

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2024; 13(2), 582-592

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: ekavuncuoglu@cumhuriyet.edu.tr (E. Kavuncuoğlu)

Geliş / Recieved: 10.10.2023 Kabul / Accepted:12.02.2024 Yayımlanma / Published: 15.04.2024
doi: 10.28948/ngumuh.1388789

582

Exploring the performance of PySpark and Scikit-Learn libraries in developing

fall detection systems

Düşme algılama sistemlerinin geliştirilmesinde PySpark ve Scikit-Learn

kütüphanelerinin performansının araştırılması

Erhan Kavuncuoğlu1,*

1 Cumhuriyet Üniversitesi, Bilgisayar Teknolojileri Bölümü, 58840, Sivas Türkiye

Abstract Öz

Falls pose a significant risk, often resulting in serious

injuries and reduced quality of life for the elderly

population. Accurate and effective fall detection systems

can play an important role in reducing these risks. This

study presents a comparative analysis of the performance

of PySpark and Scikit-Learn libraries in the development of

fall detection models. Using both libraries, fall detection

models were built using five popular machine learning

algorithms, including logistic regression, gradient boosting

classifier, random forest, support vector machine and

decision tree. The models were evaluated using

comprehensive metrics (accuracy, sensitivity, specificity,

confusion matrix). In the study, 26 different features were

extracted from the Sisfall dataset consisting of falls and

activities of daily living data in five main categories: basic

statistical features, frequency domain features, time series

features, motion features and relational features. These

features were incorporated into the fall detection models to

increase their ability to recognise falls. The findings show

that both PySpark and Scikit-Learn offer powerful and

effective results in fall detection. The highest performance

rates of both libraries were achieved by logistic regression.

Furthermore, PySpark exhibited slightly longer training

times than Scikit-Learn, which performed better in the test.

In conclusion, this study contributes to the development of

fall detection systems to improve the safety and well-being

of the elderly and contributes to the literature by providing

a new feature extraction method.

Düşmeler, genellikle ciddi yaralanmalara ve yaşlı nüfusun

yaşam kalitesinin azalmasına neden olan önemli bir risk

oluşturur. Doğru ve etkili düşme tespit sistemleri, bu

riskleri azaltmada önemli bir rol oynayabilir. Bu çalışma,

düşme tespit modellerinin geliştirilmesinde PySpark ve

Scikit-Learn kütüphanelerinin performansını

karşılaştırmalı bir analiz sunmaktadır. Her iki kütüphane de

kullanılarak, lojistik regresyon, gradyan arttırma

sınıflandırıcısı, rastgele orman, destek vektör makinesi ve

karar ağacı dahil olmak üzere beş popüler makine öğrenme

algoritması kullanılarak düşme tespit modelleri

oluşturuldu. Modeller, kapsamlı metrikler (doğruluk,

duyarlılık, özgüllük, karışıklık matrisi) kullanılarak

değerlendirildi. Çalışmada düşme ve günlük yaşam aktivite

verilerinden oluşan Sisfall veri setinden 26 farklı özellik

beş ana kategoride çıkarıldı: temel istatistiksel özellikler,

frekans alanı özellikleri, zaman serisi özellikleri, hareket

özellikleri ve ilişkisel özellikler. Bu özellikler, düşme tespit

modellerine düşmeleri tanıma yeteneklerini artırmak için

dahil edildi. Bulgular, hem PySpark hem de Scikit-Learn'ün

düşme tespitinde güçlü ve etkili sonuçlar sunduğunu

göstermektedir. Her iki kütüphane de en yüksek

performans oranlarına lojistik regresyon ile ulaşılmıştır.

Ayrıca, PySpark, testte daha iyi performans sergileyen

Scikit-Learn'e göre biraz daha uzun eğitim süreleri

sergilemiştir. Sonuç olarak, bu çalışma, yaşlıların

güvenliğini ve refahını artırmak için düşme tespit

sistemlerinin geliştirilmesine katkıda bulunduğu gibi yeni

bir özellik çıkarma yöntemi sunarakta literatüre katkıda

bulunuyor.

Keywords: Fall detection, Artificial intelligence, Machine

learning, PySpark, Scikit-Learn

 Anahtar kelimeler: Düşme Algılama, Yapay zeka,

Makine öğrenmesi, PySpark, Scikit-Learn

1 Introduction

Fall detection is an important research area, particularly

for the well-being and safety of the elderly population in the

domains of fall sensing, machine learning, and data analysis.

This study aims to compare the performance of fall detection

models using PySpark and Scikit-Learn libraries utilizing the

Sisfall [1] dataset.

PySpark is an open-source cluster computing framework

that provides a distributed computing environment for large-

scale data processing. It is suitable for processing big data

and complex computations by offering various machine

learning algorithms and tools [2-6]. Patel et al. [7] focused

on a real-time scalable data collection process for COVID-

19 data and highlighted PySpark as a useful tool for this

process. The authors emphasized the comprehensive and

efficient capabilities of PySpark for processing large datasets

in parallel clusters, specifically in machine learning

applications. Another study by Gupta et al. [8] presented

https://orcid.org/0000-0001-6862-2891

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

583

Apache Spark and a deep learning-based big data analysis

framework using PySpark. The authors performed

experimental analyses on real-world datasets and

demonstrated the effectiveness of their framework compared

with traditional big data analysis techniques. Additionally,

Rothauge [9] discussed the use of PySpark as an interface for

the Alchemist system. Alchemists have enabled Apache

Spark to achieve better performance by providing interfaces

with high-performance computing libraries for large-scale

distributed computations. The author highlights the

deployment options and data transfer times when using

PySpark with Alchemist. These studies demonstrate the

versatility and efficiency of PySpark in large-scale data

processing and machine learning tasks, emphasizing its use

in real-time data collection, integration with other data

analysis frameworks, etc.

On the other hand, Scikit-Learn is a widely used machine

learning library in Python that provides comprehensive tools

for data analysis and modelling [3-6], [10]. Abraham et al.

