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The enhanced homotopy analysis method was employed to solve the 

nonlinear time-fractional advection equation, resulting in the derivation 

of a series of solutions. The objective of this study is to minimize the 

absolute error by identifying the ideal value for a certain parameter, 

indicated as h, by utilizing the residual error (RE) function associated 

with that parameter. The 3-dimensional graphs illustrating the absolute 

discrepancies between the solutions obtained from the exact approach 

and the modified homotopy analysis method have been made using the 

MAPLE software. Hence, the proposed approach demonstrates efficacy 

and appropriateness in tackling fractional partial differential equations. It 

has been discovered that all optimal homotopy-analysis methods 

significantly enhance the speed at which series solutions converge. It is 

highly recommended to use the most effective methods that involve four 

unknown convergence-control parameters. This efficient method 

possesses broad implications and can be employed to obtain rapidly 

converging series solutions for various types of equations exhibiting 

significant nonlinearity. 
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 Doğrusal olmayan zaman-kesirli mertebeden adveksiyon denklemini 

çözmek için geliştirilmiş homotopi analiz yöntemi kullanıldı ve bu da bir 

dizi çözümün türetilmesiyle sonuçlandı. Bu çalışmanın amacı, ℎ ile 

gösterilen belirli bir parametre için o parametreye ilişkin artık hata 

fonksiyonundan yararlanılarak ideal değeri belirleyerek mutlak hatayı en 

aza indirmektir. Kesin yaklaşımla elde edilen çözümler ile değiştirilmiş 

homotopi analiz yöntemi arasındaki mutlak farklılıkları gösteren 3 boyutlu 

grafikler MAPLE yazılımı kullanılarak yapılmıştır. Dolayısıyla önerilen 

yaklaşım kesirli kısmi diferansiyel denklemlerin çözümünde etkinlik ve 

uygunluk göstermektedir. Tüm optimal homotopi analizi yöntemlerinin, 

seri çözümlerin yakınsama hızını önemli ölçüde arttırdığı keşfedilmiştir. 

Bilinmeyen dört yakınsama kontrol parametresini içeren en etkili 

yöntemlerin kullanılması şiddetle tavsiye edilir. Bu etkili yöntemin geniş 

sonuçları vardır ve önemli ölçüde doğrusal olmayanlık sergileyen çeşitli 

denklem türleri için hızla yakınsayan seri çözümler elde etmek için 

kullanılabilir. 
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Hata fonksiyonu 
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1. Introduction 

The field of fractional calculus has been subject to substantial research and has been rigorously defined 

by a multitude of eminent scientists. The researchers have developed innovative conceptualizations of 

fractional calculus, which have later established the foundation for the discipline of fractional analysis. 

Fractional partial differential equations (FPDEs) are commonly utilized in the development of nonlinear 

models and the analysis of dynamical systems. The application of fractional calculus has been employed 

to examine and investigate several topics, including chaos theory, financial models, disordered 

environments, and optics. The identification and analysis of nonlinear phenomena in natural systems are 

predominantly dependent on the resolution of fractional differential equations. A wide array of analytical 

and numerical approaches are utilized to obtain precise solutions for fractional differential equations 

that encompass nonlinear phenomena, owing to their inherent intricacy (Liouville, 1832; Riemannn, 

1896; Caputo, 1969; Miller and Ross, 1993; Podlubny, 1999; Caponetto et al., 2010; Baleanu et al., 

2012; Liu et al., 2015; Povstenko, 2015; Baleanu et al., 2017; Sweilam et al., 2017; Esen et al., 2018; 

Veeresha et al., 2019). 

