NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci., 2024; 13(2), 582-592

W

s '“"e‘-

SN Nigde Omer Halisdemir University Journal of Engineering Sciences
—

£ = v

3 & . ;

%l&?@g Aragtirma makalesi / Research article

MUHENDISLIK FAKULTESI

Nigde Omer Halisdemir Universitesi Miihendislik Bilimleri Dergisi

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

Exploring the performance of PySpark and Scikit-Learn libraries in developing
fall detection systems

Diisme algilama sistemlerinin gelistirilmesinde PySpark ve Scikit-Learn
kiitiiphanelerinin performansinin arastirilmasi

Erhan Kavuncuoglu'”

!t Cumhuriyet Universitesi, Bilgisayar Teknolojileri Bolimii, 58840, Sivas Tiirkiye

Abstract

Falls pose a significant risk, often resulting in serious
injuries and reduced quality of life for the elderly
population. Accurate and effective fall detection systems
can play an important role in reducing these risks. This
study presents a comparative analysis of the performance
of PySpark and Scikit-Learn libraries in the development of
fall detection models. Using both libraries, fall detection
models were built using five popular machine learning
algorithms, including logistic regression, gradient boosting
classifier, random forest, support vector machine and
decision tree. The models were evaluated using
comprehensive metrics (accuracy, sensitivity, specificity,
confusion matrix). In the study, 26 different features were
extracted from the Sisfall dataset consisting of falls and
activities of daily living data in five main categories: basic
statistical features, frequency domain features, time series
features, motion features and relational features. These
features were incorporated into the fall detection models to
increase their ability to recognise falls. The findings show
that both PySpark and Scikit-Learn offer powerful and
effective results in fall detection. The highest performance
rates of both libraries were achieved by logistic regression.
Furthermore, PySpark exhibited slightly longer training
times than Scikit-Learn, which performed better in the test.
In conclusion, this study contributes to the development of
fall detection systems to improve the safety and well-being
of the elderly and contributes to the literature by providing
a new feature extraction method.

Keywords: Fall detection, Artificial intelligence, Machine
learning, PySpark, Scikit-Learn

1 Introduction

Fall detection is an important research area, particularly
for the well-being and safety of the elderly population in the
domains of fall sensing, machine learning, and data analysis.
This study aims to compare the performance of fall detection
models using PySpark and Scikit-Learn libraries utilizing the
Sisfall [1] dataset.

PySpark is an open-source cluster computing framework
that provides a distributed computing environment for large-

Oz

Diismeler, genellikle ciddi yaralanmalara ve yasli niifusun
yasam Kkalitesinin azalmasina neden olan 6nemli bir risk
olugturur. Dogru ve etkili diisme tespit sistemleri, bu
riskleri azaltmada 6nemli bir rol oynayabilir. Bu ¢alisma,
diisme tespit modellerinin gelistirilmesinde PySpark ve
Scikit-Learn kiitiiphanelerinin performansini
karsilagtirmali bir analiz sunmaktadir. Her iki kiitiiphane de
kullanilarak, lojistik regresyon, gradyan arttirma
smiflandiricisi, rastgele orman, destek vektor makinesi ve
karar agact dahil olmak tizere bes popiiler makine 6grenme
algoritmast kullanilarak ~ diisme tespit ~ modelleri
olusturuldu. Modeller, kapsamli metrikler (dogruluk,
duyarlilik, ozgiilliik, karigiklik matrisi) kullanilarak
degerlendirildi. Caligmada diisme ve gilinliik yasam aktivite
verilerinden olusan Sisfall veri setinden 26 farkli 6zellik
bes ana kategoride ¢ikarildi: temel istatistiksel ozellikler,
frekans alani Ozellikleri, zaman serisi Ozellikleri, hareket
ozellikleri ve iligkisel 6zellikler. Bu 6zellikler, diisme tespit
modellerine diigmeleri tanima yeteneklerini artirmak icin
dahil edildi. Bulgular, hem PySpark hem de Scikit-Learn'iin
digme tespitinde gii¢lii ve etkili sonuclar sundugunu
gostermektedir. Her iki kiitiiphane de en yiiksek
performans oranlarma lojistik regresyon ile ulasilmistir.
Ayrica, PySpark, testte daha iyi performans sergileyen
Scikit-Learn'e gore biraz daha uzun egitim sireleri
sergilemistir. Sonug¢ olarak, bu c¢aligma, yaslilarin
giivenligini ve refahini artirmak igin dlisme tespit
sistemlerinin gelistirilmesine katkida bulundugu gibi yeni
bir dzellik ¢ikarma ydntemi sunarakta literatiire katkida
bulunuyor.

Anahtar kelimeler: Diisme Algillama, Yapay zeka,
Makine 6grenmesi, PySpark, Scikit-Learn

scale data processing. It is suitable for processing big data
and complex computations by offering various machine
learning algorithms and tools [2-6]. Patel et al. [7] focused
on a real-time scalable data collection process for COVID-
19 data and highlighted PySpark as a useful tool for this
process. The authors emphasized the comprehensive and
efficient capabilities of PySpark for processing large datasets
in parallel clusters, specifically in machine learning
applications. Another study by Gupta et al. [8] presented

* Sorumlu yazar / Corresponding author, e-posta / e-mail: ekavuncuoglu@cumhuriyet.edu.tr (E. Kavuncuoglu)
Gelis / Recieved: 10.10.2023 Kabul / Accepted:12.02.2024 Yayimlanma / Published: 15.04.2024

doi: 10.28948/ngumuh.1388789

582

https://orcid.org/0000-0001-6862-2891

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592
E. Kavuncuoglu

Apache Spark and a deep learning-based big data analysis
framework using PySpark. The authors performed
experimental analyses on real-world datasets and
demonstrated the effectiveness of their framework compared
with traditional big data analysis techniques. Additionally,
Rothauge [9] discussed the use of PySpark as an interface for
the Alchemist system. Alchemists have enabled Apache
Spark to achieve better performance by providing interfaces
with high-performance computing libraries for large-scale
distributed computations. The author highlights the
deployment options and data transfer times when using
PySpark with Alchemist. These studies demonstrate the
versatility and efficiency of PySpark in large-scale data
processing and machine learning tasks, emphasizing its use
in real-time data collection, integration with other data
analysis frameworks, etc.

