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Exploring the performance of PySpark and Scikit-Learn libraries in developing 

fall detection systems 

Düşme algılama sistemlerinin geliştirilmesinde PySpark ve Scikit-Learn 

kütüphanelerinin performansının araştırılması 
 

Erhan Kavuncuoğlu1,*  

1 Cumhuriyet Üniversitesi, Bilgisayar Teknolojileri Bölümü, 58840, Sivas Türkiye 

 

Abstract  Öz  

Falls pose a significant risk, often resulting in serious 

injuries and reduced quality of life for the elderly 

population. Accurate and effective fall detection systems 

can play an important role in reducing these risks. This 

study presents a comparative analysis of the performance 

of PySpark and Scikit-Learn libraries in the development of 

fall detection models. Using both libraries, fall detection 

models were built using five popular machine learning 

algorithms, including logistic regression, gradient boosting 

classifier, random forest, support vector machine and 

decision tree. The models were evaluated using 

comprehensive metrics (accuracy, sensitivity, specificity, 

confusion matrix). In the study, 26 different features were 

extracted from the Sisfall dataset consisting of falls and 

activities of daily living data in five main categories: basic 

statistical features, frequency domain features, time series 

features, motion features and relational features. These 

features were incorporated into the fall detection models to 

increase their ability to recognise falls. The findings show 

that both PySpark and Scikit-Learn offer powerful and 

effective results in fall detection. The highest performance 

rates of both libraries were achieved by logistic regression. 

Furthermore, PySpark exhibited slightly longer training 

times than Scikit-Learn, which performed better in the test. 

In conclusion, this study contributes to the development of 

fall detection systems to improve the safety and well-being 

of the elderly and contributes to the literature by providing 

a new feature extraction method. 

 

Düşmeler, genellikle ciddi yaralanmalara ve yaşlı nüfusun 

yaşam kalitesinin azalmasına neden olan önemli bir risk 

oluşturur. Doğru ve etkili düşme tespit sistemleri, bu 

riskleri azaltmada önemli bir rol oynayabilir. Bu çalışma, 

düşme tespit modellerinin geliştirilmesinde PySpark ve 

Scikit-Learn kütüphanelerinin performansını 

karşılaştırmalı bir analiz sunmaktadır. Her iki kütüphane de 

kullanılarak, lojistik regresyon, gradyan arttırma 

sınıflandırıcısı, rastgele orman, destek vektör makinesi ve 

karar ağacı dahil olmak üzere beş popüler makine öğrenme 

algoritması kullanılarak düşme tespit modelleri 

oluşturuldu. Modeller, kapsamlı metrikler (doğruluk, 

duyarlılık, özgüllük, karışıklık matrisi) kullanılarak 

değerlendirildi. Çalışmada düşme ve günlük yaşam aktivite 

verilerinden oluşan Sisfall veri setinden 26 farklı özellik 

beş ana kategoride çıkarıldı: temel istatistiksel özellikler, 

frekans alanı özellikleri, zaman serisi özellikleri, hareket 

özellikleri ve ilişkisel özellikler. Bu özellikler, düşme tespit 

modellerine düşmeleri tanıma yeteneklerini artırmak için 

dahil edildi. Bulgular, hem PySpark hem de Scikit-Learn'ün 

düşme tespitinde güçlü ve etkili sonuçlar sunduğunu 

göstermektedir. Her iki kütüphane de en yüksek 

performans oranlarına lojistik regresyon ile ulaşılmıştır. 

Ayrıca, PySpark, testte daha iyi performans sergileyen 

Scikit-Learn'e göre biraz daha uzun eğitim süreleri 

sergilemiştir. Sonuç olarak, bu çalışma, yaşlıların 

güvenliğini ve refahını artırmak için düşme tespit 

sistemlerinin geliştirilmesine katkıda bulunduğu gibi yeni 

bir özellik çıkarma yöntemi sunarakta literatüre katkıda 

bulunuyor. 

Keywords: Fall detection, Artificial intelligence, Machine 

learning, PySpark, Scikit-Learn 

 Anahtar kelimeler: Düşme Algılama, Yapay zeka, 

Makine öğrenmesi, PySpark, Scikit-Learn 

1 Introduction  

Fall detection is an important research area, particularly 

for the well-being and safety of the elderly population in the 

domains of fall sensing, machine learning, and data analysis. 

This study aims to compare the performance of fall detection 

models using PySpark and Scikit-Learn libraries utilizing the 

Sisfall [1] dataset. 