[11] focused on the use of Scikit-Learn for machine learning

in neuroimaging. The authors demonstrated how Scikit-

Learn can perform key analysis steps in functional

neuroimaging applications, highlighting its versatility in

brain studies. Another study by Buitinck et al. [12] discussed

the design choices of Scikit-Learn Application Programming

Interface (API). The authors explained that Scikit-Learn is

designed to be simple, efficient, and accessible to non-

experts, emphasizing its reusability in various contexts. Auti

et al. [13] mentioned the use of Scikit-Learn for data

preparation in data mining, specifically for normalization,

standardization, and handling outliers or missing data.

Furthermore, a review article by Hao and Ho [14] provides

an overview of Scikit-Learn as a machine-learning package

in Python. The authors highlight the comprehensive list of

machine learning methods included in Scikit-Learn and their

adherence to unified data and modelling procedure rules,

emphasizing the ease of use for educators and behavioral

statisticians. Overall, these studies showcase the varied

applications and functionalities of Scikit-Learn in machine

learning and data analysis across different domains,

highlighting its versatility, simplicity, and efficiency.

In this study, several commonly used machine learning

algorithms, such as logistic regression, gradient boosting

classifier, random forest, support vector machine, and

decision tree, were employed to develop the fall detection

models. These algorithms were chosen for their effectiveness

in classification tasks, ability to handle both numerical and

categorical data, and high accuracy achievements in fall

detection [15-19].

The performance of the models was evaluated using

various metrics, such as accuracy, precision, recall,

confusion matrix, training time, and testing time, obtained

through PySpark and Scikit-Learn. By comparing the

performance of PySpark and Scikit-Learn based on these

metrics, this study aimed to determine which library is more

successful in fall detection. The findings of this research will

guide researchers and practitioners in selecting the most

suitable library for developing fall detection systems.

The following sections explain the methodology used in

this study, present the obtained results, discuss the

implications of the findings, and provide a comprehensive

analysis of PySpark and Scikit-Learn in the context of fall

detection.

2 Materials and methods

In this study, the Sisfall dataset, which includes falls and

activities of daily living (ADL) obtained from an experiment

conducted by the Systemic research group, was utilized. The

collaboration was established with 38 volunteers, consisting

of elderly and young adults. The elderly group comprised 15

participants (8 males and 7 females) who were in good health

and independent. The young adult group consisted of 23

participants (11 males and 12 females). Each participant

repeated 15 different fall movements and 19 different ADLs,

five times. Within the elderly group, certain ADLs (activities

numbered 6, 13, 18, and 19) were not provided with medical

advice, and some activities could not be carried out due to

personal barriers. Additionally, one participant simulated fall

movements and ADLs due to a judo experience (Table 1).

Data were collected using a specialized wearable device.

The equipment included a Kinetis MKL25Z128VLK4

microcontroller produced by NPX in Austin, Texas, USA, an

analog device ADXL345 accelerometer (with a range of ±

16 g and 13-bit analog-to-digital conversion freedom), a

Freescale MMA8451Q accelerometer (with a range of ± 8 g

and 14-bit ADC), an ITG3200 gyroscope (with a range of

±2000°/s and 16-bit ADC), and an SD card. The device was

mounted on the participant’s waist and powered by a 1000

mA/hr general-purpose battery. The device was positioned

using a single accelerometer system owing to its ability to

differentiate between different activities. The device was set

up to record the original sampling frequency (200 Hz).

This research focused on training algorithms using

PySpark and Scikit-Learn libraries with activity data from 23

young participants to detect and prevent falls. The

participants were asked to perform 15 different fall

movements and 19 ADLs. In total, 3532 observations were

generated during the experiment. Upon inspection of the

dataset, it was observed that 19 ADLs had 5 repetitions, with

4 of them having only 1 repetition. Similarly, 15 fall

movements were collected with 5 repetitions. As a result, the

total number of observations should have been 3542;

however, only 3532 observations were obtained because of

missing repetitions in some cases. Data erasures occurred

because of missing repetitions, such as the absence of a

repetition in the 17th ADL for SA15; the absence of a

repetition in the 6th ADL for SA17; and the absence of

repetitions in the 1st fall movement, 6th ADL, 10th fall

movement, and 17th ADL for SA20, resulting in a total of 10

missing observations. Therefore, individuals with missing

repetitions were considered test data to address imbalances

in the training set.

The method section applied three main stages for fall

detection using a dataset consisting of 3532 records from 23

young volunteers: pre-processing, feature extraction,

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

584

Table 1. SisFall Dataset: List of Falls and ADLs

Falls ADLs

No Description
Cause of

Fall

Trial

s
No Description

Trial

s

1
Falling forward while

walking
Slip 5 1 Slow walking 1

2
Falling backward while
walking

Slip 5 2 Fast walking 1

3
Lateral falling while

walking
Slip 5 3 Slow jogging 1

4 Falling forward due to a trip

Trip

without

stumbling

5 4 Fast jogging 1

5
Falling forward while
jogging

Trip 5 5 Ascending and descending stairs slowly 5

6
Vertical Falling while

walking
Fainting 5 6 Ascending and descending stairs quickly 5

7

Falling while walking,

using hands on a table to

dampen the fall

Fainting 5 7
Slowly sit in a chair of medium height, wait for a moment,
and stand up slowly.

5

8
Falling forward when
attempting to get up

Attemptin
g to get up

5 8
Quickly sit in a chair of medium height, wait for a moment,
and stand up quickly.

5

9
Lateral falling when

attempting to get up

Attemptin

g to get up
5 9

Slowly sit in a low-height chair, wait for a moment, and stand

up slowly.
5

1
0

Falling forward when
attempting to sit down

Attemptin

g to sit

down

5
1
0

Quickly sit in a low-height chair, wait for a moment, and
stand up quickly.