On the other hand, Scikit-Learn is a widely used machine
learning library in Python that provides comprehensive tools
for data analysis and modelling [3-6], [10]. Abraham et al.
[11] focused on the use of Scikit-Learn for machine learning
in neuroimaging. The authors demonstrated how Scikit-
Learn can perform key analysis steps in functional
neuroimaging applications, highlighting its versatility in
brain studies. Another study by Buitinck et al. [12] discussed
the design choices of Scikit-Learn Application Programming
Interface (API). The authors explained that Scikit-Learn is
designed to be simple, efficient, and accessible to non-
experts, emphasizing its reusability in various contexts. Auti
et al. [13] mentioned the use of Scikit-Learn for data
preparation in data mining, specifically for normalization,
standardization, and handling outliers or missing data.
Furthermore, a review article by Hao and Ho [14] provides
an overview of Scikit-Learn as a machine-learning package
in Python. The authors highlight the comprehensive list of
machine learning methods included in Scikit-Learn and their
adherence to unified data and modelling procedure rules,
emphasizing the ease of use for educators and behavioral
statisticians. Overall, these studies showcase the varied
applications and functionalities of Scikit-Learn in machine
learning and data analysis across different domains,
highlighting its versatility, simplicity, and efficiency.

In this study, several commonly used machine learning
algorithms, such as logistic regression, gradient boosting
classifier, random forest, support vector machine, and
decision tree, were employed to develop the fall detection
models. These algorithms were chosen for their effectiveness
in classification tasks, ability to handle both numerical and
categorical data, and high accuracy achievements in fall
detection [15-19].

The performance of the models was evaluated using
various metrics, such as accuracy, precision, recall,
confusion matrix, training time, and testing time, obtained
through PySpark and Scikit-Learn. By comparing the
performance of PySpark and Scikit-Learn based on these
metrics, this study aimed to determine which library is more
successful in fall detection. The findings of this research will
guide researchers and practitioners in selecting the most
suitable library for developing fall detection systems.

The following sections explain the methodology used in
this study, present the obtained results, discuss the
implications of the findings, and provide a comprehensive
analysis of PySpark and Scikit-Learn in the context of fall
detection.

2 Materials and methods

In this study, the Sisfall dataset, which includes falls and
activities of daily living (ADL) obtained from an experiment
conducted by the Systemic research group, was utilized. The
collaboration was established with 38 volunteers, consisting
of elderly and young adults. The elderly group comprised 15
participants (8 males and 7 females) who were in good health
and independent. The young adult group consisted of 23
participants (11 males and 12 females). Each participant
repeated 15 different fall movements and 19 different ADLs,
five times. Within the elderly group, certain ADLSs (activities
numbered 6, 13, 18, and 19) were not provided with medical
advice, and some activities could not be carried out due to
personal barriers. Additionally, one participant simulated fall
movements and ADLSs due to a judo experience (Table 1).

Data were collected using a specialized wearable device.
The equipment included a Kinetis MKL25Z128VLK4
microcontroller produced by NPX in Austin, Texas, USA, an
analog device ADXL345 accelerometer (with a range of +
16 g and 13-bit analog-to-digital conversion freedom), a
Freescale MM A8451Q accelerometer (with a range of + 8 g
and 14-bit ADC), an ITG3200 gyroscope (with a range of
+2000°/s and 16-bit ADC), and an SD card. The device was
mounted on the participant’s waist and powered by a 1000
mA/hr general-purpose battery. The device was positioned
using a single accelerometer system owing to its ability to
differentiate between different activities. The device was set
up to record the original sampling frequency (200 Hz).

This research focused on training algorithms using
PySpark and Scikit-Learn libraries with activity data from 23
young participants to detect and prevent falls. The
participants were asked to perform 15 different fall
movements and 19 ADLs. In total, 3532 observations were
generated during the experiment. Upon inspection of the
dataset, it was observed that 19 ADLs had 5 repetitions, with
4 of them having only 1 repetition. Similarly, 15 fall
movements were collected with 5 repetitions. As a result, the
total number of observations should have been 3542;
however, only 3532 observations were obtained because of
missing repetitions in some cases. Data erasures occurred
because of missing repetitions, such as the absence of a
repetition in the 17th ADL for SA15; the absence of a
repetition in the 6th ADL for SA17; and the absence of
repetitions in the 1st fall movement, 6th ADL, 10th fall
movement, and 17th ADL for SA20, resulting in a total of 10
missing observations. Therefore, individuals with missing
repetitions were considered test data to address imbalances
in the training set.

The method section applied three main stages for fall
detection using a dataset consisting of 3532 records from 23
young volunteers: pre-processing, feature extraction,