The concept of the HAM was initially presented by Liao (1992) in his PhD dissertation. In subsequent 

years, the application of HAM was utilized to tackle various diverse issues. The application of the 

analytical series solution technique enabled the management of convergence control in combination 

with the HAM. By employing these techniques, a multitude of scholars have successfully addressed a 

wide range of physical and engineering challenges. Sun (2004) conducted a study that focused on the 

subject of nonlinear traveling waves. In this investigation, the HAM approach was employed. The HAM, 

initially proposed by Song and Zhang in 2007, was initially employed to investigate the fractional KdV-

Burgers-Kuramoto problem. The HAM was effectively utilized to solve the generalized Benjamin-

Bona-Mahony model. The application of the HAM has demonstrated efficacy in addressing several 

FPDEs, including the fractional wave equation, hyperbolic equation, and Fisher equation. The 

determination of the range of the convergence control parameter (CCP) h in the HAM is accomplished 

by utilizing the approach of plotting h curves. A study was conducted to ascertain the most effective 

parameter of the proposed methodology. A range of approaches were employed to determine the value 

of the h parameter (Liao, 1992; Liao, 1999; Liao, 2003; Liao, 2005; Abbasbandy, 2008; Abdulaziz et 

al., 2008; Dehghan et al., 2009; Liao, 2010; Niu et al., 2010; Elsaid, 2011; Arafa et al., 2012; Fan et al., 

2013; Freihat et al., 2013; Lu, 2014; Lu and Liu, 2014; Aslanov, 2015; Jia et al., 2017; Hariharan, 2017; 

Alkan, 2022).  

The utilization of the HAM has proven to be effective in the resolution of nonlinear functional partial 

differential equations (FPDEs). Yusufoglu and Selam (2010) conducted a study to examine the 

convergence range of the CCP h. The modified equal-width wave equation was investigated using the 

HAM. The authors further demonstrated the efficacy of the approach by determining the optimal value 

of h. The objective of Elsaid's (2011) work was to employ the HAM to address the space-time Riesz-

Caputo FPDEs. The utilization of the HAM has been employed as a means to provide a numerical 
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solution for the time-fractional Swift-Hohenberg problem. The nonlinear Fornberg-Whitham problem 

has been computationally solved using the HAM. The researchers also determined the ideal values for 

the CCP within the stated limits. Furthermore, the HAM has been employed as a computational 

technique to address the nonlinear fractional wave-like equation (Song and Zhang, 2007; Sakar and 

Erdoğan, 2013; Shaiq et al., 2013; Odibat and Bataineh, 2015; Pandey and Mishra, 2017; Sakar, 2017; 

Odibat, 2018). 

The HAM has been utilized to computationally solve the Korteweg-de Vries Burger equation. The 

application of the HAM has been utilized as a strategy to acquire solutions for nonlinear wave-like 

equations. A unique methodology has been introduced for utilizing the HAM to address nonlinear issues. 

The proposed methodology effectively addresses the challenge associated with the computation of 

intricate integrals. An approach was devised to effectively determine the most suitable critical control 

points (CCPs) utilized in the analysis of the convergence zone inside hierarchical agglomerative 

clustering. The present study presents a recommended methodology for effectively addressing third-

order fractional dispersive wave equations through the utilization of a hybrid approach. The 

methodology utilized in this research involved the integration of the HAM and the Sumudu transform, 

as outlined in the reference (Sun, 2004). The utilization of the HAM has demonstrated efficacy in the 

resolution of Partial Differential Equations (PDEs) frequently encountered within the realm of 

engineering. The Optimal Homotopy Analysis Method (OHAM) has been utilized to address optimal 

control problems. A novel methodology was developed to ascertain the most suitable choice of a linear 

operator and initial condition. A novel methodology has been suggested for the use of the Optimal 

Homotopy Asymptotic Method (OHAM) and error control in the field of nonlinear ordinary differential 

equations (ODEs) (Liao, 1992; Van Gorder and Vajravelu, 2009; Yusufoğlu and Selam, 2010; Vishal et 

al., 2012; Fan and You, 2013; Turkyilmazoğlu, 2016; Hariharan, 2017; Van Gorder, 2019).  

The fractional advection-diffusion equation is a significant FPDE. The resolution of this equation holds 

significance in enhancing comprehension of advection and diffusion phenomena within a fractional 

framework. Consequently, numerical and approximate analytical techniques are typically necessary for 

this endeavor. The finite element method was developed by Zheng et al. to solve the space fractional 

advection-diffusion problem. In this study, Wang and Wang (2019) proposed a rapid characteristic finite 

difference approach to solve the space fractional advection-diffusion problem. Shen et al. have 

established explicit and implicit difference approximations for space-time fractional advection-diffusion 

equations. Jiang et al. (2011) obtained analytical solutions for the Caputo-Riesz fractional advection-

diffusion equations on a finite domain, incorporating multiple time-space terms were provided. The 

equations were subject to Dirichlet nonhomogeneous boundary conditions. The analytical solution was 

derived by utilizing the spectrum form of the fractional Laplacian operator, as demonstrated in reference. 

