
Fundamentals of Contemporary Mathematical Sciences
doi:10.54974/fcmathsci.1387316

(2024) 5(2) 123 – 133
Research Article

On the Boundary Functional of a Semi-Markov Process

Elshan Ibayev ∗

Azerbaijan National Academy of Sciences, Department of Applied Probabilistic Statistical Methods
Institute of Control Systems, Baku, Azerbaijan

Received: 07 November 2023 Accepted: 09 March 2024

Abstract: In this paper, we consider the semi-Markov random walk process with negative drift, positive

jumps. An integral equation for the Laplace transform of the conditional distribution of the boundary

functional is obtained. In this work, we define the residence time of the system by generalized exponential

distributions with different parameters via fractional order integral equation. The purpose of this paper

is to reduce an integral equation for the Laplace transform of the conditional distribution of a boundary

functional of the semi-Markov random walk processes to fractional order differential equation with constant

coefficients.

Keywords: Laplace transform, random variable, semi-Markov random walk process, Riemann-Liouville

fractional derivative.

1. Introduction
A semi-Markov processes are investigated in different directions. In recent years, a semi-Markov

random walk with one or two barriers are being used to solve a number of very interesting problems

in the fields of inventory, queues and reliability theories, mathematical biology etc. It is well known

that the semi-Markov processes have been introduced by Levy [14], Smith [22] and Tak àcs [23]

in order to reduce the limitation induced by the exponential distribution of the corresponding

time intervals. This is the immediate generalization of Markov chains since the Markov property

is the typical consequence of the lack of memory of the exponential distribution. The semi-

Markov process is constructed by the so-called Markov renewal process. The Markov renewal

process is defined by the transition probabilities matrix, called the renewal kernel, and by an

initial distribution. The essential developments of semi-Markov processes theory were proposed

by Pyke [21], Feller [7], Cinlar [6], Gikhman and Skorokhod [9], Limnios and Oprisan [15] and

Grabski [8]. In the work of Abdel-Rehim, Hassan and El-Sayed [3] a simulation of the short and

long memory of ergodic Markov and non-Markov genetic diffusion processes on the long run was
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investigated. Using asymptotic methods and factorization methods similar problems were studied

by Lebowitz and Percus [13] and Lotov and Orlova [16]. In many cases asymptotic analysis of the

factorization representations of dual transforms leads to the complete asymptotic expansions of the

distributions under consideration [4]. But in particular case of semi-Markov random walk process

we can obtain the explicit form for probability characteristics. The authors of [10, 12, 19, 20]

have found the Laplace transform of the distribution of the first moment reaching level zero of the

semi-Markov random walk processes. It should be noted that finding the Laplace transform of the

semi-Markov random walk processes is a powerful tool in applied mathematics and engineering.

It is well known the connection between semigroup theory and the Markov processes. In the

semigroup theory of Markov processes, a particular process is usually represented as a semigroup

of contraction operators in some concrete Banach space, and the properties of the particular

process are deduced from the properties of the associated semigroup of operators. From this

point of view, by Atangana in [1] it was shown that the Atangana Baleanu fractional derivative

possesses the Markovian and non-Markovian properties. We also refer to [2] for more results on

fractional modeling of probabilistic processes. We recall that, in [5] the authors studied a stepwise

semi-Markov processes. Then authors used the fractional Riemann-Liouville derivative. Moreover,

the obtained solution for the fractional differential equation was in the form of a threefold sum.

But in the presented paper, we obtained a mathematical model of a semi-Markov process with

negative drift, positive jumps for a certain general class of probability distributions, and in the

class of gamma distributions we managed to reduce the study of a mathematical model through

a fractional differential equation with a fractional Riemann-Liouville derivative. In conclusion, we

were able to find solution for the fractional differential equation.

In this paper, jump processes with a waiting time between jumps that is not necessarily given

by an exponential random variable is consider. In the present paper, we study the semi-Markov

random walk process with negative drift, positive jumps and delaying barrier.