583

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592
E. Kavuncuoglu

Table 1. SisFall Dataset: List of Falls and ADLs

Falls ADLs
No Description Causeof Trial No Description Trial
Fall s S
1 Falling - forward — while o 5 1 Slowwalking 1
walking
2 FaIIlr_wg backward while Slip 5 2 Fastwalking 1
walking
Lateral falling while . N
3 walking Slip 5 3 Slow jogging 1
Trip
4 Falling forward due to a trip without 5 4 Fast jogging 1
stumbling
Falling forward while
5 .. Trip 5 5 Ascending and descending stairs slowly 5
jogging
6 Vertl_cal Falling while Fainting 5 6 Ascending and descending stairs quickly 5
walking
Falling while = walking, Slowly sit in a chair of medium height, wait for a moment
7 using hands on a table to Fainting 5 7 y gnt, ’ 5
and stand up slowly.
dampen the fall
Falling forward when Attemptin Quickly sit in a chair of medium height, wait for a moment,
8 - 5 8 - 5
attempting to get up g to get up and stand up quickly.
9 Lateral falling when Attemptin 5 9 Slowly sit in a low-height chair, wait for a moment, and stand 5
attempting to get up g to get up up slowly.
1 Falling forward when Attemp.tm 1 Quickly sit in a low-height chair, wait for a moment, and
. - g to sit 5 - 5
0 attempting to sit down 0 stand up quickly.
down
1 Falling backward when Attemp.tm 1 Sitting for a moment, attempting to get up, and collapsing
. - g to sit 5 ; - 5
1 attempting to sit down 4 1 back into the chair.
own
1 Lateral fall when Attemp.tm 1 Sitting for a moment, lying down slowly, waiting for a
. . g to sit 5 s . 5
2 attempting to sit down down 2 moment, and sitting up again.
- - Fainting . . . o,
1 Falling forward while . 1 Sitting for a moment, lying down quickly, waiting for a
P or falling 5 o - 5
3 sitting 3 moment, and sitting up again.
asleep
1 Falling backward while Famnpg 1 Ch_ar_lgmg from lying on one's pack to a Iate_ral posntlorj,
2 L or falling 5 waiting for a moment, and changing back to lying on one's 5
sitting 4
asleep back.
1 Fainting 1
5 Lateral falling while sitting or falling 5 5 Standing, bending at knees slowly, and getting up. 5
asleep
1 Standing, bending without bending knees slowly, and getting 5
6 up.
1 Boarding a car, staying seated, and disembarking from the 5
7 car.
1 . . .
8 Stumbling while walking. 5
1 Gently jumping without falling (attempting to reach a high 5
9 object).

and classification. During the pre-processing stage, various
adjustments and cleaning procedures were performed to
obtain meaningful data from the dataset. In the feature
extraction stage, significant features are extracted from the
preprocessed dataset to detect fall events. Finally, in the
classification stage, the extracted features were utilized to
determine whether a fall event occurred. The performance
metrics required for fall detection were analysed using five

different machine learning techniques available in the

PySpark and Scikit-Learn libraries.

2.1 Data formation

The Sisfall dataset is widely used for developing fall
detection algorithms. This dataset is based on data collected
from the ADXL345 accelerometer sensor (A, 4, 4,), the
ITG3200 gyroscope sensor (G, G,, G,), and the
MMAB8451Q accelerometer sensor (A, A,, A,). Here, the

584

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoglu

abbreviations "A" and "G" refer to the accelerometer and
gyroscope sensor data, respectively, and "X, y, and z"
represent each vertical axis (Figure 1). Each file consisted of
data records with 9 columns and 200 rows at a frequency of
200 samples per second. The data collection duration varied
from 12 seconds (s) to 100 s for each movement. In this
study, one accelerometer and one gyroscope were included
in the research out of three sensors. The accelerometer to be
used with the ITG3200 gyroscope was chosen considering
the measurement range. The ADXL345 accelerometer is
capable of measuring between -16 g and +16g, while the
MMAB8451Q accelerometer can measure between -8 g and
+8g. Therefore, the ADXL345 accelerometer was preferred
because a wider measurement range was required. This
indicates that data records consisting of 6 columns and 200
rows were considered for this study.

To manage the large dataset, the data frames were
divided into 0.5-second frames. Each 0.5-second frame
consists of two 0.25-second frames (Ty,4) surrounding the
highest acceleration recorded by the waist sensor. This
approach simplifies data management in the development of
fall-detection algorithms.

1
Tya = /sz +4,° +A4,° &

The total acceleration (T 4) vector is calculated from the
average acceleration values along the X, y, and z axes as
shown in Equation (1). Because each test lasts between 12 s
to 100 s, the Ty, vector typically varies between 2400 to
20000 observations (12 s x 200 Hz - 100 s x 200 Hz). To
remove meaningless data, the first and last 50 observations
(0.25 seconds x 200 Hz) at the beginning and end of each test
are disregarded.

In addition, any unusually high acceleration values are
discarded. The remaining values include the highest
acceleration value, which is used to create a 0.5-second
vector consisting of two 0.25-second frames surrounding this
value. Each frame contains 50 observations (0.25 seconds X
200 Hz), resulting in a total of 101 observations (50
observations + Ty, value + 50 observations). A single test
repetition yields a data array consisting of 101 rows and 6
columns. Each row includes the measured acceleration or
angular velocity values along the x, y, and z axes, and each
column represents a vector. Therefore, with a single
repetition of the test, a dataset of 101 * 6 is formed for one
sensor unit.

2.2 Feature extraction

In this study, 26 different types of features were defined
for motion recognition. Each sensor unit records signals
along three axes for acceleration (4, 4,, A;) and angular
velocity (Gy, Gy, G,). From these signals, various features are
extracted at 0.5-second intervals. These features are divided
into five main categories: basic statistical features (42 * 1),
frequency domain features (114 * 1), time series features (94
* 1), motion features (27 * 1), and relational features (27 *
1). Using these features, a feature vector is generated for each
movement (Table 2).

In this study, 3532 movements were recorded, including
15 falls and 19 activities of daily living. For each movement,
352 features were extracted (352 * 1). Using these features,
a feature set of dimensions of 352 (352 * 3532) was created.

ADXL345 Accelerometer 1163200 Gyroscope

— AN
3000 { — ANy
— ANz

Timels)

(@) (b)

ADXL345 Accelerometer

— ADXL3M45x A — mE300x
3000 1 — ADXL345y |
— DXL3452

(c) (d)

Figure 1. These figures showcase participant SAQ05
performing the "Fall Number 2: Falling backward while
walking due to slipping” movement. Figures (a) and (b)
display raw data recordings of 15 seconds (3000 samples)
sampled at 200 Hz. Figures (c) and (d) depict the same
data but compressed to 101 samples, representing 0.5
seconds of shortened data.