5

1
1

Falling backward when
attempting to sit down

Attemptin

g to sit
down

5
1
1

Sitting for a moment, attempting to get up, and collapsing
back into the chair.

5

1

2

Lateral fall when

attempting to sit down

Attemptin

g to sit
down

5
1

2

Sitting for a moment, lying down slowly, waiting for a

moment, and sitting up again.
5

1

3

Falling forward while

sitting

Fainting

or falling
asleep

5
1

3

Sitting for a moment, lying down quickly, waiting for a

moment, and sitting up again.
5

1

4

Falling backward while

sitting

Fainting

or falling
asleep

5
1

4

Changing from lying on one's back to a lateral position,

waiting for a moment, and changing back to lying on one's
back.

5

1

5
Lateral falling while sitting

Fainting

or falling
asleep

5
1

5
Standing, bending at knees slowly, and getting up. 5

 1
6

Standing, bending without bending knees slowly, and getting
up.

5

 1

7

Boarding a car, staying seated, and disembarking from the

car.
5

 1
8

Stumbling while walking. 5

 1

9

Gently jumping without falling (attempting to reach a high

object).
5

and classification. During the pre-processing stage, various

adjustments and cleaning procedures were performed to

obtain meaningful data from the dataset. In the feature

extraction stage, significant features are extracted from the

preprocessed dataset to detect fall events. Finally, in the

classification stage, the extracted features were utilized to

determine whether a fall event occurred. The performance

metrics required for fall detection were analysed using five

different machine learning techniques available in the

PySpark and Scikit-Learn libraries.

2.1 Data formation

The Sisfall dataset is widely used for developing fall

detection algorithms. This dataset is based on data collected

from the ADXL345 accelerometer sensor (𝐴𝑥, 𝐴𝑦, 𝐴𝑧), the

ITG3200 gyroscope sensor (𝐺𝑥, 𝐺𝑦, 𝐺𝑧), and the

MMA8451Q accelerometer sensor (𝐴𝑥, 𝐴𝑦, 𝐴𝑧). Here, the

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

585

abbreviations "A" and "G" refer to the accelerometer and

gyroscope sensor data, respectively, and "x, y, and z"

represent each vertical axis (Figure 1). Each file consisted of

data records with 9 columns and 200 rows at a frequency of

200 samples per second. The data collection duration varied

from 12 seconds (s) to 100 s for each movement. In this

study, one accelerometer and one gyroscope were included

in the research out of three sensors. The accelerometer to be

used with the ITG3200 gyroscope was chosen considering

the measurement range. The ADXL345 accelerometer is

capable of measuring between -16 g and +16g, while the

MMA8451Q accelerometer can measure between -8 g and

+8g. Therefore, the ADXL345 accelerometer was preferred

because a wider measurement range was required. This

indicates that data records consisting of 6 columns and 200

rows were considered for this study.

To manage the large dataset, the data frames were

divided into 0.5-second frames. Each 0.5-second frame

consists of two 0.25-second frames (𝑇𝐻𝐴) surrounding the

highest acceleration recorded by the waist sensor. This

approach simplifies data management in the development of

fall-detection algorithms.

𝑇𝐻𝐴 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2

(1)

The total acceleration (𝑇𝐻𝐴) vector is calculated from the

average acceleration values along the x, y, and z axes as

shown in Equation (1). Because each test lasts between 12 s

to 100 s, the 𝑇𝐻𝐴 vector typically varies between 2400 to

20000 observations (12 s x 200 Hz - 100 s x 200 Hz). To

remove meaningless data, the first and last 50 observations

(0.25 seconds x 200 Hz) at the beginning and end of each test

are disregarded.

In addition, any unusually high acceleration values are

discarded. The remaining values include the highest

acceleration value, which is used to create a 0.5-second

vector consisting of two 0.25-second frames surrounding this

value. Each frame contains 50 observations (0.25 seconds x

200 Hz), resulting in a total of 101 observations (50

observations + 𝑇𝐻𝐴 value + 50 observations). A single test

repetition yields a data array consisting of 101 rows and 6

columns. Each row includes the measured acceleration or

angular velocity values along the x, y, and z axes, and each

column represents a vector. Therefore, with a single

repetition of the test, a dataset of 101 * 6 is formed for one

sensor unit.

2.2 Feature extraction

In this study, 26 different types of features were defined

for motion recognition. Each sensor unit records signals

along three axes for acceleration (𝐴𝑥, 𝐴𝑦, 𝐴𝑧) and angular

velocity (𝐺𝑥, 𝐺𝑦, 𝐺𝑧). From these signals, various features are

extracted at 0.5-second intervals. These features are divided

into five main categories: basic statistical features (42 * 1),

frequency domain features (114 * 1), time series features (94

* 1), motion features (27 * 1), and relational features (27 *

1). Using these features, a feature vector is generated for each

movement (Table 2).

In this study, 3532 movements were recorded, including

15 falls and 19 activities of daily living. For each movement,

352 features were extracted (352 * 1). Using these features,

a feature set of dimensions of 352 (352 * 3532) was created.

(a) (b)

(c) (d)

Figure 1. These figures showcase participant SA05

performing the "Fall Number 2: Falling backward while

walking due to slipping" movement. Figures (a) and (b)

display raw data recordings of 15 seconds (3000 samples)

sampled at 200 Hz. Figures (c) and (d) depict the same

data but compressed to 101 samples, representing 0.5

seconds of shortened data.

2.3 Machine learning algorithms

In this study, machine-learning algorithms were

employed to detect falls and daily life activities. Features

were extracted from the raw data and used as inputs for the

classifiers. When an algorithm detects a fall or daily life

activity, the developed model associates the input data with

the corresponding labeled fall or daily life activity.

Five different machine learning algorithms were applied

to detect falls, and their classification performance was

compared. The following is a brief description of these

algorithms.

2.3.1 Decision tree (DT)

DT is an algorithm used to make predictions by analyzing

the data. The working principle of this algorithm involves

creating a tree-like structure, in which each node represents

a feature and each branch represents a decision. Starting from

the root node, a decision tree asks questions regarding a

feature and branches downwards, based on the responses.