Liu et al. investigated a scheme utilizing the finite volume method for solving the space fractional 

diffusion problem. Bu et al. devised a finite element multigrid approach for solving multi-term time 

fractional advection-diffusion equations. In their study, Parvizi et al. (2014) introduced a Jacobi 
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collocation technique to numerically solve the classical fractional advection-diffusion equation, 

incorporating a nonlinear source factor. Rubab et al. (2015) examined analytical solutions for the time 

fractional advection-diffusion equation, specifically focusing on cases where the boundary experiences 

time-dependent pulses. The analytical solutions of the fractional advection-diffusion equation with the 

time fractional Caputo-Fabrizio derivative were determined using the Laplace and Fourier transforms 

as reference. The solutions of the space-time fractional advection-diffusion equations have been derived 

using two methodologies. This study employed the Caputo time fractional derivative and the Riesz 

fractional Laplacian in its analysis. A fully implicit finite difference scheme has been used to solve the 

time fractional advection–diffusion equation (Zheng et al., 2010; Wang and Wang, 2011; Shen et al., 

2011; Jiang et al., 2012; Liu et al., 2014; Bu et al., 2015; Parvizi et al., 2015; Rubbab et al., 2016; 

Povstenko and  Kyrylych, 2017; Mohyud-din et al., 2018).   

The main aim of this study is to obtain the numerical solutions for the nonlinear time-fractional 

advection equation, which includes an arbitrary parameter ħ, by the use of the HAM. Several solutions 

that have not been previously discussed in the existing body of literature are identified, and their 

graphical attributes are depicted comprehensively. Although the Adomian decomposition approach does 

not guarantee the convergence of its approximation series, the homotopy analysis method guarantees 

the convergence of its approximation series. 

The current article is organized subsequent: The following section of the article provides a 

comprehensive analysis of HAM and its evolutionary path. The third chapter presents the application of 

the HAM to get numerical solutions for the nonlinear time-fractional advection equation. The 

concluding chapter of this study presents a comprehensive overview of the significant discoveries that 

have emerged from the examination. 

 

2. Homotopy Analysis Method  

In this section, we will present an introduction to the HAM and the OHAM.  

 

2.1. Homotopy Analysis Method 

The purpose of this inquiry is to analyze the underlying notion of the technique employed by examining 

the given nonlinear equation (Alkan, 2022)  

𝒩[𝑢(𝜌, 𝜎)] = 0, (1) 

where 𝓝 is a nonlinear operator, 𝝆 and 𝝈 are spatial and time variables, 𝒖(𝝆, 𝝈) is unknown function. 

Let 𝑞 is an embedding parameter in the range [0,1]. Let ℎ be a nonzero CCP. Assume that 𝐻(𝜌, 𝜎) and 

𝑀 are the auxiliary function and linear operator, respectively. Let 𝑢0(𝜌, 𝜎) be an initial iteration of 

𝑢(𝜌, 𝜎). 

Hence, the equation describing the deformation of order zero for the solution series 𝜓(𝜌, 𝜎; 𝑞) can be 

expressed as follows:  



1219 

 

(1 − 𝑞)𝑀[𝜓(𝜌, 𝜎; 𝑞) − 𝑢0(𝜌, 𝜎)] = 𝑞ℎ𝐻(𝜌, 𝜎)𝒩[𝜓(𝜌, 𝜎; 𝑞)].   (2) 

When the value of 𝑞 is set to 0 and 1 in Eq. (2), the resulting expressions are derived as follows, 

correspondingly: 

𝜓(𝜌, 𝜎; 0) = 𝑢0(𝜌, 𝜎), 𝜓(𝜌, 𝜎; 1) = u(𝜌, 𝜎).   (3) 

As the homotopy parameter 𝑞 varies from 0 to 1, the function 𝜓(𝜌, 𝜎; 𝑞) exhibits continuous 

convergence from the initial iteration 𝑢0(𝜌, 𝜎) to the exact solution 𝑢(𝜌, 𝜎). Within the field of 

homotopy theory, the process of continuous transformation is commonly denoted as deformation. 