2.3 Machine learning algorithms

In this study, machine-learning algorithms were
employed to detect falls and daily life activities. Features
were extracted from the raw data and used as inputs for the
classifiers. When an algorithm detects a fall or daily life
activity, the developed model associates the input data with
the corresponding labeled fall or daily life activity.

Five different machine learning algorithms were applied
to detect falls, and their classification performance was
compared. The following is a brief description of these
algorithms.

2.3.1 Decision tree (DT)

DT isan algorithm used to make predictions by analyzing
the data. The working principle of this algorithm involves
creating a tree-like structure, in which each node represents
a feature and each branch represents a decision. Starting from
the root node, a decision tree asks questions regarding a
feature and branches downwards, based on the responses.
This process continues until a leaf node representing a
prediction is reached. Decision trees can handle numerical
and categorical data and have been used in fall detection
systems to classify fall events [32].

585

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoglu

Table 2. Features and Formation of VVector. A, G, Var., Std., Freq. are the accelerometer, gyroscope, variance, standard deviation,

and frequency, respectively.

Type

Code

Features

Number of Features

Basic Statistical Features

F1

Minimum values [20]

XyZ XyZ
A G
6 Features

F2

Maximum values [21]

XyZ XyZ
A G
6 Features

F3

Mean values [20]

Xyz xXyz
A G
6 Features

F4

Variance [22]

XyZ XyZ
A G
6 Features

F5

Skewness [23]

XyZ XyzZ
A G
6 Features

F6

Kurtosis [23]

XyZ XyZ
A G
6 Features

F7

Root Mean Square [24]

XyZ XyzZ
A G
6 Features

Frequency Domain Features

F8

Discrete Fourier Transformation [25]

XXXXX YYYYY ZZZZZ
Ay Ay, ..., G,

5 5 .. 5
DFT(Peak) - DFT (Freq.)
30 - 30
60 Features

F9

Power Spectral Density [21]

XXXXX YYYYY ZZZZZ
Ay Ay, ..., G,
51 Features

F10

Angular Velocity [26]

Var. Std. Energy
Xyz Xxyz xXyz
G
3 Features

Time Series Features

F11

Autocorrelation [27]

XXXXXXXXXXXY..Z..
Ay Ay, ..., G,
11, 11,.....11
DFT(Peak) - DFT (Freq.)
66 Features

F12

Spectral Entropy [28]

XyZ XyZ
A G
6 Features

F13

Energy [24]

XyZ XyZ
A G
6 Features

F14

Singular Value Decomposition [29]

XyZ XyZ
A G
6 Features

F15

Signal Magnitude Area [30]

xyz
A
10 Features

586

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592
E. Kavuncuoglu

Table 2.(Continue) Features and Formation of Vector. A, G, Var., Std., Freq. are the accelerometer, gyroscope, variance,

standard deviation, and frequency, respectively.

Xyz Xyz

F16 Range of Variations [21] A G

6 Features

Xyz xyz

F17 Coefficient of Variation [20] A G

6 Features

Xyz Xyz

F18 Standard Error Mean [20] A G

Motion Features

6 Features

F19 Jerk [26]

Xyz
A
3 Features

F20 Peak values [21]

xXyz
A
3 Features

xyz

F21 Mean Crossing Rate [24] A

3 Features

F22 Correlation [20]

xXyz
A
3 Features

F23 Covariance [20]

Xyz
A
3 Features

Relational Features F24

Autoregression [27]

Xyz
A
33 Features

F25 Cross-Correlation [24]

xXyz
A
33 Features

xyz

F26 Mutual Information [31] A

3 Features

2.3.2 Support vector machine (SVM)

SVM specializes in separating different categories by
creating a hyperplane in a multidimensional feature space.
The main objective of the SVM is to have a hyperplane that
optimizes the margin between the data samples of each
category. It is widely used in fall detection systems because
of its ability to handle complex data structures and
effectively generalize [33], [34].

2.3.3 Random forest classifier (RFC)

RFC is a technique that integrates multiple decision trees
to produce predictions. In this approach, each tree is trained
on a randomly selected subset of training data and pertinent
features. Finally, an aggregated prediction is obtained
through majority voting or averaging. Random forest is
robust to overfitting and can effectively handle high-
dimensional data. It has been used to improve the
classification accuracy in fall detection systems [35].

2.3.4 Gradient boosting classifier (GBC)

GBC is an algorithm that combines several weak
classifiers to create a strong classifier. The methodology of
this algorithm involves building a progressive model with
each subsequent classifier and correcting the mistakes of the
previous classifiers. Gradient Boosting Classifier has
achieved high accuracy in fall detection tasks [36].

2.3.5 Logistic regression (LR)

LR is a algorithm used to model the relationship between
one or more independent variables and a dependent variable.
LR belongs to the family of supervised learning algorithms.
The implementation of logistic regression can vary
depending on whether the dependent variable is binary or
multiclass. Logistic regression has been used to differentiate
between falls and daily life activities in fall detection systems
[37], [38].

587

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592
E. Kavuncuoglu

2.4 Classification

Fall detection systems are crucial, especially for the
elderly and disabled. However, the performance of fall
detection systems depends on the machine learning
techniques employed and quality of the training data used.

In this study, the accuracy, sensitivity, and specificity
criteria were used to evaluate the performance of the fall
detection system. The accuracy represents the overall
correctness rate of the system's decisions. The sensitivity
represents the rate at which the system correctly detects all
falls. Specificity represents the rate at which the system
correctly identifies non-fall situations. To determine these
criteria, four different scenarios need to be considered. In the
first scenario, a real fall occurs, and the algorithm correctly
detects it (True Positive - T,,). In the second scenario, no fall
occurs, and the algorithm does not produce a fall alert (True
Negative - T,,). T,, and T, scenarios are considered as correct
decisions by the algorithm. Incorrect decisions are labeled
wrongly by the algorithm. In the third scenario, no fall
actually occurs, but the algorithm incorrectly generates a fall
alert (False Positive - F,). Additionally, the algorithm may
fail to detect a fall, which is known as a False Negative (F,).
This scenario is the most dangerous, as it can lead to severe
injuries or even fatalities.