This process continues until a leaf node representing a

prediction is reached. Decision trees can handle numerical

and categorical data and have been used in fall detection

systems to classify fall events [32].

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

586

Table 2. Features and Formation of Vector. A, G, Var., Std., Freq. are the accelerometer, gyroscope, variance, standard deviation,

and frequency, respectively.

Type Code Features Number of Features

Basic Statistical Features

F1 Minimum values [20]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F2 Maximum values [21]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F3 Mean values [20]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F4 Variance [22]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F5 Skewness [23]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F6 Kurtosis [23]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F7 Root Mean Square [24]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

Frequency Domain Features

F8 Discrete Fourier Transformation [25]

𝒙𝒙𝒙𝒙𝒙 𝒚𝒚𝒚𝒚𝒚 𝒛𝒛𝒛𝒛𝒛

𝑨𝒙, 𝑨𝒚, … . . , 𝑮𝒛

5, 5, …... 5

DFT(Peak) - DFT (Freq.)

30 - 30
60 Features

F9 Power Spectral Density [21]

𝒙𝒙𝒙𝒙𝒙 𝒚𝒚𝒚𝒚𝒚 𝒛𝒛𝒛𝒛𝒛

𝑨𝒙, 𝑨𝒚, … . . , 𝑮𝒛

51 Features

F10 Angular Velocity [26]

Var. Std. Energy

𝒙𝒚𝒛 𝒙𝒚𝒛 𝒙𝒚𝒛

𝑮
3 Features

Time Series Features

F11 Autocorrelation [27]

𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙 𝒚. . 𝒛..
𝑨𝒙, 𝑨𝒚, … . . , 𝑮𝒛

11, 11, …...11

DFT(Peak) - DFT (Freq.)

66 Features

F12 Spectral Entropy [28]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F13 Energy [24]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F14 Singular Value Decomposition [29]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F15 Signal Magnitude Area [30]
𝒙𝒚𝒛

𝑨

10 Features

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

587

Table 2.(Continue) Features and Formation of Vector. A, G, Var., Std., Freq. are the accelerometer, gyroscope, variance,

standard deviation, and frequency, respectively.

Motion Features

F16 Range of Variations [21]

𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F17 Coefficient of Variation [20]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F18 Standard Error Mean [20]
𝒙𝒚𝒛 𝒙𝒚𝒛

𝑨 𝑮

6 Features

F19 Jerk [26]
𝒙𝒚𝒛

𝑨

3 Features

F20 Peak values [21]
𝒙𝒚𝒛

𝑨

3 Features

F21 Mean Crossing Rate [24]
𝒙𝒚𝒛

𝑨

3 Features

Relational Features

F22 Correlation [20]
𝒙𝒚𝒛

𝑨

3 Features

F23 Covariance [20]
𝒙𝒚𝒛

𝑨

3 Features

F24 Autoregression [27]
𝒙𝒚𝒛

𝑨

33 Features

F25 Cross-Correlation [24]
𝒙𝒚𝒛

𝑨

33 Features

F26 Mutual Information [31]
𝒙𝒚𝒛

𝑨

3 Features

2.3.2 Support vector machine (SVM)

SVM specializes in separating different categories by

creating a hyperplane in a multidimensional feature space.

The main objective of the SVM is to have a hyperplane that

optimizes the margin between the data samples of each

category. It is widely used in fall detection systems because

of its ability to handle complex data structures and

effectively generalize [33], [34].

2.3.3 Random forest classifier (RFC)

RFC is a technique that integrates multiple decision trees

to produce predictions. In this approach, each tree is trained

on a randomly selected subset of training data and pertinent

features. Finally, an aggregated prediction is obtained

through majority voting or averaging. Random forest is

robust to overfitting and can effectively handle high-

dimensional data. It has been used to improve the

classification accuracy in fall detection systems [35].

2.3.4 Gradient boosting classifier (GBC)

GBC is an algorithm that combines several weak

classifiers to create a strong classifier. The methodology of

this algorithm involves building a progressive model with

each subsequent classifier and correcting the mistakes of the

previous classifiers. Gradient Boosting Classifier has

achieved high accuracy in fall detection tasks [36].

2.3.5 Logistic regression (LR)

LR is a algorithm used to model the relationship between

one or more independent variables and a dependent variable.

LR belongs to the family of supervised learning algorithms.

The implementation of logistic regression can vary

depending on whether the dependent variable is binary or

multiclass. Logistic regression has been used to differentiate

between falls and daily life activities in fall detection systems

[37], [38].

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

588

2.4 Classification

Fall detection systems are crucial, especially for the

elderly and disabled. However, the performance of fall

detection systems depends on the machine learning

techniques employed and quality of the training data used.

In this study, the accuracy, sensitivity, and specificity

criteria were used to evaluate the performance of the fall

detection system. The accuracy represents the overall

correctness rate of the system's decisions. The sensitivity

represents the rate at which the system correctly detects all

falls. Specificity represents the rate at which the system

correctly identifies non-fall situations. To determine these

criteria, four different scenarios need to be considered. In the

first scenario, a real fall occurs, and the algorithm correctly

detects it (True Positive - 𝑇𝑝). In the second scenario, no fall

occurs, and the algorithm does not produce a fall alert (True

Negative - 𝑇𝑛). 𝑇𝑛 and 𝑇𝑝 scenarios are considered as correct

decisions by the algorithm. Incorrect decisions are labeled

wrongly by the algorithm. In the third scenario, no fall

actually occurs, but the algorithm incorrectly generates a fall

alert (False Positive - 𝐹𝑝). Additionally, the algorithm may

fail to detect a fall, which is known as a False Negative (𝐹𝑛).

This scenario is the most dangerous, as it can lead to severe

injuries or even fatalities.