PySpark is an open-source cluster computing framework 

that provides a distributed computing environment for large-

scale data processing. It is suitable for processing big data 

and complex computations by offering various machine 

learning algorithms and tools [2-6]. Patel et al. [7] focused 

on a real-time scalable data collection process for COVID-

19 data and highlighted PySpark as a useful tool for this 

process. The authors emphasized the comprehensive and 

efficient capabilities of PySpark for processing large datasets 

in parallel clusters, specifically in machine learning 

applications. Another study by Gupta et al. [8] presented 
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Apache Spark and a deep learning-based big data analysis 

framework using PySpark. The authors performed 

experimental analyses on real-world datasets and 

demonstrated the effectiveness of their framework compared 

with traditional big data analysis techniques. Additionally, 

Rothauge [9] discussed the use of PySpark as an interface for 

the Alchemist system. Alchemists have enabled Apache 

Spark to achieve better performance by providing interfaces 

with high-performance computing libraries for large-scale 

distributed computations. The author highlights the 

deployment options and data transfer times when using 

PySpark with Alchemist. These studies demonstrate the 

versatility and efficiency of PySpark in large-scale data 

processing and machine learning tasks, emphasizing its use 

in real-time data collection, integration with other data 

analysis frameworks, etc. 

On the other hand, Scikit-Learn is a widely used machine 

learning library in Python that provides comprehensive tools 

for data analysis and modelling [3-6], [10]. Abraham et al. 

[11] focused on the use of Scikit-Learn for machine learning 

in neuroimaging. The authors demonstrated how Scikit-

Learn can perform key analysis steps in functional 

neuroimaging applications, highlighting its versatility in 

brain studies. Another study by Buitinck et al. [12] discussed 

the design choices of Scikit-Learn Application Programming 

Interface (API). The authors explained that Scikit-Learn is 

designed to be simple, efficient, and accessible to non-

experts, emphasizing its reusability in various contexts. Auti 

et al. [13] mentioned the use of Scikit-Learn for data 

preparation in data mining, specifically for normalization, 

standardization, and handling outliers or missing data. 

Furthermore, a review article by Hao and Ho [14] provides 

an overview of Scikit-Learn as a machine-learning package 

in Python. The authors highlight the comprehensive list of 

machine learning methods included in Scikit-Learn and their 

adherence to unified data and modelling procedure rules, 

emphasizing the ease of use for educators and behavioral 

statisticians. Overall, these studies showcase the varied 

applications and functionalities of Scikit-Learn in machine 

learning and data analysis across different domains, 

highlighting its versatility, simplicity, and efficiency. 

In this study, several commonly used machine learning 

algorithms, such as logistic regression, gradient boosting 

classifier, random forest, support vector machine, and 

decision tree, were employed to develop the fall detection 

models. These algorithms were chosen for their effectiveness 

in classification tasks, ability to handle both numerical and 

categorical data, and high accuracy achievements in fall 

detection [15-19]. 

The performance of the models was evaluated using 

various metrics, such as accuracy, precision, recall, 

confusion matrix, training time, and testing time, obtained 

through PySpark and Scikit-Learn. By comparing the 

performance of PySpark and Scikit-Learn based on these 

metrics, this study aimed to determine which library is more 

successful in fall detection. The findings of this research will 

guide researchers and practitioners in selecting the most 

suitable library for developing fall detection systems. 

The following sections explain the methodology used in 

this study, present the obtained results, discuss the 

implications of the findings, and provide a comprehensive 

analysis of PySpark and Scikit-Learn in the context of fall 

detection. 

2 Materials and methods 

In this study, the Sisfall dataset, which includes falls and 

activities of daily living (ADL) obtained from an experiment 

conducted by the Systemic research group, was utilized. The 

collaboration was established with 38 volunteers, consisting 

of elderly and young adults. The elderly group comprised 15 

participants (8 males and 7 females) who were in good health 

and independent. The young adult group consisted of 23 

participants (11 males and 12 females). Each participant 

repeated 15 different fall movements and 19 different ADLs, 

five times. Within the elderly group, certain ADLs (activities 

numbered 6, 13, 18, and 19) were not provided with medical 

advice, and some activities could not be carried out due to 

personal barriers. Additionally, one participant simulated fall 

movements and ADLs due to a judo experience (Table 1). 

Data were collected using a specialized wearable device. 

The equipment included a Kinetis MKL25Z128VLK4 

microcontroller produced by NPX in Austin, Texas, USA, an 

analog device ADXL345 accelerometer (with a range of ± 

16 g and 13-bit analog-to-digital conversion freedom), a 

Freescale MMA8451Q accelerometer (with a range of ± 8 g 

and 14-bit ADC), an ITG3200 gyroscope (with a range of 

±2000°/s and 16-bit ADC), and an SD card. The device was 

mounted on the participant’s waist and powered by a 1000 

mA/hr general-purpose battery. The device was positioned 

using a single accelerometer system owing to its ability to 

differentiate between different activities. The device was set 

up to record the original sampling frequency (200 Hz). 