Sensitivity (Se), also known as Recall, is one of the most
important criteria for fall detection systems, as a False
Negative, which is the failure to detect an actual fall, can lead
to severe injuries or death as in Equation (2).

2
Se=—2L— x100 @)

Specificity (Sp) is the measure of an algorithm's ability
to correctly identify negative cases. It represents the ratio of
correctly identified true negatives (T,,). A high Sp value
indicates that the algorithm is successful in accurately
identifying non-fall cases as in Equation (3). This is
important in minimizing false alarms.

@)

Sp = i 100
PET.+F "

Accuracy (Acc) measures how well an algorithm predicts
both sensitivity (Se) and specificity (Sp). Accuracy is
calculated from T,,, T,,, E, and F, as in Equation (4).

T, + T,
T, + T, +F,+F,

x 100 @

Acc =

Therefore, a good binary classifier is expected to have
high scores for all three criteria: sensitivity, specificity, and
accuracy. However, in the case of fall detection, sensitivity
is often the most important criteria.

This study aims to detect unexpected falls during daily
activities. An ideal fall detection system should be able to
distinguish falls resulting from rapid movements of body
parts from routine activities. The algorithms need to be
robust, intelligent, and sensitive in order to minimize false

positive and false negative outcomes. While false positive
alerts can be canceled by the user, it is critical that falls are
not falsely classified as another activity. Missed falls can
negatively impact a user's physical or mental well-being and
hinder opportunities for intervention. Therefore, it is
important for fall detection systems to have a high sensitivity
and not miss any falls. Additionally, measures should be
taken to prevent false alarm notifications from unnecessarily
consuming the system resources. This study aimed to
enhance the reliability and sensitivity of the proposed
algorithm.

One of the most effective strategies for evaluating the
effectiveness of machine learning models is to test them with
unknown data in addition to performance criteria. In this
study, a dataset collected from two groups consisting of 23
young adult participants was used. A test set of seven
individuals was separated to evaluate the performance of the
model. This approach ensures that no samples from the test
set are used during the training of the model, thereby
providing a more realistic and unbiased performance
evaluation.

3 Results and discussion

In this section, the accuracy performance of machine
learning algorithms trained on the fall detection dataset using
PySpark and Scikit-Learn libraries are compared
independently. Subsequently, the models with the highest
training accuracy were evaluated for their generalization
performance on the test set, including the accuracy,
sensitivity, specificity, training time, and test time. After
obtaining the results, the artificial intelligence library with
the highest fall-detection performance was identified.

Table 3 shows the performance of five different machine
learning algorithms for predicting fall and ADL classes using
the PySpark library. When assessing the results of each
algorithm, specific strengths and weaknesses were
identified.

The LR algorithm stands out with the highest accuracy
(98.40%). These results demonstrate the successful ability of
the LR algorithm to distinguish between the fall and ADL
classes. Additionally, both the sensitivity (97.89%) and
specificity (98.89%) values were considerably high.
However, the training time was longer than those of the other
algorithms (12.3538 s), and the test time was slightly longer
(0.1675 s).

The RFC algorithm also performs well, achieving a high
accuracy rate of 98.31%. Both the sensitivity (98.08%) and
specificity (98.53%) values are at a high level. Furthermore,
the training time is similar to that of the SVM algorithm
(6.6498 s), and the test time could be completed in a short
period (0.1904 s).

The SVM algorithm also provided a high accuracy rate
(98.31%) with balanced sensitivity (97.70%) and specificity
(98.89%). The training time was slightly longer than that of
the other algorithms (6.7290 s), but the test time was short
(0.0942 s).

The DT algorithm achieved high accuracy (97.56%) with
high sensitivity (98.27%) and specificity (96.88%). The

588

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592
E. Kavuncuoglu

training time was 2.6269 s and the testing process was
completed in 0.2263 s.

The GBC algorithm demonstrated similar performance to
the other algorithms, achieving an accuracy rate of 97.75%.
The sensitivity (97.70%) and specificity (97.79%) were
balanced. However, the training time was slightly longer
than those of the other algorithms (10.8316 s), and the test
time was slightly higher (0.1849 s).

In conclusion, these findings indicate that different
algorithms can be preferred depending on the specific
datasets and usage scenarios. In cases that require faster
results, algorithms such as SVM or LR, which perform
faster, can be chosen. However, for the highest accuracy rate,
algorithms such as LR, RFC, and SVM should be preferred.
Therefore, the choice of the algorithm depends on many
factors that need to be considered within a specific
application context.

Furthermore, Table 4 evaluates the abilities of different
machine learning algorithms to predict the "Falls" and
"ADL" classes using the Scikit-Learn library.

According to the Accuracy results, LR (98.60%) stands
out as the algorithm with the highest accuracy rate. This
indicates that the algorithm generally classified the dataset
correctly. On the other hand, DT (96.07%) appears to have
the lowest accuracy rate, meaning it has a tendency to make
more errors compared to the other algorithms.

The Sensitivity values measure the ability to correctly
identify the "Falls" class. In this regard, SVM (98.28%) had
the highest sensitivity values, indicating a better ability to
identify the "Falls" class. DT (94.65%), on the other hand,
has the lowest sensitivity value, indicating a tendency to
misclassify the "Falls" class more frequently.

The Specificity metric measures the ability to correctly
identify the "ADL" class. In this regard, LR (99.08%) has the
highest specificity value, implying a better ability to identify
the "ADL" class. On the other hand, SVM (97.25%) has the
lowest specificity value, indicating a tendency to misclassify
the "ADL" class more frequently.