Sensitivity (𝑆𝑒), also known as Recall, is one of the most

important criteria for fall detection systems, as a False

Negative, which is the failure to detect an actual fall, can lead

to severe injuries or death as in Equation (2).

𝑆𝑒 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 𝑥 100
(2)

Specificity (𝑆𝑝) is the measure of an algorithm's ability

to correctly identify negative cases. It represents the ratio of

correctly identified true negatives (𝑇𝑛). A high Sp value

indicates that the algorithm is successful in accurately

identifying non-fall cases as in Equation (3). This is

important in minimizing false alarms.

𝑆𝑝 =
𝑇𝑛

𝑇𝑛 + 𝐹𝑝

 𝑥 100
(3)

Accuracy (Acc) measures how well an algorithm predicts

both sensitivity (𝑆𝑒) and specificity (𝑆𝑝). Accuracy is

calculated from 𝑇𝑝, 𝑇𝑛, 𝐹𝑝 and 𝐹𝑛 as in Equation (4).

𝐴𝑐𝑐 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛

 𝑥 100
(4)

Therefore, a good binary classifier is expected to have

high scores for all three criteria: sensitivity, specificity, and

accuracy. However, in the case of fall detection, sensitivity

is often the most important criteria.

This study aims to detect unexpected falls during daily

activities. An ideal fall detection system should be able to

distinguish falls resulting from rapid movements of body

parts from routine activities. The algorithms need to be

robust, intelligent, and sensitive in order to minimize false

positive and false negative outcomes. While false positive

alerts can be canceled by the user, it is critical that falls are

not falsely classified as another activity. Missed falls can

negatively impact a user's physical or mental well-being and

hinder opportunities for intervention. Therefore, it is

important for fall detection systems to have a high sensitivity

and not miss any falls. Additionally, measures should be

taken to prevent false alarm notifications from unnecessarily

consuming the system resources. This study aimed to

enhance the reliability and sensitivity of the proposed

algorithm.

One of the most effective strategies for evaluating the

effectiveness of machine learning models is to test them with

unknown data in addition to performance criteria. In this

study, a dataset collected from two groups consisting of 23

young adult participants was used. A test set of seven

individuals was separated to evaluate the performance of the

model. This approach ensures that no samples from the test

set are used during the training of the model, thereby

providing a more realistic and unbiased performance

evaluation.

3 Results and discussion

In this section, the accuracy performance of machine

learning algorithms trained on the fall detection dataset using

PySpark and Scikit-Learn libraries are compared

independently. Subsequently, the models with the highest

training accuracy were evaluated for their generalization

performance on the test set, including the accuracy,

sensitivity, specificity, training time, and test time. After

obtaining the results, the artificial intelligence library with

the highest fall-detection performance was identified.

Table 3 shows the performance of five different machine

learning algorithms for predicting fall and ADL classes using

the PySpark library. When assessing the results of each

algorithm, specific strengths and weaknesses were

identified.

The LR algorithm stands out with the highest accuracy

(98.40%). These results demonstrate the successful ability of

the LR algorithm to distinguish between the fall and ADL

classes. Additionally, both the sensitivity (97.89%) and

specificity (98.89%) values were considerably high.

However, the training time was longer than those of the other

algorithms (12.3538 s), and the test time was slightly longer

(0.1675 s).

The RFC algorithm also performs well, achieving a high

accuracy rate of 98.31%. Both the sensitivity (98.08%) and

specificity (98.53%) values are at a high level. Furthermore,

the training time is similar to that of the SVM algorithm

(6.6498 s), and the test time could be completed in a short

period (0.1904 s).

The SVM algorithm also provided a high accuracy rate

(98.31%) with balanced sensitivity (97.70%) and specificity

(98.89%). The training time was slightly longer than that of

the other algorithms (6.7290 s), but the test time was short

(0.0942 s).

The DT algorithm achieved high accuracy (97.56%) with

high sensitivity (98.27%) and specificity (96.88%). The

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

589

training time was 2.6269 s and the testing process was

completed in 0.2263 s.

The GBC algorithm demonstrated similar performance to

the other algorithms, achieving an accuracy rate of 97.75%.

The sensitivity (97.70%) and specificity (97.79%) were

balanced. However, the training time was slightly longer

than those of the other algorithms (10.8316 s), and the test

time was slightly higher (0.1849 s).

In conclusion, these findings indicate that different

algorithms can be preferred depending on the specific

datasets and usage scenarios. In cases that require faster

results, algorithms such as SVM or LR, which perform

faster, can be chosen. However, for the highest accuracy rate,

algorithms such as LR, RFC, and SVM should be preferred.

Therefore, the choice of the algorithm depends on many

factors that need to be considered within a specific

application context.

Furthermore, Table 4 evaluates the abilities of different

machine learning algorithms to predict the "Falls" and

"ADL" classes using the Scikit-Learn library.

According to the Accuracy results, LR (98.60%) stands

out as the algorithm with the highest accuracy rate. This

indicates that the algorithm generally classified the dataset

correctly. On the other hand, DT (96.07%) appears to have

the lowest accuracy rate, meaning it has a tendency to make

more errors compared to the other algorithms.

The Sensitivity values measure the ability to correctly

identify the "Falls" class. In this regard, SVM (98.28%) had

the highest sensitivity values, indicating a better ability to

identify the "Falls" class. DT (94.65%), on the other hand,

has the lowest sensitivity value, indicating a tendency to

misclassify the "Falls" class more frequently.

The Specificity metric measures the ability to correctly

identify the "ADL" class. In this regard, LR (99.08%) has the

highest specificity value, implying a better ability to identify

the "ADL" class. On the other hand, SVM (97.25%) has the

lowest specificity value, indicating a tendency to misclassify

the "ADL" class more frequently.

