Proceedings of the 8th International Conference on Digital Audio Effects (DAFx-05) (pp. 
220-225). 
 
Pohle, T., Knees, P., Schedl, M., Pampalk, E., & Widmer, G. (2007). “Reinventing the wheel”: a novel approach 
to music player interfaces. IEEE Transactions on Multimedia, 9(3), 567-575. 
https://doi.org/10.1109/TMM.2006.887991  
 
Shuhendler, R., & Rabin, N. (2024). Dynamic artist-based embeddings with application to playlist generation. 
Engineering Applications of Artificial Intelligence, 129, 107604. https://doi.org/10.1016/j.engappai.2023.107604  
 
SpotifyWebAPI, Spotify for developers, 2023. Available a https://developer.spotify.com/documentation/web-api 
 

 
 
 
 
 