The derivatives for the 𝒎-th deformation equation are described as: 

𝑢0
(𝑚)(𝑥, 𝑡) =

𝜕𝑚𝜓(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|
𝑞=0

.   
(4) 

By utilizing Taylor's theorem, we can derive the power series expansion of 𝝍(𝝆, 𝝈; 𝒒) with respect to 

𝒒. 

𝜓(𝜌, 𝜎; 𝑞) = 𝑢0(𝜌, 𝜎) + ∑ 𝑢𝑚(𝜌, 𝜎)𝑞𝑚

+∞

𝑚=1

.   
(5) 

If the auxiliary linear operator 𝑀, initial iteration 𝑢0(𝜌, 𝜎), CCP ℎ, and auxiliary function 𝐻(𝜌, 𝜎) are 

suitably selected, the power series 𝜓(𝜌, 𝜎; 𝑞) exhibits convergence at 𝑞 = 1 and can be derived as 

𝑢(𝜌, 𝜎) = 𝑢0(𝜌, 𝜎) + ∑ 𝑢𝑚(𝜌, 𝜎)

∞

𝑚=1

.   
(8) 

According to Liao's (2005) findings in the literature, it has been demonstrated that when one of the 

solutions to the Eq. (1) is ħ = −1 and 𝐻(𝑥, 𝑡) = 1, the Eq. (2) may be converted to a specific form  

(1 − 𝑞)𝑀[𝜓(𝜌, 𝜎; 𝑞) − 𝑢0(𝜌, 𝜎)] + 𝑞𝒩[𝜓(𝜌, 𝜎; 𝑞)] = 0.     (9) 

that is employed in the homotopy perturbation method (Liao, 2005). 

The vector �⃗⃗� 𝒎  is described by 

�⃗� 𝑚= {𝑢0(𝜌, 𝜎), 𝑢1(𝜌, 𝜎), … , 𝑢𝑚(𝜌, 𝜎)}.  (10) 

The equation for 𝑢𝑚(𝜌, 𝜎) can be derived from the zeroth-order deformation equation, as stated in Eq. 

(6). 

By employing the 𝒌𝒎 function described by 

𝑘𝑚 = {
0,     𝑚 ≤ 1,
1,     𝑚 > 1.

  
(11) 

Then we derive the equation  

𝑀[𝑢𝑚(𝜌, 𝜎) − 𝑘𝑚𝑢𝑚−1(𝜌, 𝜎)] = ℎ𝐻(𝜌, 𝜎)𝑅𝑚(�⃗� 𝑚−1, 𝜌, 𝜎),  (12) 

where  𝑹𝒎(�⃗⃗� 𝒎−𝟏, 𝝆, 𝝈) is expressed in the following. 

𝑅𝑚(�⃗� 𝑚−1, 𝜌, 𝜎) =
1

(𝑚 − 1)!

𝜕𝑚−1𝒩[𝜓(𝜌, 𝜎; 𝑞)]

𝜕𝑞𝑚−1
|
𝑞=0

.  
(13) 

The 𝑚-th order deformation equation can be derived by utilizing Equation (13). By utilizing equations 

(5) through (13), 𝑅𝑚(�⃗� 𝑚−1, 𝜌, 𝜎) has been determined as 
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𝑅𝑚(�⃗� 𝑚−1, 𝜌, 𝜎) =
1

(𝑚 − 1)!

𝜕𝑚−1

𝜕𝑞𝑚−1
𝒩 [∑ 𝑢𝑛(𝜌, 𝜎)𝑞𝑛

+∞

𝑛=0

]|

𝑞=0

.  
(14) 

The way to obtaining the 𝒎 − 𝒕𝒉 order solution is as follows: 

𝑢(𝜌, 𝜎) = ∑ 𝑢𝑘(𝜌, 𝜎),

𝑚

𝑘=0

  
(15) 

where the solution 𝑢(𝜌, 𝜎) incorporates the CCP ħ.  