Table 3. Analysis of fall detection performance using different machine learning techniques with the PySpark library on

the test set. C.Fall: Classified Fall, C.ADL: Classified ADL, A.Fall: Actually Fall, A.ADL: Actually ADL

 PySpark Library

DT SVM GBC RFC LR

C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL

A.Fall 514 9 511 12 511 12 513 10 512 11

A.ADL 17 528 6 539 12 533 8 537 6 539

Sp (%) 96.88 98.89 97.79 98.53 98.89

Se (%) 98.27 97.70 97.70 98.08 97.89

Acc (%) 97.56 98.31 97.75 98.31 98.40

Training
Time

2.6269 6.7290 10.8316 6.6498 12.3538

Test Time 0.2263 0.0942 0.1849 0.1904 0.1675

Table 4. Analysis of fall detection performance using different machine learning techniques with the Scikit-Learn library

on the test set. C.Fall: Classified Fall, C.ADL: Classified ADL, A.Fall: Actually Fall, A.ADL: Actually ADL

 Scikit-Learn Library

DT SVM GBC RFC LR

C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL

A.Fall 495 28 514 9 513 10 513 10 513 10

A.ADL 14 531 15 530 10 535 8 537 5 540

Sp (%) 97.43 97.25 98.17 98.53 99.08

Se (%) 94.65 98.28 98.09 98.09 98.09

Acc (%) 96.07 97.75 98.13 98.31 98.60

Training

Time
0.7036 0.5904 25.8212 0.5156 1.3104

Test Time 0.0239 0.2283 0.0399 0.0609 0.0259

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

590

Regarding training and test times, RFC (0.5904 seconds)

stands out as the fastest-trained algorithm, indicating that the

dataset can be trained quickly. Additionally, DT (0.0239

seconds) appears to have the fastest test time, producing

results quickly. However, the training time of GBC (25.8212

seconds) is longer compared to other algorithms, so training

times should be taken into consideration as well.

In conclusion, while LR exhibits the best overall

performance, factors such as training time and test time

requirements should be considered. The preference will

depend on the specific requirements of the dataset and usage

scenario.

The research aimed to compare PySpark and Scikit-

Learn libraries in terms of fall detection. The main goal was

to assess the performance difference between the two

libraries and determine which library achieved better results.

To achieve this, five different machine learning

algorithms were examined using both libraries. In the

experiments with PySpark, the highest accuracy rate of

98.40% was obtained with the LR algorithm. The sensitivity

(97.89%) and specificity (98.89%) values were also quite

high. Similarly, in the experiments using the Scikit-Learn

library, the highest accuracy rate of 98.60% was achieved

with the LR algorithm, which also showed successful results

in terms of sensitivity and specificity.

In terms of training time, it appeared that the PySpark

library required slightly longer durations. On the other hand,

the Scikit-Learn library provided shorter test times. This can

vary depending on factors such as the size of the dataset and

the processing power. For instance, when working with

larger datasets, PySpark might provide faster results due to

its parallel processing capabilities.

As a result, both libraries can effectively address the fall

detection problem. However, the choice of library and

algorithm should depend on factors such as the size of the

dataset, processing power, and training/test times. This

research can assist users in selecting the most suitable library

and algorithm based on their specific requirements and

datasets, thus achieving better accuracy performance. In

addition, it is worth noting that the comparison between

PySpark and Scikit-Learn in the context of fall detection

models is a relatively unexplored area in the existing

literature. While there have been studies that have examined

the performance of these libraries in various machine

learning tasks [3-6], their specific application in fall

detection has not been extensively investigated. This

highlights the novelty and significance of this study in

contributing to the understanding of the performance of

PySpark and Scikit-Learn in the development of fall

detection models.

In addition, when the performance of the study in terms

of fall detection was examined, the proposed approach using

logistic regression with new features extracted from the

SisFall dataset achieved a promising accuracy rate of 98.6%

in fall detection. This performance surpasses previous

studies like Shi et al. [39] (improved pre-impact fall

detection with 95.33% accuracy) and Zulj et al. [40] (various

algorithms with accuracies ranging from 80.1% to 98.6%),

and competes favorably with more complex approaches like

Lee et al. [41] (fall detection using both plantar pressure and

acceleration data with 95% accuracy). These results suggest

that the newly extracted features effectively enhance the

discriminatory power of fall detection systems, aligning with

Gjoreski et al.'s [42] findings on the importance of data

fusion and machine learning for accurate activity recognition

and fall detection. Importantly, the achieved accuracy paves

the way for potential real-world implementation, echoing

Ojetola et al.'s [43] emphasis on the significance of wearable

sensors in fall prevention. Overall, this study not only

contributes to the development of more accurate and

effective fall detection systems but also holds promising

implications for improving safety measures in various

settings.

4 Conclusion

This study comprehensively evaluated the performance

of two prominent machine learning libraries, PySpark and

Scikit-Learn, in fall detection modeling. The findings

demonstrate the robust and efficient capabilities of both

libraries in accurately classifying fall events from a diverse

set of activities. Logistic regression and random forest

algorithms consistently outperformed other models,

achieving the highest accuracy rates across both libraries.

PySpark's distributed computing capabilities proved

advantageous for handling large datasets, enabling efficient

training and processing. However, Scikit-Learn exhibited

superior performance in test times, making it more suitable

for smaller datasets or real-time applications.

This study distinguishes itself from previous work by

employing a comprehensive feature extraction approach that

encompasses 26 features across five categories: basic

statistical features, frequency domain features, time series

features, motion features, and relational features. This novel

approach captured a wider range of information from the

Sisfall dataset, contributing to the enhanced accuracy

observed in this study.

The choice between PySpark and Scikit-Learn for fall

detection modeling depends on factors such as dataset size,

processing power, and time constraints. PySpark is well-

suited for large datasets due to its distributed computing

capabilities, while Scikit-Learn offers a user-friendly

interface and faster test times for smaller datasets.

Overall, this study provides valuable insights into the

strengths and limitations of PySpark and Scikit-Learn for fall

detection modeling. It also highlights the effectiveness of the

proposed feature extraction approach in improving fall

detection accuracy. These findings can guide researchers and

practitioners in selecting the most suitable library and

algorithm for their specific fall detection needs.