Table 3. Analysis of fall detection performance using different machine learning techniques with the PySpark library on
the test set. C.Fall: Classified Fall, C.ADL: Classified ADL, A.Fall: Actually Fall, A/ ADL: Actually ADL

PySpark Library
DT SVM GBC RFC LR
CFal C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL

AFall 514 9 511 12 511 12 513 10 512 11
A.ADL 17 528 6 539 12 533 8 537 6 539

Sp (%) 96.88 98.89 97.79 98.53 98.89

Se (%) 98.27 97.70 97.70 98.08 97.89

Acc (%) 97.56 98.31 97.75 98.31 98.40
Trf.‘.i”ing 2.6269 6.7290 10.8316 6.6498 12.3538

ime

Test Time 0.2263 0.0942 0.1849 0.1904 0.1675

Table 4. Analysis of fall detection performance using different machine learning techniques with the Scikit-Learn library
on the test set. C.Fall: Classified Fall, C.ADL: Classified ADL, A.Fall: Actually Fall, A, ADL: Actually ADL

Scikit-Learn Library

DT SVM GBC RFC LR
CFall CADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL C.Fall C.ADL
AFall 495 28 514 9 513 10 513 10 513 10
A.ADL 14 531 15 530 10 535 8 537 5 540
Sp (%) 97.43 97.25 98.17 98.53 99.08
Se (%) 94.65 98.28 98.09 98.09 98.09
Acc (%) 96.07 97.75 98.13 98.31 98.60
Training 0.7036 0.5904 25.8212 05156 1.3104
Time
Test Time 0.0239 0.2283 0.0399 0.0609 0.0259

589

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592
E. Kavuncuoglu

Regarding training and test times, RFC (0.5904 seconds)
stands out as the fastest-trained algorithm, indicating that the
dataset can be trained quickly. Additionally, DT (0.0239
seconds) appears to have the fastest test time, producing
results quickly. However, the training time of GBC (25.8212
seconds) is longer compared to other algorithms, so training
times should be taken into consideration as well.

In conclusion, while LR exhibits the best overall
performance, factors such as training time and test time
requirements should be considered. The preference will
depend on the specific requirements of the dataset and usage
scenario.

The research aimed to compare PySpark and Scikit-
Learn libraries in terms of fall detection. The main goal was
to assess the performance difference between the two
libraries and determine which library achieved better results.

To achieve this, five different machine learning
algorithms were examined using both libraries. In the
experiments with PySpark, the highest accuracy rate of
98.40% was obtained with the LR algorithm. The sensitivity
(97.89%) and specificity (98.89%) values were also quite
high. Similarly, in the experiments using the Scikit-Learn
library, the highest accuracy rate of 98.60% was achieved
with the LR algorithm, which also showed successful results
in terms of sensitivity and specificity.

In terms of training time, it appeared that the PySpark
library required slightly longer durations. On the other hand,
the Scikit-Learn library provided shorter test times. This can
vary depending on factors such as the size of the dataset and
the processing power. For instance, when working with
larger datasets, PySpark might provide faster results due to
its parallel processing capabilities.

As a result, both libraries can effectively address the fall
detection problem. However, the choice of library and
algorithm should depend on factors such as the size of the
dataset, processing power, and training/test times. This
research can assist users in selecting the most suitable library
and algorithm based on their specific requirements and
datasets, thus achieving better accuracy performance. In
addition, it is worth noting that the comparison between
PySpark and Scikit-Learn in the context of fall detection
models is a relatively unexplored area in the existing
literature. While there have been studies that have examined
the performance of these libraries in various machine
learning tasks [3-6], their specific application in fall
detection has not been extensively investigated. This
highlights the novelty and significance of this study in
contributing to the understanding of the performance of
PySpark and Scikit-Learn in the development of fall
detection models.

In addition, when the performance of the study in terms
of fall detection was examined, the proposed approach using
logistic regression with new features extracted from the
SisFall dataset achieved a promising accuracy rate of 98.6%
in fall detection. This performance surpasses previous
studies like Shi et al. [39] (improved pre-impact fall
detection with 95.33% accuracy) and Zulj et al. [40] (various
algorithms with accuracies ranging from 80.1% to 98.6%),

and competes favorably with more complex approaches like
Lee et al. [41] (fall detection using both plantar pressure and
acceleration data with 95% accuracy). These results suggest
that the newly extracted features effectively enhance the
discriminatory power of fall detection systems, aligning with
Gjoreski et al.'s [42] findings on the importance of data
fusion and machine learning for accurate activity recognition
and fall detection. Importantly, the achieved accuracy paves
the way for potential real-world implementation, echoing
Ojetola et al.'s [43] emphasis on the significance of wearable
sensors in fall prevention. Overall, this study not only
contributes to the development of more accurate and
effective fall detection systems but also holds promising
implications for improving safety measures in various
settings.

4 Conclusion

This study comprehensively evaluated the performance
of two prominent machine learning libraries, PySpark and
Scikit-Learn, in fall detection modeling. The findings
demonstrate the robust and efficient capabilities of both
libraries in accurately classifying fall events from a diverse
set of activities. Logistic regression and random forest
algorithms consistently outperformed other models,
achieving the highest accuracy rates across both libraries.

PySpark's distributed computing capabilities proved
advantageous for handling large datasets, enabling efficient
training and processing. However, Scikit-Learn exhibited
superior performance in test times, making it more suitable
for smaller datasets or real-time applications.

This study distinguishes itself from previous work by
employing a comprehensive feature extraction approach that
encompasses 26 features across five categories: basic
statistical features, frequency domain features, time series
features, motion features, and relational features. This novel
approach captured a wider range of information from the
Sisfall dataset, contributing to the enhanced accuracy
observed in this study.

The choice between PySpark and Scikit-Learn for fall
detection modeling depends on factors such as dataset size,
processing power, and time constraints. PySpark is well-
suited for large datasets due to its distributed computing
capabilities, while Scikit-Learn offers a user-friendly
interface and faster test times for smaller datasets.

Overall, this study provides valuable insights into the
strengths and limitations of PySpark and Scikit-Learn for fall
detection modeling. It also highlights the effectiveness of the
proposed feature extraction approach in improving fall
detection accuracy. These findings can guide researchers and
practitioners in selecting the most suitable library and
algorithm for their specific fall detection needs.