This research focused on training algorithms using 

PySpark and Scikit-Learn libraries with activity data from 23 

young participants to detect and prevent falls. The 

participants were asked to perform 15 different fall 

movements and 19 ADLs. In total, 3532 observations were 

generated during the experiment. Upon inspection of the 

dataset, it was observed that 19 ADLs had 5 repetitions, with 

4 of them having only 1 repetition. Similarly, 15 fall 

movements were collected with 5 repetitions. As a result, the 

total number of observations should have been 3542; 

however, only 3532 observations were obtained because of 

missing repetitions in some cases. Data erasures occurred 

because of missing repetitions, such as the absence of a 

repetition in the 17th ADL for SA15; the absence of a 

repetition in the 6th ADL for SA17; and the absence of 

repetitions in the 1st fall movement, 6th ADL, 10th fall 

movement, and 17th ADL for SA20, resulting in a total of 10 

missing observations. Therefore, individuals with missing 

repetitions were considered test data to address imbalances 

in the training set. 

The method section applied three main stages for fall 

detection using a dataset consisting of 3532 records from 23 

young volunteers: pre-processing, feature extraction,  
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Table 1. SisFall Dataset: List of Falls and ADLs 

Falls   ADLs 

No                         Description  
Cause of 

Fall 

Trial

s 
No Description  

Trial

s 

1 
Falling forward while 

walking 
Slip 5 1 Slow walking 1 

2 
Falling backward while 
walking 

Slip 5 2 Fast walking 1 

3 
Lateral falling while 

walking 
Slip 5 3 Slow jogging 1 

4 Falling forward due to a trip 

Trip 

without 

stumbling 

5 4 Fast jogging 1 

5 
Falling forward while 
jogging 

Trip 5 5 Ascending and descending stairs slowly 5 

6 
Vertical Falling while 

walking 
Fainting 5 6 Ascending and descending stairs quickly 5 

7 

Falling while walking, 

using hands on a table to 

dampen the fall 

Fainting 5 7 
Slowly sit in a chair of medium height, wait for a moment, 
and stand up slowly. 

5 

8 
Falling forward when 
attempting to get up 

Attemptin
g to get up 

5 8 
Quickly sit in a chair of medium height, wait for a moment, 
and stand up quickly. 

5 

9 
Lateral falling when 

attempting to get up 

Attemptin

g to get up 
5 9 

Slowly sit in a low-height chair, wait for a moment, and stand 

up slowly. 
5 

1
0 

Falling forward when 
attempting to sit down 

Attemptin

g to sit 

down 

5 
1
0 

Quickly sit in a low-height chair, wait for a moment, and 
stand up quickly. 

5 

1
1 

Falling backward when 
attempting to sit down 

Attemptin

g to sit 
down 

5 
1
1 

Sitting for a moment, attempting to get up, and collapsing 
back into the chair. 

5 

1

2 

Lateral fall when 

attempting to sit down 

Attemptin

g to sit 
down 

5 
1

2 

Sitting for a moment, lying down slowly, waiting for a 

moment, and sitting up again. 
5 

1

3 

Falling forward while 

sitting 

Fainting 

or falling 
asleep 

5 
1

3 

Sitting for a moment, lying down quickly, waiting for a 

moment, and sitting up again. 
5 

1

4 

Falling backward while 

sitting 

Fainting 

or falling 
asleep 

5 
1

4 

Changing from lying on one's back to a lateral position, 

waiting for a moment, and changing back to lying on one's 
back. 

5 

1

5 
Lateral falling while sitting 

Fainting 

or falling 
asleep 

5 
1

5 
Standing, bending at knees slowly, and getting up. 5 

       1
6 

Standing, bending without bending knees slowly, and getting 
up. 

5 

       1

7 

Boarding a car, staying seated, and disembarking from the 

car. 
5 

       1
8 

Stumbling while walking. 5 

       1

9 

Gently jumping without falling (attempting to reach a high 

object). 
5 

 

and classification. During the pre-processing stage, various 

adjustments and cleaning procedures were performed to 

obtain meaningful data from the dataset. In the feature 

extraction stage, significant features are extracted from the 

preprocessed dataset to detect fall events. Finally, in the 

classification stage, the extracted features were utilized to 

determine whether a fall event occurred. The performance 

metrics required for fall detection were analysed using five 

different machine learning techniques available in the 

PySpark and Scikit-Learn libraries. 