In addition, to always make progress in the research field,

it is necessary to ask new questions and generate ideas for

future studies.

In this direction, the following possibilities can lead to

significant advances in the field of fall detection:

 Integration of different sensors: Combining the data

from different sensors (accelerometers, GPS,

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

591

cameras, audio, etc.) for fall detection can create a

more comprehensive model.

 Investigation of deep learning methods: Deep

learning techniques have been shown to be very

successful in processing time series data in recent

years. Adapting deep learning models for fall

detection and comparing their performances will

contribute to the advancement of the field.

 Focus on personalized modeling: Developing

personalized fall detection models can better adapt

to real-world scenarios.

These suggestions reveal exciting research opportunities

for the future in the field of fall detection. Each approach

should be studied in depth and the effectiveness of fall

detection systems in real life should be increased through

applied research.

Conflict of interest

There is no conflict of interest with any person/institution

in the prepared article.

Data and materials availability

Data and Materials Availability: The dataset utilized in

this study has been made available as open source and can

be accessed via the following link.

(https://github.com/JiayangLai/SisFallDatasetAnnotation)

Similarity rate (iThenticate): 16%

References

[1] A. Sucerquia, J. D. López, and J. F. Vargas-Bonilla,

SisFall: A fall and movement dataset, Sensors, vol. 17,

no. 1, Art. no. 1, Jan. 2017, doi: 10.3390/s17010198.

[2] M. Islam et al., Deep learning based systems developed

for fall detection: A Review, IEEE Access, vol. 8, pp.

166117–166137, 2020, doi:

10.1109/ACCESS.2020.3021943.

[3] T. C. Nokeri, Principal component analysis with Scikit-

Learn, PySpark, and h2o, in data science solutions with

python: fast and scalable models using keras, PySpark,

mllib, h2o, xgboost, and Scikit-Learn, T. C. Nokeri,

Ed., Berkeley, CA: Apress, 2022, pp. 101–110. doi:

10.1007/978-1-4842-7762-1_9.

[4] T. C. Nokeri, Cluster analysis with Scikit-Learn,

PySpark, and h2o, in data science solutions with

python: fast and scalable models using keras, PySpark

mllib, h2o, xgboost, and Scikit-Learn, T. C. Nokeri,

Ed., Berkeley, CA: Apress, 2022, pp. 89–99. doi:

10.1007/978-1-4842-7762-1_8.

[5] M. Junaid et al., Performance evaluation of data-driven

intelligent algorithms for big data ecosystem, Wirel.

Pers. Commun., vol. 126, no. 3, pp. 2403–2423, Oct.

2022, doi: 10.1007/s11277-021-09362-7.

[6] T. C. Nokeri, Tree modeling and gradient boosting with

Scikit-Learn, xgboost, PySpark, and h2o, in data

science solutions with python: fast and scalable models

using keras, PySpark mllib, h2o, xgboost, and Scikit-

Learn, T. C. Nokeri, Ed., Berkeley, CA: Apress, 2022,

pp. 59–74. doi: 10.1007/978-1-4842-7762-1_6.

[7] T. S. Patel, D. P. Patel, and C. N. Patel, Real time

scalable data acquisition of covid-19 in six continents

through PySpark - a big data tool. medRxiv, p.

2021.07.04.21259983, Jul. 06, 2021. doi:

10.1101/2021.07.04.21259983.

[8] A. Gupta, H. K. Thakur, R. Shrivastava, P. Kumar, and

S. Nag, A big data analysis framework using apache

spark and deep learning, in 2017 IEEE International

Conference on Data Mining Workshops (ICDMW),

Nov. 2017, pp. 9–16. doi: 10.1109/ICDMW.2017.9.

[9] K. Rothauge, H. Ayyalasomayajula, K. J. Maschhoff,

M. Ringenburg, and M. W. Mahoney, Running

alchemist on cray xc and cs series supercomputers:

dask and PySpark interfaces, deployment options, and

data transfer times. arXiv, Nov. 28, 2019. doi:

10.48550/arXiv.1910.01354.

[10] S. Gafner et al., Evaluation of hip abductor and

adductor strength in the elderly: a reliability study, Eur.

Rev. Aging Phys. Act., vol. 14, no. 1, p. 5, Apr. 2017,

doi: 10.1186/s11556-017-0174-6.

[11] A. Abraham et al., Machine learning for neuroimaging

with Scikit-Learn, Front. Neuroinformatics, vol. 8,

2014, doi: 10.3389/fninf.2014.00014.

[12] L. Buitinck et al., API design for machine learning

software: experiences from the Scikit-Learn project.

arXiv, Sep. 01, 2013. doi: 10.48550/arXiv.1309.0238.

[13] A. Auti, D. Patil, O. Zagade, P. Bhosale, and P. Ahire,

Bitcoin price prediction using svm, vol. 6, no. 11, 2022.

[14] J. Hao and T. K. Ho, Machine learning made easy: a

review of Scikit-Learn package in python programming

language, J. Educ. Behav. Stat., vol. 44, no. 3, pp. 348–

361, Jun. 2019, doi: 10.3102/1076998619832248.

[15] M. W. Liemohn et al., Model evaluation guidelines for

geomagnetic index predictions, Space Weather, vol. 16,

no. 12, pp. 2079–2102, 2018, doi:

10.1029/2018SW002067.

[16] E. Uzunhisarcıklı, E. Kavuncuoğlu, and A. T. Özdemir,

Investigating classification performance of hybrid deep

learning and machine learning architectures on activity

recognition, Comput. Intell., vol. 38, no. 4, Art. no. 4,

2022, doi: 10.1111/coin.12517.

[17] E. Kavuncuoğlu, E. Uzunhisarcıklı, B. Barshan, and A.

T. Özdemir, Investigating the performance of wearable

motion sensors on recognizing falls and daily activities

via machine learning, Digit. Signal Process., p. 103365,

Dec. 2021, doi: 10.1016/J.DSP.2021.103365.