In addition, to always make progress in the research field,
it is necessary to ask new questions and generate ideas for
future studies.

In this direction, the following possibilities can lead to
significant advances in the field of fall detection:

e Integration of different sensors: Combining the data
from different sensors (accelerometers, GPS,

590

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoglu

cameras, audio, etc.) for fall detection can create a
more comprehensive model.

e Investigation of deep learning methods: Deep
learning techniques have been shown to be very
successful in processing time series data in recent
years. Adapting deep learning models for fall
detection and comparing their performances will
contribute to the advancement of the field.

e Focus on personalized modeling: Developing
personalized fall detection models can better adapt
to real-world scenarios.

These suggestions reveal exciting research opportunities
for the future in the field of fall detection. Each approach
should be studied in depth and the effectiveness of fall
detection systems in real life should be increased through
applied research.

Conflict of interest

There is no conflict of interest with any person/institution
in the prepared article.

Data and materials availability

Data and Materials Availability: The dataset utilized in
this study has been made available as open source and can
be accessed via the following link.
(https://github.com/JiayangLai/SisFallDatasetAnnotation)

Similarity rate (iThenticate): 16%

References

[1] A. Sucerquia, J. D. Lopez, and J. F. Vargas-Bonilla,
SisFall: A fall and movement dataset, Sensors, vol. 17,
no. 1, Art. no. 1, Jan. 2017, doi: 10.3390/s17010198.

[2] M. Islametal., Deep learning based systems developed
for fall detection: A Review, IEEE Access, vol. 8, pp.
166117-166137, 2020, doi:
10.1109/ACCESS.2020.3021943.

[3] T.C. Nokeri, Principal component analysis with Scikit-
Learn, PySpark, and h20, in data science solutions with
python: fast and scalable models using keras, PySpark,
mllib, h20, xgboost, and Scikit-Learn, T. C. Nokeri,
Ed., Berkeley, CA: Apress, 2022, pp. 101-110. doi:
10.1007/978-1-4842-7762-1_9.

[4] T. C. Nokeri, Cluster analysis with Scikit-Learn,
PySpark, and h2o0, in data science solutions with
python: fast and scalable models using keras, PySpark
mllib, h20, xgboost, and Scikit-Learn, T. C. Nokeri,
Ed., Berkeley, CA: Apress, 2022, pp. 89-99. doi:
10.1007/978-1-4842-7762-1_8.

[5] M. Junaid et al., Performance evaluation of data-driven
intelligent algorithms for big data ecosystem, Wirel.
Pers. Commun., vol. 126, no. 3, pp. 2403-2423, Oct.
2022, doi: 10.1007/s11277-021-09362-7.

[6] T.C. Nokeri, Tree modeling and gradient boosting with
Scikit-Learn, xgboost, PySpark, and h2o0, in data
science solutions with python: fast and scalable models
using keras, PySpark mllib, h20, xgboost, and Scikit-
Learn, T. C. Nokeri, Ed., Berkeley, CA: Apress, 2022,
pp. 59-74. doi: 10.1007/978-1-4842-7762-1_6.

[71 T. S. Patel, D. P. Patel, and C. N. Patel, Real time
scalable data acquisition of covid-19 in six continents
through PySpark - a big data tool. medRxiv, p.
2021.07.04.21259983, Jul. 06, 2021. doi:
10.1101/2021.07.04.21259983.

[8] A. Gupta, H. K. Thakur, R. Shrivastava, P. Kumar, and
S. Nag, A big data analysis framework using apache
spark and deep learning, in 2017 IEEE International
Conference on Data Mining Workshops (ICDMW),
Nov. 2017, pp. 9-16. doi: 10.1109/ICDMW.2017.9.

[91 K. Rothauge, H. Ayyalasomayajula, K. J. Maschhoff,
M. Ringenburg, and M. W. Mahoney, Running
alchemist on cray xc and cs series supercomputers:
dask and PySpark interfaces, deployment options, and
data transfer times. arXiv, Nov. 28, 2019. doi:
10.48550/arXiv.1910.01354.

[10] S. Gafner et al., Evaluation of hip abductor and
adductor strength in the elderly: a reliability study, Eur.
Rev. Aging Phys. Act., vol. 14, no. 1, p. 5, Apr. 2017,
doi: 10.1186/s11556-017-0174-6.

[11] A. Abraham et al., Machine learning for neuroimaging
with Scikit-Learn, Front. Neuroinformatics, vol. 8,
2014, doi: 10.3389/fninf.2014.00014.

[12] L. Buitinck et al., APl design for machine learning
software: experiences from the Scikit-Learn project.
arXiv, Sep. 01, 2013. doi: 10.48550/arXiv.1309.0238.

[13] A. Auti, D. Patil, O. Zagade, P. Bhosale, and P. Ahire,
Bitcoin price prediction using svm, vol. 6, no. 11, 2022.

[14] J. Hao and T. K. Ho, Machine learning made easy: a
review of Scikit-Learn package in python programming
language, J. Educ. Behav. Stat., vol. 44, no. 3, pp. 348—
361, Jun. 2019, doi: 10.3102/1076998619832248.

[15] M. W. Liemohn et al., Model evaluation guidelines for
geomagnetic index predictions, Space Weather, vol. 16,
no. 12, pp. 2079-2102, 2018, doi:
10.1029/2018SW002067.

[16] E. Uzunhisarcikli, E. Kavuncuoglu, and A. T. Ozdemir,
Investigating classification performance of hybrid deep
learning and machine learning architectures on activity
recognition, Comput. Intell., vol. 38, no. 4, Art. no. 4,
2022, doi: 10.1111/coin.12517.

[17] E. Kavuncuoglu, E. Uzunhisarcikli, B. Barshan, and A.
T. Ozdemir, Investigating the performance of wearable
motion sensors on recognizing falls and daily activities
via machine learning, Digit. Signal Process., p. 103365,
Dec. 2021, doi: 10.1016/J.DSP.2021.103365.