2.1 Data formation 

The Sisfall dataset is widely used for developing fall 

detection algorithms. This dataset is based on data collected 

from the ADXL345 accelerometer sensor (𝐴𝑥, 𝐴𝑦, 𝐴𝑧), the 

ITG3200 gyroscope sensor (𝐺𝑥, 𝐺𝑦, 𝐺𝑧), and the 

MMA8451Q accelerometer sensor (𝐴𝑥, 𝐴𝑦, 𝐴𝑧). Here, the 
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abbreviations "A" and "G" refer to the accelerometer and 

gyroscope sensor data, respectively, and "x, y, and z" 

represent each vertical axis (Figure 1). Each file consisted of 

data records with 9 columns and 200 rows at a frequency of 

200 samples per second. The data collection duration varied 

from 12 seconds (s) to 100 s for each movement. In this 

study, one accelerometer and one gyroscope were included 

in the research out of three sensors. The accelerometer to be 

used with the ITG3200 gyroscope was chosen considering 

the measurement range. The ADXL345 accelerometer is 

capable of measuring between -16 g and +16g, while the 

MMA8451Q accelerometer can measure between -8 g and 

+8g. Therefore, the ADXL345 accelerometer was preferred 

because a wider measurement range was required. This 

indicates that data records consisting of 6 columns and 200 

rows were considered for this study. 

To manage the large dataset, the data frames were 

divided into 0.5-second frames. Each 0.5-second frame 

consists of two 0.25-second frames (𝑇𝐻𝐴) surrounding the 

highest acceleration recorded by the waist sensor. This 

approach simplifies data management in the development of 

fall-detection algorithms. 

 

𝑇𝐻𝐴 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2                        

(1) 

 

The total acceleration (𝑇𝐻𝐴) vector is calculated from the 

average acceleration values along the x, y, and z axes as 

shown in Equation (1). Because each test lasts between 12 s 

to 100 s, the 𝑇𝐻𝐴 vector typically varies between 2400 to 

20000 observations (12 s x 200 Hz - 100 s x 200 Hz). To 

remove meaningless data, the first and last 50 observations 

(0.25 seconds x 200 Hz) at the beginning and end of each test 

are disregarded.  

In addition, any unusually high acceleration values are 

discarded. The remaining values include the highest 

acceleration value, which is used to create a 0.5-second 

vector consisting of two 0.25-second frames surrounding this 

value. Each frame contains 50 observations (0.25 seconds x 

200 Hz), resulting in a total of 101 observations (50 

observations + 𝑇𝐻𝐴 value + 50 observations). A single test 

repetition yields a data array consisting of 101 rows and 6 

columns. Each row includes the measured acceleration or 

angular velocity values along the x, y, and z axes, and each 

column represents a vector. Therefore, with a single 

repetition of the test, a dataset of 101 * 6 is formed for one 

sensor unit. 

2.2 Feature extraction 

In this study, 26 different types of features were defined 

for motion recognition. Each sensor unit records signals 

along three axes for acceleration (𝐴𝑥, 𝐴𝑦, 𝐴𝑧) and angular 

velocity (𝐺𝑥, 𝐺𝑦, 𝐺𝑧). From these signals, various features are 

extracted at 0.5-second intervals. These features are divided 

into five main categories: basic statistical features (42 * 1), 

frequency domain features (114 * 1), time series features (94 

* 1), motion features (27 * 1), and relational features (27 * 

1). Using these features, a feature vector is generated for each 

movement (Table 2). 

In this study, 3532 movements were recorded, including 

15 falls and 19 activities of daily living. For each movement, 

352 features were extracted (352 * 1). Using these features, 

a feature set of dimensions of 352 (352 * 3532) was created. 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 1. These figures showcase participant SA05 

performing the "Fall Number 2: Falling backward while 

walking due to slipping" movement. Figures (a) and (b) 

display raw data recordings of 15 seconds (3000 samples) 

sampled at 200 Hz. Figures (c) and (d) depict the same 

data but compressed to 101 samples, representing 0.5 

seconds of shortened data. 

 

2.3 Machine learning algorithms 

In this study, machine-learning algorithms were 

employed to detect falls and daily life activities. Features 

were extracted from the raw data and used as inputs for the 

classifiers. When an algorithm detects a fall or daily life 

activity, the developed model associates the input data with 

the corresponding labeled fall or daily life activity. 

Five different machine learning algorithms were applied 

to detect falls, and their classification performance was 

compared. The following is a brief description of these 

algorithms. 

2.3.1 Decision tree (DT) 

DT is an algorithm used to make predictions by analyzing 

the data. The working principle of this algorithm involves 

creating a tree-like structure, in which each node represents 

a feature and each branch represents a decision. Starting from 

the root node, a decision tree asks questions regarding a 

feature and branches downwards, based on the responses. 

This process continues until a leaf node representing a 

prediction is reached. Decision trees can handle numerical 

and categorical data and have been used in fall detection 

systems to classify fall events [32]. 
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Table 2. Features and Formation of Vector. A, G, Var., Std., Freq. are the accelerometer, gyroscope, variance, standard deviation, 

and frequency, respectively. 