An integral equation for the Laplace transform of the conditional distribution of the bound-

ary functional is constructed. In particular, constructed integral equation is reduce to the fractional

order differential equation in the class of gamma distributions. Finally, solution of the fractional

order differential equation is obtained. The paper is organized in five section. In Section 2, we

introduce analytic expression of a stochastic process and some notation. Section 3 is devoted to

construct an integral equation for the Laplace transform of the conditional distribution of the

boundary functional, also it is shown that the obtained integral equation is reduce a fractional

differential equation in the class of gamma distributions. The main result is obtained in Section

4. Finally, the conclusion is given in Section 5.
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2. Problem Statement and Preliminaries
Let’s assume that sequences of independent and identically distributed pairs of random variables

{ξk, ζk}∞k=1 ,be given on the any probability space (Ω, F,P ) , where the random variables ξk and

ζk are independent, positive. Now, we can construct the stochastic process X1 (t) as follows

X1 (t) = z − t +
k−1
∑
i=0

ζi, if
k−1
∑
i=0

ξi ≤ t <
k

∑
i=0

ξi,

where ξ0 = ζ0 = 0 . This stochastic model is called “a semi-Markov random walk process with

negative drift, positive jumps”. Let this process is delayed by a barrier zero:

X(t) =X1 (t) − inf
0≤s≤t

{0,X1(s)} .

Now, we introduce the following random variable

τ0 = inf {t ∶ X(t) = 0} .

We set τ0 = ∞ if X(t) > 0 for every t . Notice that the random variable τ0 is the time of the

first crossing of the process X(t) into the delaying barrier at zero level. τ0 is called boundary

functional of the semi-Markov random walk process with negative drift, positive jumps.

The aim of this study is to find the Laplace transform of the conditional distribution of the

random variable τ0 . Laplace transform of the conditional distribution of the random variable τ0

by

L(θ ∣z ) = E [e−θτ0 ∣X(0) = z ] , θ > 0, z ≥ 0.

Let us denote the conditional distribution of random variable of τ0 and the Laplace transform

of the conditional distribution are defined by

N(t ∣z ) = P [τ0 > t ∣X(0) = z ] ,

and

Ñ(θ ∣z ) = ∫
∞

0
e−θtN(t ∣z )dt,

respectively.

Thus, it is easy to see that

Ñ(θ ∣z ) = 1 −L(θ ∣z )
θ

or, equivalently,

L(θ ∣z ) = 1 − θÑ(θ ∣z ).
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3. The Construction of an Integral Equation for the Ñ(θ ∣z ) and Reduction to the

Fractional Order Differential Equation

Theorem 3.1 Function Ñ(θ ∣z ) satisfy the following integral equation:

Ñ (θ ∣ z) = ∫
z

0
e−θ t P {ξ1 > t} dt +∫

∞

z
Ñ (θ ∣ y) ∫

z

0
e−θ t dtP {ξ1 < t} dy P {ζ1 < y − z + t}

+∫
z

0
Ñ (θ ∣ y) ∫

z

z−y
e−θ t dtP {ξ1 < t} dy P {ζ1 < y − z + t} . (1)

Proof Using by the law of total probability, we can get

N(t ∣z ) = P {τ0 > t; ξ1 > t ∣X(0) = z } + P {τ0 > t; ξ1 < t ∣X(0) = z }

= P { z − t > 0; ξ1 > t} +∫
t

0
∫
∞

0
P {ξ1 ∈ ds; z − s > 0; z − s + ζ1 ∈ dy}P {τ0 > t − s ∣X(0) = z } .

Then

N (t, ∣ z) = P {z − t > 0} P {ξ1 > t}

+
t

∫
0

∞

∫
0

P {ξ1 ∈ ds; z − s > 0; z − s + ζ1 ∈ dy} N (t − s ∣ y) . (2)

By applying the Laplace transform with respect to t both sides of the equation (2) we get:

Ñ (θ ∣ z) = ∫
∞

0
e−θ t P {z − t > 0; ξ1 > t} dt

+∫
∞

0
e−θ t ∫

t

0
∫
∞

0
P {ξ1 ∈ ds; z − s > 0; z − s + ζ1 ∈ dy} N (t − s ∣ y) , θ > 0

or

Ñ (θ ∣ z) = ∫
z

0
e−θ t P { ξ1 > t} dt

+∫
∞

0
Ñ (θ ∣ y)∫

∞

0
e−θ tP {ξ1 ∈ dt; z − t > 0} dy P {ζ1 < y − z + t} , θ > 0.

The following equation can be easily obtained from the last equation:

Ñ (θ ∣ z) = ∫
z

0
e−θ t P { ξ1 > t} dt

+∫
∞

0
Ñ (θ ∣ y)∫

z

0
e−θ tdtP {ξ1 < t} dy P {ζ1 < y − z + t} .