[18] M. Ş. Turan and B. Barshan, Classification of fall

directions via wearable motion sensors, Digit. Signal

Process., p. 103129, Jun. 2021, doi:

10.1016/j.dsp.2021.103129.

[19] A. T. Özdemir, An analysis on sensor locations of the

human body for wearable fall detection devices:

Principles and practice, Sens. Switz., vol. 16, no. 8, Art.

no. 8, Jul. 2016, doi: 10.3390/s16081161.

[20] D. C. Montgomery, E. A. Peck, and G. G. Vining,

Introduction to linear regression analysis. John Wiley

& Sons, 2013.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoğlu

592

[21] J. S. Bendat and A. G. Piersol, Random data: analysis

and measurement procedures. John Wiley & Sons,

2011.

[22] J. L. Devore, Probability and statistics for engineering

and the sciences. Cengage Learning, 2015.

[23] N. L. Johnson, S. Kotz, and N. Balakrishnan,

Continuous univariate distributions, Vol. 1, 2nd edition.

New York: Wiley-Interscience, 1994.

[24] A. V. Oppenheim and R. W. Schafer, Discrete-time

signal processing. Pearson, 2010.

[25] J. G. Proakis and D. G. Manolakis, Digital signal

processing: principles, algorithms, and applications.

Macmillan, 1992.

[26] Signal processing, in biomechanics and motor control

of human movement, John Wiley & Sons, Ltd, 2009,

pp. 14–44. doi: 10.1002/9780470549148.ch2.

[27] P. J. Brockwell and R. A. Davis, Introduction to time

series and forecasting. in Springer Texts in Statistics.

Cham: Springer International Publishing, 2016. doi:

10.1007/978-3-319-29854-2.

[28] T. Inouye et al., Quantification of eeg irregularity by

use of the entropy of the power spectrum,

Electroencephalogr. Clin. Neurophysiol., vol. 79, no. 3,

pp. 204–210, Sep. 1991, doi: 10.1016/0013-

4694(91)90138-T.

[29] G. H. Golub and C. F. V. Loan, Matrix computations.

JHU Press, 2013.

[30] A. Mannini and A. M. Sabatini, Machine learning

methods for classifying human physical activity from

on-body accelerometers, Sensors, vol. 10, no. 2, Art.

no. 2, Feb. 2010, doi: 10.3390/s100201154.

[31] T. M. Cover and J. A. Thomas, Elements of information

theory. John Wiley & Sons, 2012.

[32] T. Hastie, R. Tibshirani, and J. Friedman, Overview of

supervised learning, in the elements of statistical

learning: data mining, inference, and prediction, T.

Hastie, R. Tibshirani, and J. Friedman, Eds., in

Springer Series in Statistics. , New York, NY: Springer,

2009, pp. 9–41. doi: 10.1007/978-0-387-84858-7_2.

[33] C. J. C. Burges, A tutorial on support vector machines

for pattern recognition, Data Min. Knowl. Discov., vol.

2, no. 2, pp. 121–167, Jun. 1998, doi:

10.1023/A:1009715923555.

[34] H. T. Babacan, Ö. Yüksek, and F. Saka, Yapay zeka ve

sezgisel regresyon yöntemlerinin yağış-akış

modellemesi için performans değerlendirmesi: Aksu

Deresi için bir uygulama, Niğde Ömer Halisdemir

Üniversitesi Mühendis. Bilim. Derg., vol. 11, no. 3,

Art. no. 3, Jul. 2022, doi: 10.28948/ngumuh.1079616.

[35] L. Breiman, Random forests, Mach. Learn., vol. 45, no.

1, pp. 5–32, Oct. 2001, doi:

10.1023/A:1010933404324.

[36] J. H. Friedman, Greedy function approximation: a

gradient boosting machine, 2001.

[37] Introduction to the logistic regression model, in

Applied Logistic Regression, John Wiley & Sons, Ltd,

2013, pp. 1–33. doi: 10.1002/9781118548387.ch1.

[38] M. Demı̇rhan and S. Behdı̇oğlu, Sağlık çalışanlarının

maruz kaldığı şiddetin sıralı lojistik regresyon analizi

ile incelenmesi, Toplum Ekon. Ve Önetim Derg., vol.

4, no. 1, Art. no. 1, Jun. 2023, doi:

10.58702/teyd.1228283.

[39] J. Shi, D. Chen, and M. Wang, Pre-impact fall detection

with cnn-based class activation mapping method,

Sensors, vol. 20, no. 17, Art. no. 17, Jan. 2020, doi:

10.3390/s20174750.

[40] S. Zulj, G. Seketa, I. Lackovic, and R. Magjarevic,

Accuracy comparison of ml-based fall detection

algorithms using two different acceleration derived

feature vectors, in World Congress on Medical Physics

and Biomedical Engineering 2018, L. Lhotska, L.

Sukupova, I. Lacković, and G. S. Ibbott, Eds., in

IFMBE Proceedings. Singapore: Springer, 2019, pp.

481–485. doi: 10.1007/978-981-10-9038-7_89.

[41] C. M. Lee, J. Park, S. Park, and C. H. Kim, Fall-

detection algorithm using plantar pressure and

acceleration data, Int. J. Precis. Eng. Manuf., vol. 21,

no. 4, pp. 725–737, Apr. 2020, doi: 10.1007/s12541-

019-00268-w.

[42] H. Gjoreski et al., Wearable sensors data-fusion and

machine-learning method for fall detection and activity

recognition, Stud. Syst. Decis. Control, vol. 273, pp.

81–96, 2020, doi: 10.1007/978-3-030-38748-8_4.

[43] O. Ojetola, E. I. Gaura, and J. Brusey, Fall detection

with wearable sensors–safe (smart fall detection), in

2011 Seventh International Conference on Intelligent

Environments, Jul. 2011, pp. 318–321. doi:

10.1109/IE.2011.38.