 

2.2. Improved Homotopy Analysis Method 

The exact calculation of the square RE in ODEs for the approximation of order 𝒎 is formally established 

as (Liao, 2010; Alkan, 2022)  

∆𝑚= ∫ (𝒩 (∑𝑠𝑖

𝑚

İ=0

(r)))

2

𝑑𝑟,

+∞

0

 

(16) 

where the formula ∆𝒎 incorporates a CCP, 𝓝 is nonlinear operator, denoted as 𝒉, which is currently 

unknown. The CCP 𝒉 for the approximation of order 𝒎 is determined by finding a minimum value of 

∆𝒎, which represents the optimal value. Therefore, we have the equality 

𝑑∆𝑚

𝑑ℎ
= 0. 

(17) 

Nevertheless, previous research has demonstrated that the computation of ∆𝑚, as defined by Liao using 

formula (16), necessitates a substantial amount of CPU time, even when employing a low 

approximation. To decrease CPU time, the average quadratic RE (√𝐸𝑚 )   is formulated in the following 

[55]:  

𝐸𝑚 =
1

𝑛 + 1
∑(𝑁 (∑𝑠𝑖

𝑚

𝑖=0

(
𝑗

𝑛
, ℎ)))

2
𝑛

𝑗=0

.  

(18) 

The nonlinear time-fractional advection equation (NTFAE), as explained in this work, employed the 

appropriate form of Eq. (18). 

 

2.3. Convergence Analysis 

Theorem 2.1. If the homotopy series presented in Equation (8) exhibits convergence, the outcome is 

described as (Liao, 2010; Alkan, 2022) 

∑ 𝑅𝑛(�⃗� 𝑛−1, 𝜌, 𝜎)

∞

𝑛=1

= 0.  
(19) 

Proof. The source of this information can be located in (Liao, 2010).  
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Theorem 2.2. In the event that the homotopy series shown in Equation (8) exhibits convergence, this 

series must serve as a solution to the initial nonlinear equation denoted as Equation (1) (Liao, 2010; 

Alkan, 2022). 

Proof. It can be seen in (Liao, 2010; Alkan, 2022). 

 

3. The Time-Fractional Advection Equation  

In this section, we will examine the nonlinear cases of the NTFAE.  

Example 3.1.  

Consider the NTFAE with the initial condition 

𝐷𝜎
𝛼𝑢(𝜌, 𝜎) + 𝑢(𝜌, 𝜎)𝑢𝜌(𝜌, 𝜎) = 𝑓(𝜌, 𝜎), 0 ≤ 𝜌, 𝜎 ≤ 1 ,  0 < 𝛼 ≤ 1,  

𝑢(𝜌, 0) = 0, (20) 

where, 𝐷𝜎
𝛼 is the Caputo fractional derivative operator, 𝑓(𝜌, 𝜎) is an unknown function.  

If 𝑓(𝜌, 𝜎) in Eq. (20) is taken as 

𝑓(𝜌, 𝜎) =
𝜌(2𝜎(2−𝛼) + 𝜎4𝛤(3 − 𝛼))

𝛤(3 − 𝛼)
 ,  

(21) 

then Eq. (20) becomes 

𝐷𝜎
𝛼𝑢(𝜌, 𝜎) + 𝑢(𝜌, 𝜎)𝑢𝜌(𝜌, 𝜎) =

𝜌(2𝜎(2−𝛼) + 𝜎4𝛤(3 − 𝛼))

𝛤(3 − 𝛼)
, 

(22) 

𝑢(𝜌, 0) = 0. (23) 

With initial condition in Eq. (23), the exact solution of Eq. (22) is 𝑢(𝜌, 𝜎) = 𝜌𝜎2. In Eq. (22), the 

expression with fractional derivative  

𝑀[𝑢(𝜌, 𝜎; 𝑞)] = 𝐷𝜎
𝛼𝑢(𝜌, 𝜎; 𝑞),  (24) 

is chosen as the linear operator. In addition, the nonlinear operator from Eq. (22) is chosen as  

𝑁[𝑢(𝜌, 𝜎; 𝑞)] = 𝐷𝜎
𝛼𝑢(𝜌, 𝜎) + 𝑢(𝜌, 𝜎)𝑢𝜌(𝜌, 𝜎) −

𝜌 (2𝜎(2−𝛼) + 𝜎4𝛤(3 − 𝛼))

𝛤(3 − 𝛼)
.  