It is clear that it should be taken y − z + t > 0. From this condition, it follows that

t >max(0, z − y) . Then the last equation can be rewritten as follows
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Ñ (θ ∣ z) = ∫
z

0
e−θ t P { ξ1 > t} dt

+∫
∞

0
Ñ (θ ∣ y)∫

z

max(0,z−y)
e−θ tdtP {ξ1 < t} dy P {ζ1 < y − z + t} . (3)

Finally, from integral equation (3), (1) is obtained. ◻

This completes the proof.

Suppose that the distribution of the random variable ξ1 has the density function pξ1(s),

s > 0 and the distribution of the random variable ζ1 has the density function pζ1(s), s > 0 . Then

equation (1) has the form

Ñ (θ ∣ z) = 1

θ
[1 − e−θz] + 1

θ
e−θzP {ξ1 < z} −

1

θ
∫

z

0
e−θ tpξ1(t)d t

+∫
∞

z
Ñ (θ ∣ y) ∫

z

0
e−θ t pξ1(t)pζ1(y − z + t)dtdy

+∫
z

0
Ñ (θ ∣ y) ∫

z

z−y
e−θ t pξ1(t)pζ1(y − z + t)dtdy . (4)

Let’s assume that random variable ξ1 has the gamma distribution with parameters α > 0

and β > 0 , while random variable ζ1 has Erlang distribution of first order with the parameters µ :

pξ1 (x) = {
βα

Γ(α)x
α−1 e−βx, x > 0

0, x ≤ 0,
ρζ1 (x) = {

µe−µx, x ≥ 0
0, x < 0.

In the class of these distributions the integral equation (4) can be written as follows

Ñ (θ ∣ z) = 1

θ
[1 − e−θz] + βαe−θz

θΓ(α) ∫
z

0
e−βyyα−1dy − βα

θΓ(α) ∫
z

0
e−(θ+β)ttα−1d t

+µβ
αeµz

Γ(α) ∫
∞

z
e−µyÑ (θ ∣ y) ∫

z

0
e−(µ+θ+β) t tα−1 dtdy

+µβ
αeµz

Γ(α) ∫
z

0
e−µyÑ (θ ∣ y) ∫

z

z−y
e−(µ+θ+β) t tα−1 dtdy . (5)

Multiplying both sides of equation (5) by e−µz and differentiating both sides with respect

to z , we obtain

e−µzÑ ′ (θ ∣ z) − µe−µzÑ (θ ∣ z) = 1

θ
[(µ + θ)e−(µ+θ)z − µe−µz]
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−β
α(µ + θ)e−(µ+θ)z

θΓ(α) ∫
z

0
e−βyyα−1dy + µβαe−µz

θΓ(α) ∫
z

0
e−(θ+β)ttα−1d t

+µβ
αe−(µ+θ+β)z

Γ(α)
zα−1 ∫

∞

0
e−µyÑ (θ ∣ y)dy

−µβ
αe−(µ+θ+β)z

Γ(α) ∫
z

0
e(θ+β)yÑ (θ ∣ y) (z − y)α−1dy . (6)

It is easy to see that,
z

∫
0

e−βyyα−1dy = e−βzzα
∞
∑
n=0

βnzn

α(α+1)...(α+n) .

Multiplying both sides of last equation (6) by e−(µ+θ+β)z , we obtain

e(θ+β)zÑ ′ (θ ∣ z) − µe(θ+β)zÑ (θ ∣ z) = 1

θ
[(µ + θ)eβz − µe(θ+β)z]

−β
α(µ + θ)
θΓ (α)

zα
∞
∑
n=0

βnzn

α(α + 1) . . . (α + n)
+ µβα

θΓ (α)
zα

∞
∑
n=0

(θ + β)nzn

α(α + 1) . . . (α + n)

+ µβα

Γ(α)
zα−1

∞

∫
0

e−µyÑ (θ ∣ y)dy

− µβα

Γ (α)

z

∫
0

e(θ+β)yÑ (θ ∣ y) (z − y)α−1dy . (7)

We denote

Q(θ ∣z ) = e(θ+β)zÑ (θ ∣ z) . (8)

Then equation (7) can be rewritten as follows

Q′ (θ ∣ z) − (µ + θ + β)Q (θ ∣ z) = 1

θ
[(µ + θ)eβz − µe(θ+β)z]