Type Code Features Number of Features 

Basic Statistical Features 

F1 Minimum values [20] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F2 Maximum values [21] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F3 Mean values [20] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F4 Variance [22] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F5 Skewness [23] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F6 Kurtosis [23] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F7 Root Mean Square [24] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

Frequency Domain Features 

F8 Discrete Fourier Transformation [25] 

𝒙𝒙𝒙𝒙𝒙 𝒚𝒚𝒚𝒚𝒚 𝒛𝒛𝒛𝒛𝒛 

𝑨𝒙, 𝑨𝒚, … . . , 𝑮𝒛 

5,   5, …...    5 

DFT(Peak) -  DFT (Freq.) 

30          -       30 
60 Features 

 

F9 Power Spectral Density [21] 

𝒙𝒙𝒙𝒙𝒙 𝒚𝒚𝒚𝒚𝒚 𝒛𝒛𝒛𝒛𝒛 

𝑨𝒙, 𝑨𝒚, … . . , 𝑮𝒛 

51 Features 
 

F10 Angular Velocity [26] 

Var.      Std.      Energy 

𝒙𝒚𝒛      𝒙𝒚𝒛         𝒙𝒚𝒛 

𝑮 
3 Features 

 

Time Series Features 

F11 Autocorrelation [27] 

𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙 𝒚. . 𝒛.. 
𝑨𝒙, 𝑨𝒚, … . . , 𝑮𝒛 

11,   11, …...11 

DFT(Peak) -  DFT (Freq.) 

66 Features 
 

F12 Spectral Entropy [28] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F13 Energy [24] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F14 Singular Value Decomposition [29] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F15 Signal Magnitude Area [30] 
𝒙𝒚𝒛 

𝑨 

10 Features 
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Table 2.(Continue) Features and Formation of Vector. A, G, Var., Std., Freq. are the accelerometer, gyroscope, variance, 

standard deviation, and frequency, respectively. 

Motion Features 

F16 Range of Variations [21] 

𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F17 Coefficient of Variation [20] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F18 Standard Error Mean [20] 
𝒙𝒚𝒛  𝒙𝒚𝒛 

𝑨     𝑮 

6 Features 
 

F19 Jerk [26] 
𝒙𝒚𝒛 

𝑨 

3 Features 
 

F20 Peak values [21] 
𝒙𝒚𝒛 

𝑨 

3 Features 
 

F21 Mean Crossing Rate [24] 
𝒙𝒚𝒛 

𝑨 

3 Features 
 

Relational Features 

F22 Correlation [20] 
𝒙𝒚𝒛 

𝑨 

3 Features 
 

F23 Covariance [20] 
𝒙𝒚𝒛 

𝑨 

3 Features 
 

F24 Autoregression [27] 
𝒙𝒚𝒛 

𝑨 

33 Features 
 

F25 Cross-Correlation [24] 
𝒙𝒚𝒛 

𝑨 

33 Features 
 

F26 Mutual Information [31] 
𝒙𝒚𝒛 

𝑨 

3 Features 
 

2.3.2 Support vector machine (SVM) 

SVM specializes in separating different categories by 

creating a hyperplane in a multidimensional feature space. 

The main objective of the SVM is to have a hyperplane that 

optimizes the margin between the data samples of each 

category. It is widely used in fall detection systems because 

of its ability to handle complex data structures and 

effectively generalize [33], [34]. 

2.3.3 Random forest classifier (RFC) 

RFC is a technique that integrates multiple decision trees 

to produce predictions. In this approach, each tree is trained 

on a randomly selected subset of training data and pertinent 

features. Finally, an aggregated prediction is obtained 

through majority voting or averaging. Random forest is 

robust to overfitting and can effectively handle high-

dimensional data. It has been used to improve the 

classification accuracy in fall detection systems [35]. 

2.3.4 Gradient boosting classifier (GBC) 

GBC is an algorithm that combines several weak 

classifiers to create a strong classifier. The methodology of 

this algorithm involves building a progressive model with 

each subsequent classifier and correcting the mistakes of the 

previous classifiers. Gradient Boosting Classifier has 

achieved high accuracy in fall detection tasks [36]. 

2.3.5 Logistic regression (LR) 

LR is a algorithm used to model the relationship between 

one or more independent variables and a dependent variable. 

LR belongs to the family of supervised learning algorithms. 

The implementation of logistic regression can vary 

depending on whether the dependent variable is binary or 

multiclass. Logistic regression has been used to differentiate 

between falls and daily life activities in fall detection systems 

[37], [38]. 
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2.4 Classification 

Fall detection systems are crucial, especially for the 

elderly and disabled. However, the performance of fall 

detection systems depends on the machine learning 

techniques employed and quality of the training data used. 