(25) 

Using the homotopy definition, the equation for zeroth-order deformation is constructed in the form of 

(1 − 𝑞)𝑀[𝑢(𝜌, 𝜎; 𝑞) − 𝑢0(𝜌, 𝜎)] = 𝑞ħ𝐻(𝜌, 𝜎)𝑁[𝑢(𝜌, 𝜎; 𝑞)],  (26) 

where ħ is the convergence-control parameter. When the values of 𝑞 are taken to 0 and 1 in Eq. (26), 

the resulting outcomes are derived as 

𝑢(𝜌, 𝜎; 0) = 𝑢0(𝜌, 𝜎) = 𝑢(𝑥, 0), 𝑢(𝜌, 𝜎; 1) = 𝑢(𝜌, 𝜎).  (26) 

𝑚-th order deformation equation is also in the form of 

𝐿[𝑢𝑚(𝜌, 𝜎) − 𝑘𝑚𝑢𝑚−1(𝜌, 𝜎)] = ħ𝑅𝑚(�⃗� 𝑚−1(𝜌, 𝜎)),  (27) 

where,  

𝑅𝑚(�⃗� 𝑚−1(𝜌, 𝜎)) = 𝐷𝜎
𝛼𝑢𝑚−1(𝜌, 𝜎) + ∑ [𝑢𝑘(𝜌, 𝜎)

𝜕𝑢𝑚−1−𝑘(𝜌, 𝜎)

𝜕𝜌
]

𝑚−1

𝑘=0

− (1 − 𝑘𝑚) 
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 ×  
𝜌(2𝜎(2−𝛼) + 𝜎4𝛤(3 − 𝛼))

𝛤(3 − 𝛼)
. 

(28) 

In Eq. (27), for 𝑚 ≥ 1 using the inverse of the operator, the equation for 𝑚-th order deformation is 

derived as 

𝑢𝑚(𝜌, 𝜎) = 𝑘𝑚𝑢𝑚−1(𝜌, 𝜎) + ħ𝑀−1 (𝑅𝑚(�⃗� 𝑚−1(𝜌, 𝜎))).  (29) 

For 𝑚 = 0,1,2,… in Eq. (29), the iterations are derived sequentially as follows. 

𝑢0(𝜌, 𝜎) = 0,  (30) 

𝑢1(𝜌, 𝜎) = −𝜌ħ𝜎2 −
24𝜌ħ𝜎𝛼+4

𝛤(𝛼 + 5)
,   

(31) 

⋮  

The CCP in the iteration is denoted by the symbol ħ. Also, the approach of squared RE is employed to 

determine the optimal value of this parameter. (𝜌, 𝜎) ∈ [0,1] × [0,1] will be taken as the region. The 

Residual function will be defined in the following. 

𝑟4(𝜌, 𝜎, ħ) = 𝐷𝜎
𝛼𝑤4(𝜌, 𝜎, ħ) + 𝑤4(𝜌, 𝜎, ħ)

𝜕𝑤4(𝜌, 𝜎, ħ)

𝜕𝜌
−

𝜌(2𝜎(2−𝛼) + 𝜎4𝛤(3 − 𝛼))

𝛤(3 − 𝛼)
.   

(32) 

The second norm of this residual function has the form of 

𝑒4(ħ) = (∫∫|𝑟4(𝜌, 𝜎, ħ)|

1

0

1

0

𝑑𝜎𝑑𝜌)

1
2

.   

(33) 

When specifying the optimal values of parameter ħ, the minimum of 𝑒4(ħ) based on norm 2 will be 

selected. Table 1 presents the optimal ħ parameters for several values of 𝛼, specifically 𝛼 =

1, 0.9, 0.8, and 0.7. The numerical outcomes are depicted as tables and graphs, specifically Tables 2-5 

and Figures 1-4. 

Table 1. The optimal ħ parameters for 𝛼 = 0.7,0.8,0.9,1 for Example 3.1. 