−β
α(µ + θ)
θΓ (α)

zα
∞
∑
n=0

βnzn

α(α + 1) . . . (α + n)
+ µβα

θΓ (α)
zα

∞
∑
n=0

(θ + β)nzn

α(α + 1) . . . (α + n)

+ µβα

Γ (α)
zα−1

∞

∫
0

e−µyÑ (θ ∣ y)dy − µβα

Γ (α) ∫
z

0
Q (θ ∣ y) (z − y)α−1dy. (9)

It is known that the Riemann-Liouville integral can be expressed by (see, [17, 18])

D−αz (Q (θ ∣z )) =
1

Γ (α) ∫
z

0
Q(θ ∣y )(z − y)α−1dy, 0 < α ≤ 1.

Taking into account the last equality in (9), we obtain

Q′ (θ ∣ z) − (µ + θ + β)Q (θ ∣ z) = 1

θ
[(µ + θ)eβz − µe(θ+β)z]
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−β
α(µ + θ)
θΓ (α)

∞
∑
n=0

βnzn+α

α(α + 1) . . . (α + n)
+ µβα

θΓ(α)

∞
∑
n=0

(θ + β)nzn+α

α(α + 1) . . . (α + n)

+ µβα

Γ (α)
zα−1

∞

∫
0

e−µyÑ (θ ∣ y)dy − µβαD−αz Q (θ ∣ z) . (10)

By applying Riemann-Liouville fractional derivative of order α to both sides equation (10),

we obtain

Dα+1
z Q (θ ∣ z) − (µ + θ + β)Dα

z Q (θ ∣ z) + µβαQ (θ ∣ z)

= 1

θ
[(µ + θ)Dα

z e
βz − µDα

z e
(θ+β)z] − βα(µ + θ)

θΓ(α)

∞
∑
n=0

βnDα
z z

n+α

α(α + 1) . . . (α + n)

+ µβα

Γ(α)
Dα

z z
α−1

∞

∫
0

e−µyÑ (θ ∣ y)dy + µβα

θΓ(α)

∞
∑
n=0

(θ + β)nDα
z z

n+α

α(α + 1) . . . (α + n)
. (11)

It is well known that the Mittag-Leffler function is defined as

Eα,β(z) =
∞
∑
k=0

zk

(αk + β)
, α, β > 0, α, β ∈ R.

Obviously, E1,1(βz) = eβz . The Riemann-Liouville fractional derivative of the power and

the exponential functions are given, respectively, by

Dα
z z

α−1 = 0, Dα
z z

n+α = Γ(n + α + 1)
Γ(n + 1)

zn, Dα
z e

βz = z−αE1,1−α(βz).

Therefore, the (11) can be rewritten as

Dα+1
z Q (θ ∣ z) − (µ + θ + β)Dα

z Q (θ ∣ z) + µβαQ (θ ∣ z)

= 1

θ
[(µ + θ)z−αE1,1−α(βz) − µz−αE1,1−α((θ + β)z)] −

βα(µ + θ)
θ

E1,1(βz)

+µβ
α

θ
E1,1((θ + β)z). (12)

4. Solution of Fractional Differential Equation (12)

Theorem 4.1 Let s > θ + β and ∣sα+1 − (µ + θ + β)sα∣ > ∣µβα∣ . Then, a solution of the fractional

order differential equation (12) has the form

Q (θ ∣ z) = (µ + θ)
θ

∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)n+ℓ+1E1, (α+1)n+ℓ+2 (βz)
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−µ
θ

∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)n+ℓ+1E1, (α+1)n+ℓ+2 ((θ + β)z)

−β
α(µ + θ)

θ

∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)(n+1)+ℓE1, (α+1)(n+1)+ℓ+1 (βz)

−β
αµ

θ

∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)(n+1)+ℓE1, (α+1)(n+1)+ℓ+1 ((θ + β)z)

+
∞
∑
n=0

∞
∑
ℓ=0

(−µβα)n(µ + θ + β)ℓCℓ
n+ℓz

ℓ+n(α+1)+α

Γ(ℓ + (n + 1)(α + 1))
Dα

z Q (θ ∣0) . (13)

Proof Applying to the equation (12) Laplace transform by z and taking into account

Dα−1
z (Q (θ∣0)) = 0 , we can write

L [Q (θ ∣ z)] = (µ + θ)
θ

sα

(s − β) [sα+1 − (µ + θ + β)sα + µβα]

−µ
θ

sα

(s − θ − β) [sα+1 − (µ + θ + β)sα + µβα]

−β
α(µ + θ)

θ

1

(s − β) [sα+1 − (µ + θ + β)sα + µβα]

−β
αµ

θ

1

(s − θ − β) [sα+1 − (µ + θ + β)sα + µβα]

+ Dα
z Q (θ∣0)

sα+1 − (µ + θ + β)sα + µβα
, (14)

where s > θ + β .