In this study, the accuracy, sensitivity, and specificity 

criteria were used to evaluate the performance of the fall 

detection system. The accuracy represents the overall 

correctness rate of the system's decisions. The sensitivity 

represents the rate at which the system correctly detects all 

falls. Specificity represents the rate at which the system 

correctly identifies non-fall situations. To determine these 

criteria, four different scenarios need to be considered. In the 

first scenario, a real fall occurs, and the algorithm correctly 

detects it (True Positive - 𝑇𝑝). In the second scenario, no fall 

occurs, and the algorithm does not produce a fall alert (True 

Negative - 𝑇𝑛). 𝑇𝑛 and 𝑇𝑝 scenarios are considered as correct 

decisions by the algorithm. Incorrect decisions are labeled 

wrongly by the algorithm. In the third scenario, no fall 

actually occurs, but the algorithm incorrectly generates a fall 

alert (False Positive - 𝐹𝑝). Additionally, the algorithm may 

fail to detect a fall, which is known as a False Negative (𝐹𝑛). 

This scenario is the most dangerous, as it can lead to severe 

injuries or even fatalities. 

Sensitivity (𝑆𝑒), also known as Recall, is one of the most 

important criteria for fall detection systems, as a False 

Negative, which is the failure to detect an actual fall, can lead 

to severe injuries or death as in Equation (2). 

 

𝑆𝑒 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 𝑥 100 
(2) 

 

Specificity (𝑆𝑝) is the measure of an algorithm's ability 

to correctly identify negative cases. It represents the ratio of 

correctly identified true negatives (𝑇𝑛). A high Sp value 

indicates that the algorithm is successful in accurately 

identifying non-fall cases as in Equation (3). This is 

important in minimizing false alarms. 

 

𝑆𝑝 =
𝑇𝑛

𝑇𝑛 + 𝐹𝑝

 𝑥 100 
(3) 

 

Accuracy (Acc) measures how well an algorithm predicts 

both sensitivity (𝑆𝑒) and specificity (𝑆𝑝). Accuracy is 

calculated from 𝑇𝑝, 𝑇𝑛, 𝐹𝑝 and 𝐹𝑛 as in Equation (4). 

 

𝐴𝑐𝑐 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛

 𝑥 100 
(4) 

 

Therefore, a good binary classifier is expected to have 

high scores for all three criteria: sensitivity, specificity, and 

accuracy. However, in the case of fall detection, sensitivity 

is often the most important criteria. 

This study aims to detect unexpected falls during daily 

activities. An ideal fall detection system should be able to 

distinguish falls resulting from rapid movements of body 

parts from routine activities. The algorithms need to be 

robust, intelligent, and sensitive in order to minimize false 

positive and false negative outcomes. While false positive 

alerts can be canceled by the user, it is critical that falls are 

not falsely classified as another activity. Missed falls can 

negatively impact a user's physical or mental well-being and 

hinder opportunities for intervention. Therefore, it is 

important for fall detection systems to have a high sensitivity 

and not miss any falls. Additionally, measures should be 

taken to prevent false alarm notifications from unnecessarily 

consuming the system resources. This study aimed to 

enhance the reliability and sensitivity of the proposed 

algorithm. 

One of the most effective strategies for evaluating the 

effectiveness of machine learning models is to test them with 

unknown data in addition to performance criteria. In this 

study, a dataset collected from two groups consisting of 23 

young adult participants was used. A test set of seven 

individuals was separated to evaluate the performance of the 

model. This approach ensures that no samples from the test 

set are used during the training of the model, thereby 

providing a more realistic and unbiased performance 

evaluation. 

3 Results and discussion 

In this section, the accuracy performance of machine 

learning algorithms trained on the fall detection dataset using 

PySpark and Scikit-Learn libraries are compared 

independently. Subsequently, the models with the highest 

training accuracy were evaluated for their generalization 

performance on the test set, including the accuracy, 

sensitivity, specificity, training time, and test time. After 

obtaining the results, the artificial intelligence library with 

the highest fall-detection performance was identified. 

Table 3 shows the performance of five different machine 

learning algorithms for predicting fall and ADL classes using 

the PySpark library. When assessing the results of each 

algorithm, specific strengths and weaknesses were 

identified. 

The LR algorithm stands out with the highest accuracy 

(98.40%). These results demonstrate the successful ability of 

the LR algorithm to distinguish between the fall and ADL 

classes. Additionally, both the sensitivity (97.89%) and 

specificity (98.89%) values were considerably high. 

However, the training time was longer than those of the other 

algorithms (12.3538 s), and the test time was slightly longer 

(0.1675 s). 

The RFC algorithm also performs well, achieving a high 

accuracy rate of 98.31%. Both the sensitivity (98.08%) and 

specificity (98.53%) values are at a high level. Furthermore, 

the training time is similar to that of the SVM algorithm 

(6.6498 s), and the test time could be completed in a short 

period (0.1904 s). 

The SVM algorithm also provided a high accuracy rate 

(98.31%) with balanced sensitivity (97.70%) and specificity 

(98.89%). The training time was slightly longer than that of 

the other algorithms (6.7290 s), but the test time was short 

(0.0942 s). 