[18] M. S. Turan and B. Barshan, Classification of fall
directions via wearable motion sensors, Digit. Signal
Process., p. 103129, Jun. 2021, doi:
10.1016/j.dsp.2021.103129.

[19] A. T. Ozdemir, An analysis on sensor locations of the
human body for wearable fall detection devices:
Principles and practice, Sens. Switz., vol. 16, no. 8, Art.
no. 8, Jul. 2016, doi: 10.3390/s16081161.

[20] D. C. Montgomery, E. A. Peck, and G. G. Vining,
Introduction to linear regression analysis. John Wiley
& Sons, 2013.

591

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(2), 582-592

E. Kavuncuoglu

[21] J. S. Bendat and A. G. Piersol, Random data: analysis
and measurement procedures. John Wiley & Sons,
2011.

[22] J. L. Devore, Probability and statistics for engineering
and the sciences. Cengage Learning, 2015.

[23] N. L. Johnson, S. Kotz, and N. Balakrishnan,
Continuous univariate distributions, Vol. 1, 2nd edition.
New York: Wiley-Interscience, 1994,

[24] A. V. Oppenheim and R. W. Schafer, Discrete-time
signal processing. Pearson, 2010.

[25] J. G. Proakis and D. G. Manolakis, Digital signal
processing: principles, algorithms, and applications.
Macmillan, 1992.

[26] Signal processing, in biomechanics and motor control
of human movement, John Wiley & Sons, Ltd, 2009,
pp. 14-44. doi: 10.1002/9780470549148.ch2.

[27] P. J. Brockwell and R. A. Davis, Introduction to time
series and forecasting. in Springer Texts in Statistics.
Cham: Springer International Publishing, 2016. doi:
10.1007/978-3-319-29854-2.

[28] T. Inouye et al., Quantification of eeg irregularity by
use of the entropy of the power spectrum,
Electroencephalogr. Clin. Neurophysiol., vol. 79, no. 3,
pp. 204-210, Sep. 1991, doi: 10.1016/0013-
4694(91)90138-T.

[29] G. H. Golub and C. F. V. Loan, Matrix computations.
JHU Press, 2013.

[30] A. Mannini and A. M. Sabatini, Machine learning
methods for classifying human physical activity from
on-body accelerometers, Sensors, vol. 10, no. 2, Art.
no. 2, Feb. 2010, doi: 10.3390/s100201154.

[31] T. M. Coverand J. A. Thomas, Elements of information
theory. John Wiley & Sons, 2012.

[32] T. Hastie, R. Tibshirani, and J. Friedman, Overview of
supervised learning, in the elements of statistical
learning: data mining, inference, and prediction, T.
Hastie, R. Tibshirani, and J. Friedman, Eds., in
Springer Series in Statistics. , New York, NY: Springer,
2009, pp. 9-41. doi: 10.1007/978-0-387-84858-7_2.

[33] C. J. C. Burges, A tutorial on support vector machines
for pattern recognition, Data Min. Knowl. Discov., vol.
2, no. 2, pp. 121-167, Jun. 1998, doi:
10.1023/A:1009715923555.

[34] H. T. Babacan, O. Yiiksek, and F. Saka, Yapay zeka ve
sezgisel regresyon yontemlerinin yagis-akig

modellemesi i¢in performans degerlendirmesi: Aksu
Deresi icin bir uygulama, Nigde Omer Halisdemir
Universitesi Miihendis. Bilim. Derg., vol. 11, no. 3,
Art. no. 3, Jul. 2022, doi: 10.28948/ngumuh.1079616.

[35] L. Breiman, Random forests, Mach. Learn., vol. 45, no.
1, pp. 5-32, Oct. 2001, doi:
10.1023/A:1010933404324.

[36] J. H. Friedman, Greedy function approximation: a
gradient boosting machine, 2001.

[37] Introduction to the logistic regression model, in
Applied Logistic Regression, John Wiley & Sons, Ltd,
2013, pp. 1-33. doi: 10.1002/9781118548387.ch1.

[38] M. Demirhan and S. Behdioglu, Saglik ¢alisanlarinin
maruz kaldig1 siddetin sirah lojistik regresyon analizi
ile incelenmesi, Toplum Ekon. Ve Onetim Derg., vol.
4, no. 1, Art. no. 1, Jun. 2023, doi:
10.58702/teyd.1228283.

[39] J. Shi, D. Chen, and M. Wang, Pre-impact fall detection
with cnn-based class activation mapping method,
Sensors, vol. 20, no. 17, Art. no. 17, Jan. 2020, doi:
10.3390/s20174750.

[40] S. Zulj, G. Seketa, I. Lackovic, and R. Magjarevic,
Accuracy comparison of ml-based fall detection
algorithms using two different acceleration derived
feature vectors, in World Congress on Medical Physics
and Biomedical Engineering 2018, L. Lhotska, L.
Sukupova, I. Lackovi¢, and G. S. Ibbott, Eds., in
IFMBE Proceedings. Singapore: Springer, 2019, pp.
481-485. doi: 10.1007/978-981-10-9038-7_89.

[41] C. M. Lee, J. Park, S. Park, and C. H. Kim, Fall-
detection algorithm using plantar pressure and
acceleration data, Int. J. Precis. Eng. Manuf., vol. 21,
no. 4, pp. 725-737, Apr. 2020, doi: 10.1007/s12541-
019-00268-w.

[42] H. Gjoreski et al., Wearable sensors data-fusion and
machine-learning method for fall detection and activity
recognition, Stud. Syst. Decis. Control, vol. 273, pp.
81-96, 2020, doi: 10.1007/978-3-030-38748-8_4.

[43] O. Ojetola, E. I. Gaura, and J. Brusey, Fall detection
with wearable sensors—safe (smart fall detection), in
2011 Seventh International Conference on Intelligent
Environments, Jul. 2011, pp. 318-321. doi:
10.1109/1E.2011.38.

592