Now, applying to the equation (14) inverse Laplace transform by s , we obtain

Q (θ ∣ z) = (µ + θ)
θ

L−1 [ sα

(s − β) [sα+1 − (µ + θ + β)sα + µβα]
]

−µ
θ
L−1 [ sα

(s − θ − β) [sα+1 − (µ + θ + β)sα + µβα]
]

−β
α(µ + θ)

θ
L−1 [ 1

(s − β) [sα+1 − (µ + θ + β)sα + µβα]
]

−β
αµ

θ
L−1 [ 1

(s − θ − β) [sα+1 − (µ + θ + β)sα + µβα]
]

+Dα
z Q (θ ∣0)L−1 [

1

sα+1 − (µ + θ + β)sα + µβα
] . (15)

130



Elshan Ibayev / FCMS

It is known that ([11], Lemma 5), for s > θ + β and ∣sα+1 − (µ + θ + β)sα∣ > ∣µβα∣ , we obtain

L−1 [ sα

(s − β) [sα+1 − (µ + θ + β)sα + µβα]
]

=
∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)n+ℓ+1E1, (α+1)n+ℓ+2 (βz),

L−1 [ sα

(s − θ − β) [sα+1 − (µ + θ + β)sα + µβα]
]

=
∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)n+ℓ+1E1, (α+1)n+ℓ+2 ((θ + β)z),

L−1 [ 1

(s − β) [sα+1 − (µ + θ + β)sα + µβα]
]

=
∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)(n+1)+ℓE1, (α+1)(n+1)+ℓ+1 (βz),

L−1 [ 1

(s − θ − β) [sα+1 − (µ + θ + β)sα + µβα]
]

=
∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)(n+1)+ℓE1, (α+1)(n+1)+ℓ+1 ((θ + β)z)

and

L−1 [ 1

sα+1 − (µ + θ + β)sα + µβα
] =

∞
∑
n=0

∞
∑
ℓ=0

(−µβα)n(µ + θ + β)ℓCℓ
n+ℓz

ℓ+n(α+1)+α

Γ(ℓ + (n + 1)(α + 1))
.

This concludes the proof of theorem. ◻

Taking into account (13) in (8), expression of the function Ñ(θ ∣z ) can be given as follows

Ñ (θ ∣ z) = (µ + θ)
θ

e−(θ+β)z
∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)n+ℓ+1E1, (α+1)n+ℓ+2 (βz)

−µ
θ
e−(θ+β)z

∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)n+ℓ+1E1, (α+1)n+ℓ+2 ((θ + β)z)

−β
α(µ + θ)

θ
e−(θ+β)z

∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)(n+1)+ℓE1, (α+1)(n+1)+ℓ+1 (βz)

−β
αµ

θ
e−(θ+β)z

∞
∑
n=0

∞
∑
ℓ=0
(−µβα)n (µ + θ + β)ℓCℓ

n+ℓ z
(α+1)(n+1)+ℓE1, (α+1)(n+1)+ℓ+1 ((θ + β)z)

+e−(θ+β)z
∞
∑
n=0

∞
∑
ℓ=0

(−µβα)n(µ + θ + β)ℓCℓ
n+ℓz

ℓ+n(α+1)+α

Γ(ℓ + (n + 1)(α + 1))
Dα

z Q (θ ∣0) .
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5. Conclusion
The main purpose of this study is to investigate the semi-Markov random walk process with

negative drift, positive jumps. In general case, we construct an integral equation for the Laplace

transform of the conditional distribution of the random variable. In particular, the fractional order

differential equation is obtained from constructed integral equation in the class of gamma distri-

butions. The fractional derivatives are described in the Riemann-Liouville sense. In conclusion,

we find solution of the fractional order differential equation.
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