𝒎                 𝜶 = 𝟏                      𝜶 = 𝟎. 𝟗                        𝜶 = 𝟎. 𝟖                   𝜶 = 𝟎. 𝟕 

4          -0.8740320877         -0.8888546878             -0.8825292730        -0.8605335608 

 

Table 2. Values of solutions and errors with 𝛼 = 1 for Example 3.1 

    𝝆      𝝈        HAM  Exact Solution  Error  

 0.20 

  

    0.10 0.2011817673       0.200 1.18E-3 

    0.20 0.0080008508       0.008 8.50E-7 

    0.40 0.0320795815       0.032 7.95E-5 

    0.60 0.0725622976       0.072 5.62E-4 

    0.80 0.1296835214       0.128 1.68E-3 

 0.40     0.10 0.4023635349       0.400 2.36E-3 

    0.20 0.0160017017       0.016 1.70E-6 

    0.40 0.0641591631       0.064 1.59E-4 

    0.60 0.1451245952       0.144 1.12E-3 

    0.80 0.2593670425       0.256 3.36E-3 
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Table 3. Values of solutions and errors with 𝛼 = 0.9 for Example 3.1 

    𝝆      𝝈        HAM  Exact Solution  Error   

 0.20 

  

    0.10 0.1970572236       0.200 2.94E-3 

    0.20 0.0080023240       0.008 2.32E-6 

    0.40 0.0320935092       0.032 9.35E-5 

    0.60 0.0725621051       0.072 5.62E-4 

    0.80 0.1291435433       0.128 1.14E-3 

 0.40     0.10 0.3941144472       0.400 5.88E-3 

    0.20 0.0160046481       0.016 4.64E-6 

    0.40 0.0641870184       0.064 1.87E-4 

    0.60 0.1451242103       0.144 1.12E-3 

    0.80 0.2582870866       0.256 2.28E-3 

 

Table 4. Values of solutions and errors with 𝛼 = 0.8 for Example 3.1 

    𝝆      𝝈        HAM  Exact Solution Error   

 0.20 

  

 

    0.10 0.1931274324       0.200 6.87E-3 

    0.20 0.0080036345       0.008 3.63E-6 

    0.40 0.0321247177       0.032 1.24E-4 

    0.60 0.0726722204       0.072 6.72E-4 

    0.80 0.1289050112       0.128 9.05E-4 

 0.40 

  

 

    0.10 0.3862548647       0.400 1.37E-2 

    0.20 0.0160072690       0.016 7.26E-7 

    0.40 0.0642494354       0.064 2.49E-4 

    0.60 0.1453444408       0.144 1.34E-3 

    0.80 0.2578100224       0.256 1.81E-3 

 

Table 5. Values of solutions and errors with 𝛼 = 0.7 for Example 3.1 

    𝝆      𝝈        HAM  Exact Solution Error   

 0.20 

 

    0.10 0.1895745570       0.200 1.04E-2 

    0.20 0.0080052958       0.008 5.29E-6 

    0.40 0.0321829967       0.032 1.82E-4 

    0.60 0.0729356757       0.072 9.35E-4 

    0.80 0.1290735321       0.128 1.07E-3 

 0.40 

 

    0.10 0.3791491139       0.400 2.08E-2 

    0.20 0.0160105915       0.016 1.05E-5 

    0.40 0.0643659935       0.064 3.65E-4 

    0.60 0.1458713515       0.144 1.87E-3 

    0.80 0.2581470643       0.256 2.14E-3 
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Figure 1. Absolute error graph for 𝛼 = 1 for Example 3.1. 

 

 

Figure 2. Absolute error graph for 𝛼 = 0.9 for Example 3.1. 

 

Figure 3. Absolute error graph for 𝛼 = 0.8 for Example 3.1. 
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Figure 4. Absolute error graph for 𝛼 = 0.7 for Example 3.1. 

 

4. Conclusion 

The present study successfully implemented the optimal parameter for partial differential equations to 

solve the time-fractional advection equation, yielding a series of solutions. By implementing a more 

focused examination area or augmenting the number of iterations, it becomes feasible to reduce the 

absolute error. Based on the solutions derived for the time-fractional advection equation as presented in 

this study, it is believed that this approach has the potential to be applied in the resolution of both linear 

and nonlinear FPDEs. 
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