The DT algorithm achieved high accuracy (97.56%) with 

high sensitivity (98.27%) and specificity (96.88%). The 
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training time was 2.6269 s and the testing process was 

completed in 0.2263 s. 

The GBC algorithm demonstrated similar performance to 

the other algorithms, achieving an accuracy rate of 97.75%. 

The sensitivity (97.70%) and specificity (97.79%) were 

balanced. However, the training time was slightly longer 

than those of the other algorithms (10.8316 s), and the test 

time was slightly higher (0.1849 s). 

In conclusion, these findings indicate that different 

algorithms can be preferred depending on the specific 

datasets and usage scenarios. In cases that require faster 

results, algorithms such as SVM or LR, which perform 

faster, can be chosen. However, for the highest accuracy rate, 

algorithms such as LR, RFC, and SVM should be preferred. 

Therefore, the choice of the algorithm depends on many 

factors that need to be considered within a specific 

application context. 

Furthermore, Table 4 evaluates the abilities of different 

machine learning algorithms to predict the "Falls" and 

"ADL" classes using the Scikit-Learn library. 

According to the Accuracy results, LR (98.60%) stands 

out as the algorithm with the highest accuracy rate. This 

indicates that the algorithm generally classified the dataset 

correctly. On the other hand, DT (96.07%) appears to have 

the lowest accuracy rate, meaning it has a tendency to make 

more errors compared to the other algorithms. 

The Sensitivity values measure the ability to correctly 

identify the "Falls" class. In this regard, SVM (98.28%) had 

the highest sensitivity values, indicating a better ability to 

identify the "Falls" class. DT (94.65%), on the other hand, 

has the lowest sensitivity value, indicating a tendency to 

misclassify the "Falls" class more frequently. 

The Specificity metric measures the ability to correctly 

identify the "ADL" class. In this regard, LR (99.08%) has the 

highest specificity value, implying a better ability to identify 

the "ADL" class. On the other hand, SVM (97.25%) has the 

lowest specificity value, indicating a tendency to misclassify 

the "ADL" class more frequently. 

 

Table 3. Analysis of fall detection performance using different machine learning techniques with the PySpark library on 

the test set. C.Fall: Classified Fall, C.ADL: Classified ADL, A.Fall: Actually Fall, A.ADL: Actually ADL 

 PySpark Library   

 
DT SVM GBC RFC LR 

C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL 

A.Fall 514 9 511 12 511 12 513 10 512 11 

A.ADL 17 528 6 539 12 533 8 537 6 539 

Sp (%) 96.88 98.89 97.79 98.53 98.89 

Se (%) 98.27 97.70 97.70 98.08 97.89 

Acc (%) 97.56 98.31 97.75 98.31 98.40 

Training 
Time 

2.6269 6.7290 10.8316 6.6498 12.3538 

Test Time 0.2263 0.0942 0.1849 0.1904 0.1675 

 

Table 4. Analysis of fall detection performance using different machine learning techniques with the Scikit-Learn library 

on the test set. C.Fall: Classified Fall, C.ADL: Classified ADL, A.Fall: Actually Fall, A.ADL: Actually ADL 

 Scikit-Learn Library   

 
DT SVM GBC RFC LR 

C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL 

A.Fall 495 28 514 9 513 10 513 10 513 10 

A.ADL 14 531 15 530 10 535 8 537 5 540 

Sp (%) 97.43 97.25 98.17 98.53 99.08 

Se (%) 94.65 98.28 98.09 98.09 98.09 

Acc (%) 96.07 97.75 98.13 98.31 98.60 

Training 

Time 
0.7036 0.5904 25.8212 0.5156 1.3104 

Test Time 0.0239 0.2283 0.0399 0.0609 0.0259 
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Regarding training and test times, RFC (0.5904 seconds) 

stands out as the fastest-trained algorithm, indicating that the 

dataset can be trained quickly. Additionally, DT (0.0239 

seconds) appears to have the fastest test time, producing 

results quickly. However, the training time of GBC (25.8212 

seconds) is longer compared to other algorithms, so training 

times should be taken into consideration as well. 

In conclusion, while LR exhibits the best overall 

performance, factors such as training time and test time 

requirements should be considered. The preference will 

depend on the specific requirements of the dataset and usage 

scenario. 

The research aimed to compare PySpark and Scikit-

Learn libraries in terms of fall detection. The main goal was 

to assess the performance difference between the two 

libraries and determine which library achieved better results. 

To achieve this, five different machine learning 

algorithms were examined using both libraries. In the 

experiments with PySpark, the highest accuracy rate of 

98.40% was obtained with the LR algorithm. The sensitivity 

(97.89%) and specificity (98.89%) values were also quite 

high. Similarly, in the experiments using the Scikit-Learn 

library, the highest accuracy rate of 98.60% was achieved 

with the LR algorithm, which also showed successful results 

in terms of sensitivity and specificity. 

In terms of training time, it appeared that the PySpark 

library required slightly longer durations. On the other hand, 

the Scikit-Learn library provided shorter test times. This can 

vary depending on factors such as the size of the dataset and 

the processing power. For instance, when working with 

larger datasets, PySpark might provide faster results due to 

its parallel processing capabilities. 

As a result, both libraries can effectively address the fall 

detection problem. However, the choice of library and 

algorithm should depend on factors such as the size of the 

dataset, processing power, and training/test times. This 

research can assist users in selecting the most suitable library 

and algorithm based on their specific requirements and 

datasets, thus achieving better accuracy performance. In 

addition, it is worth noting that the comparison between 

PySpark and Scikit-Learn in the context of fall detection 

models is a relatively unexplored area in the existing 

literature. While there have been studies that have examined 

the performance of these libraries in various machine 

learning tasks [3-6], their specific application in fall 

detection has not been extensively investigated. This 

highlights the novelty and significance of this study in 

contributing to the understanding of the performance of 

PySpark and Scikit-Learn in the development of fall 

detection models. 

In addition, when the performance of the study in terms 

of fall detection was examined, the proposed approach using 

logistic regression with new features extracted from the 

SisFall dataset achieved a promising accuracy rate of 98.6% 

in fall detection. This performance surpasses previous 

studies like Shi et al. [39] (improved pre-impact fall 

detection with 95.33% accuracy) and Zulj et al. [40] (various 

algorithms with accuracies ranging from 80.1% to 98.6%), 

and competes favorably with more complex approaches like 

Lee et al. [41] (fall detection using both plantar pressure and 

acceleration data with 95% accuracy). These results suggest 

that the newly extracted features effectively enhance the 

discriminatory power of fall detection systems, aligning with 

Gjoreski et al.'s [42] findings on the importance of data 

fusion and machine learning for accurate activity recognition 

and fall detection. Importantly, the achieved accuracy paves 

the way for potential real-world implementation, echoing 

Ojetola et al.'s [43] emphasis on the significance of wearable 

sensors in fall prevention. Overall, this study not only 

contributes to the development of more accurate and 

effective fall detection systems but also holds promising 

implications for improving safety measures in various 

settings. 

4 Conclusion 

This study comprehensively evaluated the performance 

of two prominent machine learning libraries, PySpark and 

Scikit-Learn, in fall detection modeling. The findings 

demonstrate the robust and efficient capabilities of both 

libraries in accurately classifying fall events from a diverse 

set of activities. Logistic regression and random forest 

algorithms consistently outperformed other models, 

achieving the highest accuracy rates across both libraries. 

PySpark's distributed computing capabilities proved 

advantageous for handling large datasets, enabling efficient 

training and processing. However, Scikit-Learn exhibited 

superior performance in test times, making it more suitable 

for smaller datasets or real-time applications. 

This study distinguishes itself from previous work by 

employing a comprehensive feature extraction approach that 

encompasses 26 features across five categories: basic 

statistical features, frequency domain features, time series 

features, motion features, and relational features. This novel 

approach captured a wider range of information from the 

Sisfall dataset, contributing to the enhanced accuracy 

observed in this study. 

The choice between PySpark and Scikit-Learn for fall 

detection modeling depends on factors such as dataset size, 

processing power, and time constraints. PySpark is well-

suited for large datasets due to its distributed computing 

capabilities, while Scikit-Learn offers a user-friendly 

interface and faster test times for smaller datasets. 

Overall, this study provides valuable insights into the 

strengths and limitations of PySpark and Scikit-Learn for fall 

detection modeling. It also highlights the effectiveness of the 

proposed feature extraction approach in improving fall 

detection accuracy. These findings can guide researchers and 

practitioners in selecting the most suitable library and 

algorithm for their specific fall detection needs. 

In addition, to always make progress in the research field, 

it is necessary to ask new questions and generate ideas for 

future studies. 

In this direction, the following possibilities can lead to 

significant advances in the field of fall detection: 

 Integration of different sensors: Combining the data 

from different sensors (accelerometers, GPS, 
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cameras, audio, etc.) for fall detection can create a 

more comprehensive model. 

 Investigation of deep learning methods: Deep 

learning techniques have been shown to be very 

successful in processing time series data in recent 

years. Adapting deep learning models for fall 

detection and comparing their performances will 

contribute to the advancement of the field. 

 Focus on personalized modeling: Developing 

personalized fall detection models can better adapt 

to real-world scenarios. 

These suggestions reveal exciting research opportunities 

for the future in the field of fall detection. Each approach 

should be studied in depth and the effectiveness of fall 

detection systems in real life should be increased through 

applied research. 
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